Silicon Photonics

矽光子學
2 Basics of guided waves（A）

```
課程编號:941 U0460
科目名稱:矽光子學
授課教師:黄鼎偉
時間地點: -678 明達館 303
```


Outline

－2．1 THE RAY OPTICS APPROACH TO DESCRIBING PLANAR WAVEGUIDES
－2．2 REFLECTION COEFFICIENTS
－2．3 PHASE OF A PROPAGATING WAVE AND ITS WAVEVECTOR
－2．4 MODES OF A PLANAR WAVEGUIDE

2．1 THE RAY OPTICS APPROACH TO DESCRIBING PLANAR WAVEGUIDES

$n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$

RAY OPTICS

－Snell＇s Law

$$
n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}
$$

Figure 2．1 Light rays refracted and reflected at the interface of two media

Critical Angle

- At the critical angle $\Rightarrow \theta_{2}=90^{\circ}$

$$
n_{1} \sin \theta_{1}=n_{2} \quad \theta_{c}=\sin ^{-1} \frac{n_{2}}{n_{1}}
$$

Total Internal Reflection

- $\theta_{i}>\theta_{c} \Rightarrow$ no light is transmitted and total internal reflection (TIR) occurs.

n_{2}

Figure 2.2 Total internal reflection at two interfaces, demonstrating the concept of a waveguide

2.2 REFLECTION COEFFICIENTS

REFLECTION COEFFICIENTS

- Fresnel Form•--

$$
E_{r}=r E_{i}
$$

$-r$ is a complex reflection coefficient

- The reflection coefficient is a function of both the angle of incidence and the polarization of light
- 'Partial' reflection and 'partial' transmission

TEM waves

- Transverse Electromagnetic Waves, or TEM waves
- The electric and magnetic fields of an electromagnetic wave are always orthogonal to one another, and both are orthogonal to the direction of propagation
- Polarization is the direction of the electric field associated with the propagating wave

TE \& TM Conditions

- Plane of incidence (formed by the wave normal \& the normal to the interface)
- TE condition $\Rightarrow E$ field \perp Plane of incidence
- TM condition $\Rightarrow H$ field \perp Plane of incidence

Figure 2.3 Orientation of electric fields for TE incidence at the interface between two media

Fresnel Formulae (I)

- TE polarization

$$
r_{T E}=\frac{n_{1} \cos \theta_{1}-n_{2} \cos \theta_{2}}{n_{1} \cos \theta_{1}+n_{2} \cos \theta_{2}}
$$

- TM polarization

$$
r_{T M}=\frac{n_{2} \cos \theta_{1}-n_{1} \cos \theta_{2}}{n_{2} \cos \theta_{1}+n_{1} \cos \theta_{2}}
$$

Fresnel Formulae (II)

- Using Snell's law
- TE polarization

$$
r_{\text {TE }}=\frac{n_{1} \cos \theta_{1}-\sqrt{n_{2}^{2}-n_{1}^{2} \sin ^{2} \theta_{1}}}{\text { polarizâtiợOs } \theta_{1}+\sqrt{n_{2}^{2}-n_{1}^{2} \sin ^{2} \theta_{1}}}
$$

$$
r_{T M}=\frac{n_{2}^{2} \cos \theta_{1}-n_{1} \sqrt{n_{2}^{2}-n_{1}^{2} \sin ^{2} \theta_{1}}}{n_{2}^{2} \cos \theta_{1}+n_{1} \sqrt{n_{2}^{2}-n_{1}^{2} \sin ^{2} \theta_{1}}}
$$

Total Internal Reflection

- $\theta_{\mathrm{i}}<\theta_{\mathrm{c}}$
- Only partial reflection occurs and the reflection coefficient is real.
- $\theta_{i}>\theta_{c}$
- Total internal reflection occurs and the reflection coefficient is complex.

