Silicon Photonics Homework #6

HW 6-1. Consider a silicon optical phase modulator/VOA shown in the following figure. Assume that when the current is injected through the anode and cathode, the carrier concentration ΔN $(=\Delta N_e = \Delta N_h)$ is uniformly distributed in the intrinsic rib region. Assume the effective index of the waveguide mode is approximately the same as the refractive index in the rib region. Device length L = 2 mm. Operating wavelength $\lambda_0 = 1.55 \ \mu$ m. Please calculate

- (a) The required ΔN for π -phase shift. (i.e., $|\Delta nL| = \lambda_0/2$)
- (b) The required ΔN for 30 dB attenuation. (i.e., $e^{-\Delta \alpha L} = 0.001$)

HW 6-2. Consider a rib waveguide shown in the following figure with n_1 = 3.5, n_2 =1.5, n_3 =1.0, w = 2.5 μ m, h = 3 μ m, r = 1.7 μ m, R = 1mm and λ_0 = 1.55 μ m. Please calculate (by using the effective index method where $\beta = 2 \pi N_{wg} / \lambda_0$, $k_{xg} = (n_{effg}^2 - N_{wg}^2)^{0.5} \cdot 2 \pi / \lambda_0$, and $k_{xs} = (N_{wg}^2 - n_{effp}^2)^{0.5} \cdot 2 \pi / \lambda_0)$, (a) the bending loss coefficient α_{bend} (b) the total bending loss for a 90° bend (i.e., the total bending loss = $e^{-\alpha L}$ when the length of the arc $L = \pi R/2$)

HW 6-3. If two identical rib waveguides as described in HW-6.2 are placed closely parallel to each other with a separation $s = 1 \ \mu$ m, please calculate (by using the effective index method as in HW 6-2, where $k_{xc} = k_{xg}$) (a) the coupling coefficient κ (b) the coupling length L_{π}