Silicon Photonics 矽光子學 4 Silicon-On-Insulator (SOI) Photonics (B)

課程編號:941 U0460 科目名稱:矽光子學 授課教師:黃鼎偉 時間地點:一678 明達館 303

Outline

- 4.4 LARGE SINGLE-MODE RIB WAVEGUIDES
- 4.5 REFRACTIVE INDEX AND LOSS COEFFICIENT IN OPTICAL WAVEGUIDES
- 4.6 CONTRIBUTIONS TO LOSS IN AN OPTICAL WAVEGUIDE

4.4 LARGE SINGLE-MODE RIB WAVEGUIDES

LARGE SINGLE-MODE RIB WAVEGUIDES

- For the symmetrical SOI waveguide with
 - $h = 5 \ \mu$ m, $n_1 = 3.5$, $n_2 = n_3 = 1.5$, operating at $1.3 \ \mu$ m, the number of modes will be

$$m_{\max} = \frac{k_0 n_1 h \cos \theta_c}{\pi}$$

where

$$\theta_{\rm c} = \sin^{-1} \frac{1.5}{3.5} = 25.4^{\circ}$$

thus $[m_{\text{max}}]_{\text{int}} = \frac{2 \times 3.5 \times 5 \times 10^{-6} \cos \theta_{\text{c}}}{\lambda_0} = 24$

 \Rightarrow there will be 25 modes (including *m* = 0)

LARGE SINGLE-MODE RIB WAVEGUIDES

Single mode condition

$$\theta_{\rm c} < \cos^{-1}\left(\frac{\lambda_0}{2n_1 h}\right)$$

Maximum thickness for single mode operation in the symmetrical SOI planar waveguide

$$b < \left(\frac{\lambda_0/2}{n_1\sqrt{1-(n_2/n_1)^2}}\right)$$

 \Rightarrow approximately 0.2 μ m for $\lambda_0 = 1.3 \mu$ m

LARGE SINGLE-MODE RIB WAVEGUIDES

■ Soref, et. al. 1991, analyzed with the condition

$$2b\sqrt{n_1^2-n_2^2} \ge 1$$

for the modes $HE_{p,q}$ and $EH_{p,q}$ for p = 0,1,2..., q = 0,1,2..., q

Figure 4.6 Rib waveguide definitions

LARGE SINGLE-MODE RIB WAVEGUIDES

■ Only $0.5 \le r < 1.0$ is analyzed

- For $r \ge 0.5$, the effective indices of vertical modes in the planar region each side of the rib will become larger than those in the rib other than the fundamental mode.
- ⇒All modes other than the fundamental mode will be cut off

LARGE SINGLE-MODE RIB WAVEGUIDES

- Single-mode condition for the aspect ratio
 - by Soref et al.

Figure 4.7 Beam propagation simulation of a rib waveguide.

LARGE SINGLE-MODE RIB WAVEGUIDES

- Single-mode condition for the aspect ratio
 - by Pogossian et al. where c = -0.05

$$\frac{a}{b} \le c + \frac{r}{\sqrt{1 - r^2}}$$

- by EIM (effective index method) c = 0

$$\frac{a}{b} \le \frac{r}{\sqrt{1 - r^2}}$$

4.5 REFRACTIVE INDEX AND LOSS COEFFICIENT IN OPTICAL WAVEGUIDES

LARGE SINGLE-MODE RIB WAVEGUIDES

Figure 4.8 The single-mode condition compared to experimental data.

REFRACTIVE INDEX AND LOSS COEFFICIENT IN OPTICAL WAVEGUIDES

Complex refractive index

$$n'=n_{\rm R}+jn_{\rm I}$$

Recall that

$$k = nk_0 \qquad E = E_0 e^{j(kz - \omega t)}$$

thus $E = E_0 e^{j(k_0 n' z - \omega t)} = E_0 e^{jk_0 n_R z} e^{-k_0 n_I z} e^{-j\omega t}$

The term $\exp(-k_0 n_{\rm I} z)$ is often redesignated as $\exp(-1/2 \alpha z)$

- α : intensity loss coefficient $I = I_0 e^{-\alpha z}$

PROPAGATION LOSS IN OPTICAL WAVEGUIDES

- Widely accepted benchmark for loss is of the order of 1 dB/cm.
 - This is because an integrated optical circuit is typically a few centimeters in length.
- Since an optical loss of 3 dB corresponds to 1/2 of the optical power, it is clear that a loss of much more than 1 dB/cm will rapidly result in a very poor signal-to-noise ratio at the detector.
- Add to this additional losses due to coupling to or from the optical circuit, or losses within the circuit not associated with propagation loss, and the situation is exacerbated.
- Losses for SOI waveguides are typically in the range 0.1-0.5 dB/cm.