$$
|r|=1 \quad r=\exp (j \phi)
$$

Phase Shift due to

 Total Internal Reflection$$
\begin{aligned}
& \phi_{T E}=2 \tan ^{-1} \frac{\sqrt{\sin ^{2} \theta_{1}-\left(\frac{n_{2}}{n_{1}}\right)^{2}}}{\cos \theta_{1}} \\
& \phi_{T M}=2 \tan ^{-1} \frac{\sqrt{\frac{n_{1}^{2}}{n_{2}^{2}} \sin ^{2} \theta_{1}-1}}{\frac{n_{2}}{n_{1}} \cos \theta_{1}}
\end{aligned}
$$

Reflected Power

- Poynting Vector
- vector product of the electric and magnetic vectors
$S=\frac{1}{Z} E^{2}=\sqrt{\frac{\varepsilon_{m}}{\mu_{m}}} E^{2}$
Reflected Power

$$
R=\frac{S_{r}}{S_{i}}=\frac{E_{r}^{2}}{E_{i}^{2}}
$$

2.3 PHASE OF A PROPAGATING WAVE AND ITS WAVEVECTOR

PHASE OF A PROPAGATING WAVE

- the electric and magnetic fields associated with a propagating wave be described respectively as

$$
E=E_{0} \exp [j(k z \pm \omega t)]
$$

- Phase ${ }^{H}=H_{0} \exp [j(k z \pm \omega t)]$

$$
\phi=k z \pm \omega t
$$

PHASE OF A PROPAGATING WAVE

- Angular Frequency ω and Frequency f

$$
\left|\frac{\partial \phi}{\partial t}\right|=\omega=2 \pi f
$$

- Wavevector k (propagation constant)

$$
\frac{\partial \phi}{\partial z}=k \quad k=\frac{2 \pi}{\lambda}
$$

Wavevector

- In free space

$$
k_{0}=\frac{2 \pi}{\lambda_{0}}
$$

- In a medium with the Pefractive index n

$$
k=\frac{2 \pi n}{\lambda_{0}}=n k_{0}
$$

2.4 MODES OF A PLANAR WAVEGUIDE

PLANAR WAVEGUIDE

Figure 2.4 (a) Propagation in a planar waveguide. (b) The relationship between propagation constants in the y, z and wavenormal directions. Adapted with permis-sion from Artech House Publishing, Norwood, MA, USA, www.artechhouse.com

Standing Wave

- There will potentially be a standing wave across the waveguide in the y direction
- For a roundtrip in the y direction

$$
\phi_{h}=2 k_{y} h=2 k_{0} n_{1} h \cos \theta_{1}
$$

- The total phase including the effect of the reflection at the upper interface and lower interface

$$
\phi_{t}=2 k_{0} n_{1} h \cos \theta_{1}-\phi_{u}-\phi_{l}
$$

Mode of Propagation

- For consistency, this total phase shift must be a multiple of 2π

$$
2 k_{0} n_{1} h \cos \theta_{1}-\phi_{u}-\phi_{l}=2 m \pi
$$

- There will be a series of discrete angles corresponding to integral values of m
- Each solution is referred to as a mode of propagation

Mode of Propagation

- The first TE mode, or fundamental mode, will be described as $T E_{0}$
- Higher-order modes are correspondingly described using the appropriate value of m
- The limiting conditions of m correspond to the propagation angle, θ_{1}, becoming less than the critical angle at either the upper or lower waveguide interface.

2.4.1 The Symmetrical Planar Waveguide

Symmetrical Planar Waveguide

- Symmetrical Planar Waveguide

$$
n_{2}=n_{3} \quad \phi_{u}=\phi_{l}
$$

- TE Polarization

$$
2 k_{0} n_{1} h \cos \theta_{1}-4 \tan ^{-1} \frac{\sqrt{\sin ^{2} \theta_{1}-\left(n_{2} / n_{1}\right)^{2}}}{\cos \theta_{1}}=2 m \pi
$$

