
Silicon Photonics Homework #2

HW 2-1. (a) Please find the value of θ_1 **numerically** or **graphically** by using the plot similar to Fig. 2.6 for the TE₀ (m = 0) mode asymmetrical planar waveguide with the following parameters: $n_1 = 1.5$, $n_2 = 1.49$, $n_3 = 1.40$, $\lambda_0 = 1.3 \ \mu$ m, and $h = 0.5 \ \mu$ m (Silica waveguide). (b) Is it possible for the calculated mode to be guided in this waveguide? Why?

HW 2-2. Repeat HW2-1 for $n_1 = 1.5$, $n_2 = 1.49$, $n_3 = 1.40$, $\lambda_0 = 1.3 \mu$ m, **h = 5** μ m (Silica waveguide). (a) Find the value of θ_1 for TE₀ mode (*m* = 0) **numerically** or **graphically**. (b) Is it possible for the calculated mode to be guided in this waveguide? Why? (c) If the answer is YES, what is the effective index *N* of the calculated mode?

HW 2-3. Consider an asymmetrical planar waveguide with $n_1 = 3.5$, $n_2 = 1.5$, $n_3 = 1.0$ and $\lambda_0 = 1.3 \ \mu$ m (SOI waveguide). (a) What is the range of the core thickness *h* for only TE₀ (monomode) operation? (b) If the core thickness $h = 0.2 \ \mu$ m, how many TE modes can be supported in this waveguide? (c) Please plot the **Field distribution** (*E*) and the **Intensity distribution** (|*E*|²) schematically for all the allowed TE_m modes (*m*=0,1,...) when the core thickness $h = 0.2 \ \mu$ m.