4.6 CONTRIBUTIONS TO LOSS IN AN OPTICAL WAVEGUIDE

Volume Scattering

- Volume scattering
 - caused by imperfections in the bulk waveguide material, such as voids, contaminant atoms, or crystalline defects.
 - Bulk material: Rayleight scattering, λ ⁻⁴ dependence
 - Confined waves: the wavelength dependence is related to the axial correlation length of the defects
 - For correlation lengths shorter than or of the order of the wavelength, the scattering loss exhibits a λ⁻³ dependence, because the reduction of confinement for longer wavelengths partially counters the λ⁻⁴ relation
 - For long correlation lengths compared to the wavelength, radiation losses dominate and a λ^{-1} dependence is observed

Interface Scattering

- Interface scattering
 - due to roughness at the interface between the core and the claddings of the waveguide.
- Tien in 1971,
 - based upon the specular reflection of power from a surface. This condition holds for long correlation lengths, which is a reasonable assumption in most cases.

$$P_{\rm r} = P_{\rm i} \exp\left[-\left(\frac{4\pi\sigma n_1}{\lambda_0}\cos\theta_1\right)^2\right]$$

- P_r specular reflection power, P_i incident power, σ variance of surface roughtness (r.m.s. roughness), θ_1 is the propagation angle within the waveguide, and n_1 is the refractive index of the core.

Interface Scattering

■ Loss Coefficient due to Interface Scattering

$$\alpha_{\rm s} = \frac{\cos^3\theta}{2\sin\theta} \left(\frac{4\pi n_1(\sigma_{\rm u}^2 + \sigma_{\ell}^2)^{\frac{1}{2}}}{\lambda_0}\right)^2 \left(\frac{1}{b + \frac{1}{k_{\rm yu}} + \frac{1}{k_{\rm y\ell}}}\right)$$

- σ_u and σ_l : surface roughness of upper and lower surfaces, respectively
- k_{yu} and k_{yl}: decay constant of upper and lower surface, respectively
- *h*: waveguide thickness

Example

Consider a planar waveguide:

 $n_1 = 3.5$, $n_2 = 1.5$, $n_3 = 1.0$, $h = 1.0 \ \mu$ m, and the operating wavelength $\lambda_0 = 1.3 \ \mu$ m. Let us compare the scattering loss of two different modes of the waveguide, say the TE₀ and the TE₂ modes.

Solution

- θ_1 are 80.8° (TE₀) and 60.7° (TE₂).
- **Decay constant:** k_{yu} and k_{yl}

$$k_{yi}^2 = \beta^2 - k_0^2 n_i^2 \qquad \beta = n_1 k_0 \sin \theta_1$$

TE ₀	TE ₂
$\overline{k_{yu}} = \sqrt{\beta^2 - k_0^2 n_3^2} = 15.98 \mu\text{m}^{-1}$	$k_{yu} = \sqrt{\beta^2 - k_0^2 n_3^2} = 13.94 \mu \mathrm{m}^{-1}$
$k_{y\ell} = \sqrt{\beta^2 - k_0^2 n_2^2} = 15.04 \mu\mathrm{m}^{-1}$	$k_{y\ell} = \sqrt{\beta^2 - k_0^2 n_2^2} = 12.85 \mu \text{m}^{-1}$

■ If σ_u and σ_l are both 1 nm. ⇒For TE₀: α_s = 0.04 cm⁻¹ (0.17 dB/cm) ⇒For TE₂: α_s = 1.33 cm⁻¹ (5.78 dB/cm)

Interband Absorption

- Silicon: band edge wavelength = 1.1 μ m
 - λ = 1.15 μ m ⇒ attenuation = 2.83 dB/cm
 - λ = 1.52 μ m ⇒ attenuation = 0.004 dB/cm

Free Carrier Absorption

Drude-Lorentz equation: change in absorption

$$\Delta \alpha = \frac{e^3 \lambda_0^2}{4\pi^2 c^3 \varepsilon_0 n} \left(\frac{N_{\rm e}}{\mu_{\rm e} (m_{\rm ce}^*)^2} + \frac{N_{\rm h}}{\mu_{\rm h} (m_{\rm ch}^*)^2} \right)$$

- *e*: the electronic charge, *c*: the velocity of light in vacuum, μ_{e} : the electron mobility, μ_{h} : the hole mobility, m^{*}_{ce} : the effective mass of electrons, m^{*}_{ch} : the effective mass of holes, N_{e} : the free electron concentration, N_{h} : the free hole concentration, ε_{0} : the permittivity of free space, and λ_{0} : the free space wavelength.

Free Carrier Absorption

If $N_{\rm e}$ and $N_{\rm h}$ are 10¹⁸ cm⁻³, $\Rightarrow \Delta \alpha = 2.5 \text{ cm}^{-1}$ (10.86 dB/cm)

Figure 4.9 Additional loss of silicon due to free carriers.

Radiation Loss

- Waveguide defect
 - e.g., slightly damaged fabrication mask
 - Mode coupled into higher order modes and then attenuated by radiation
- Waveguide bending
 - ⇔ Chap. 6.3
- Substrate radiation
 - Buried oxide (BOX) layer should be sufficiently thick

Substrate Radiation

- Depends on the modes, polarization and wavelength
- For 1.3-1.6 μ m, Buried Oxide should > 0.4 $\,\mu$ m.
- Thinner core ⇒ thicker BOX layer

Figure 4.10 Buried oxide layer thickness vs planar SOI waveguide thickness for achieving \sim 0.001 dB/cm loss for the fundamental mode at the wavelength of 1550nm