Symmetrical Planar Waveguide

■ TE Polarization

$$
\tan \left[\frac{k_{0} n_{1} h \cos \theta_{1}-m \pi}{2}\right]=\frac{\sqrt{\sin ^{2} \theta_{1}-\left(n_{2} / n_{1}\right)^{2}}}{\cos \theta_{1}}
$$

- TM Polarization

$$
\tan \left[\frac{k_{0} n_{1} h \cos \theta_{1}-m \pi}{2}\right]=\frac{\sqrt{\left(n_{1} / n_{2}\right)^{2} \sin ^{2} \theta_{1}-1}}{\left(n_{2} / n_{1}\right) \cos \theta_{1}}
$$

Number of Modes

- Minimum value of $\theta_{1}=\theta_{c}$, where
- $m_{\text {max }}$

$$
k_{0} n_{1} h \cos \theta_{1}-m_{\max } \pi=0
$$

- or

$$
m_{\max }=\frac{k_{0} n_{1} h \cos \theta_{c}}{\pi}
$$

- Allowed Modes are $m=0,1,2, \ldots\left[m_{\text {max }}\right]_{\text {int }}$
- The Number of Modes $=\left[m_{\text {max }}\right]_{\mathrm{int}}+1$
- The lowest order mode (the fundamental mode, $m=0$) is always allowed (never cut-off).

Asymmetrical Planar Waveguide

- TE Polarization

2.4.2 The Asymmetrical Planar Waveguide

Asymmetrical Planar Waveguide

n_{2}
2.4.3 Solving the Eigenvalue Equations for Symmetrical and Asymmetrical Waveguides

Solving the Eigenvalue Equations (I)

■Let $n_{1}=1.5, n_{2}=1.49, n_{3}=1.40, \lambda_{0}=1.3 \mu \mathrm{~m}$, and $h=0.3 \mu \mathrm{~m}, m=0$ (Silica waveguide)

Figure 2.6 Solution of the eigenvalue equation for $m=0$

Solving the Eigenvalue Equations (II)

- Let $n_{1}=3.5, n_{2}=1.5, n_{3}=1.0, \lambda_{0}=1.3 \mu \mathrm{~m}$, and $h=0.15 \mu \mathrm{~m}, m=0$ (SOI waveguide)

Figure 2.7 Solution of the eigenvalue equation for $m=0$ (silicon-on-insulator)

2.4.4 Monomode Conditions

Monomode Conditions

- TE Polarization in a Symmetrical waveguide

$$
\tan \left[\frac{k_{0} n_{1} h \cos \theta_{1}-m \pi}{2}\right]=\left[\frac{\sqrt{\sin ^{2} \theta_{1}-\left(n_{2} / n_{1}\right)^{2}}}{\cos \theta_{1}}\right]
$$

- Monomode condition

$$
\begin{gathered}
\tan \left[\frac{k_{0} n_{1} h \cos \theta_{1}-m \pi}{2}\right]=0 \\
\cos \theta_{c}=\frac{\pi}{k_{0} n_{1} h}=\frac{\lambda_{0}}{2 n_{1} h} \quad \Rightarrow \quad \theta_{c}<\cos ^{-1}\left(\frac{\lambda_{0}}{2 n_{1} h}\right)
\end{gathered}
$$

Effective Index of a Mode

2.4.5 Effective Index of a Mode

Effective Index of a Mode

- The propagation constant in the z direction k_{z} is often replaced in many texts by the variable β
$k_{z}=n_{1} k_{0} \sin \theta_{1} \quad k_{y}=n_{1} k_{0} \cos \theta_{1}$
- The effective index of the mode $N\left(n_{\text {eff }}\right)$

$$
N=n_{1} \sin \theta_{1} \quad k_{z}=\beta=N k_{0}
$$

- Range of β

$$
n_{1} k_{0} \geq \beta \geq n_{1} k_{0} \sin \theta_{l}\left(=k_{0} n_{2}\right)
$$

- Range of N

$$
n_{1} \geq N \geq n_{2}
$$

