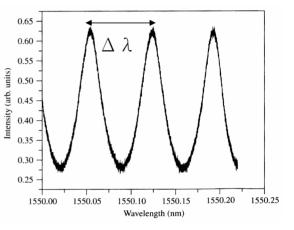

Silicon Photonics Homework #4

HW 4-1.

Find the effective index, $N_{\rm wg}$, of the fundamental TE mode of the rib waveguide for $w = 2 \ \mu$ m, $h = 3 \ \mu$ m, $r = 2 \ \mu$ m, $n_1 = 3.5$, $n_2 = 1.5$, $n_3 = 1.0$ at the operating wavelength of 1.55 $\ \mu$ m by using the effective index method.

HW 4-2.

Consider a planar waveguide: $n_1 = 3.5$, $n_2 = 1.5$, $n_3 = 1.0$, $h = 0.2 \ \mu$ m, and the operating wavelength $\lambda_0 = 1.55 \ \mu$ m. If the surface roughness of the upper and lower claddings σ_u and σ_l are both 2 nm, calculate the scattering loss α_s of the TE₀ mode.


HW 4-3.

If the variations of the concentration of electron and hole concentration in silicon are $\Delta N_e = 2 \times 10^{18}$ and $\Delta N_h = 2 \times 10^{18}$. For a light wave at $\lambda_0 = 1.55 \ \mu$ m, please calculate (a) the variation of the refractive index Δn (b) the variation of the absorption coefficient $\Delta \alpha$ HW 4-4.

The propagation loss of an SOI channel waveguide is measured by the Fabry-Perot resonance method with two endfaces to the air ($n_{\rm air} = 1$). The spectrum is shown as the following figure. The measurement is taken around the center wavelength $\lambda_0 = 1550$ nm. It is known that the effective index of the waveguide is N = 2.8. From the measured spectrum, the maximum and the minimum of the transmittance curve are $I_{\rm max} = 0.62$ and $I_{\rm min} = 0.28$, and the free spectral range is $\Delta \lambda = 0.07$ nm.

- (a) the reflectance R at each endface.
- (b) the length of the waveguide L
- (c) the propagation loss α (in dB/cm) of the channel waveguide.

Hint:
$$R = \left| \frac{N - n_{air}}{N + n_{air}} \right|^2 \quad \Delta I = \frac{I_0^2}{2NL}$$

HW 4-5.

Consider a planar waveguide: $n_1 = 3.5$, $n_2 = n_3 = 1.5$,

 $h = 0.24 \ \mu$ m, and the operating wavelength $\lambda_0 = 1.55 \ \mu$ m. If the light is coupled into the waveguide mode (TE₀) by the grating on the core surface with the diffraction order p = -1. Please calculate

(a) the effective index N of the TE₀ Mode (see Chap 2)

(b) the grating period Λ, if the incidence angle of the light θ_a = 0° (normal incidence) in the upper cladding.
(c) the grating period Λ, if the incidence angle of the light θ_a = 45° in the upper cladding.