Silicon Photonics Homework #3

HW 3-1.

For the Corning SMF-28TM step-index single-mode optical fiber with a relative refractive index difference $\Delta = 0.0036$, a core diameter $2a = 8.2 \ \mu$ m, and a core index $n_1 = 1.468$, please find

(a) the normalized frequency V at $\lambda_0 = 1.55 \ \mu \text{ m}$

- (b) the normalized propagation constant *b* (using the fitting curve in *b*-*V* diagram) at λ_0 = 1.55 μ m
- (c) the effective index $N (= \beta / k_0)$ at $\lambda_0 = 1.55 \ \mu \text{ m}$
- (d) the mode field diameter $2w_0$ at $\lambda_0 = 1.55 \ \mu \,\mathrm{m}$
- (e) if the group velocity dispersion (GVD) $D = 17 \text{ ps/nm} \cdot \text{km}$ at $\lambda_0 = 1.55$
- μ m and a laser with a spectral width $\Delta \lambda = 0.1$ nm is used as the signal source, what is the maximum bit rate B_T due to chromatic dispersion?
- (f) what is the numerical aperture NA of the optical fiber?
- (g) for single mode operation, what is the cut-off wavelength λ_{c} ?

HW 3-2.

For the Corning SMF-28TM step-index single-mode optical fiber with a relative refractive index difference $\Delta = 0.0036$, a core diameter $2a = 8.2 \ \mu$ m, and a core index $n_1 = 1.458$, please find

(a) the normalized frequency V at $\lambda_0 = 1.31 \ \mu \text{ m}$

- (b) the normalized propagation constant b (using the fitting curve in b-V diagram) at $~\lambda_{~0}\text{=}~1.31~~\mu$ m
- (c) the effective index $N (= \beta / k_0)$ at $\lambda_0 = 1.31 \ \mu \text{ m}$
- (d) the mode field diameter $2w_0$ at $\lambda_0 = 1.31 \ \mu \text{ m}$
- (e) if the group velocity dispersion (GVD) D = 0.01 ps/nm·km at $\lambda_0 = 1.31 \ \mu$ m and a laser with a spectral width $\Delta \lambda = 0.1$ nm is used as the signal source, what is the maximum bit rate B_T due to chromatic dispersion?

HW 3-3.

For a step-index multimode fiber with a core diameter $2a = 100 \ \mu$ m, a core index $n_1 = 1.48$ and a cladding index $n_2 = 1.46$, please find (a) the normalized frequency *V* at $\lambda_0 = 0.85 \ \mu$ m (b) the number of modes $M (\approx V^2/2)$

(c) the maximum bit rate B_T due to intermodal (multimode) dispersion.