Computer Science
Supplement 2

Essential Problems in
Computer Science

Source: Al Aho aho@cs.columbia.edu

Forty Years of Programming Languages:

m The 10 most popular programming
languages in 1967

mAlgol60 mFortran IV
mAPL mLisp 1.5
mBasic mPL/I
sBCPL mSimula67
sCOBOL sSNOBOL 4

Impact by Computer Science

m What is the biggest impact that computer
science has had on the world in the past
forty years?

m Typical answer: the Internet with its
associated global information infrastructure
and applications

Forty Years of Programming Languages:

m The 10 most popular programming
languages in 2007

mjava mPerl

uC nC#
mVisual Basic mPython
nC++ mJavaScript

sPHP mRuby

Question 1

m How do we determine the difficulty of a

problem?
_~~ Undecidable -

Decidable

/" Exponential ™~

{/P;\:
\ \\(D // /

Com plex_it_y_l-iierarchy

The P vs. NP Problem
m Does P=NP?

m Informally: Are there any problems for
which a computer can verify a given solution
quickly but cannot find the solution quickly?

m Note: This is one of the Clay Mathematics
Institute Millennium Prize Problems. The
first person solving this problem will be
awarded one million US dollars by the CMI
(http:/ /www.claymath.org/millennium).

The Classes P and NP

m A problem is in P if it can be solved in polynomial

time by a deterministic Turing machine.

m Example: Does a set of 7 positive and negative integers

have a nonempty subset whose sum is positive?
m{-2,7,-3,14,-10,15}

m A problem is in NP if it can be solved in
polynomial time by a nondeterministic Turing
machine.

m Example: Does a set of 7 positive and negative integers

have a nonempty subset whose sum is zero?
m{-27-3,14,-10,15}

Another Interesting Problem: Integer
Factorization

m Problem: Given an n-bit integer, find all of
its prime factors.

m Best-known deterministic algorithm has
time complexity O(exp(C)n'/3log?/*n).

m Open Problem: Can this problem be done in
deterministic polynomial time?

Question 2

m How do we model the behavior of

complex systems that we would like to
simulate?

Large software systems Human cell

Integer Factorization on a Quantum
Computer

m Problem: Given a composite 7-bit integer,
find a nontrivial factor.

m A quantum computer can solve this problem
in O(n%)operations.

m Open Problem: Can this problem be solved
in deterministic polynomial time on a
classical computer?

Ion Trap Quantum Computer
= pyhon FEE

Question 3

m How do we build a scalable
trustworthy information infrastructure?

Demand for Trustworthy Systems

m 36 million Americans have had their
identities stolen since 2003

m 155 million personal records have been
compromised since 2005

m 28 million veterans had their Social Security

numbers stolen from laptops

Question 4

m Is there a scientific basis for making
reliable software?

Demand for Trustworthy Systems

Protection from Malware

m Internet malware | Worms, viruss prove costly |
m worms, viruses, spyware and Internet-
cracking tools
m worms ovetride program control to execute
lcod prog Eatimatod
malcode Venr Vium/worm damage
m Internet worms 1990 Malxxn virux 850 milion
m Motris '88, Code Red II '01, Nimda '01, Lova Bug
Slapper '02, Blaster '03, MS-SQL Slammer '03, [2000 vius 10 bilian
Sasser '04 Code Red |
m automatic propagation 2000 andllworme 92,6 Lillon
m Internet crackers 580 millan
. » 2001 Mimdia virue o B2 bilon
= ‘500 got h4x0r3d!! .
. . . 2002 Klez worm 33 blon
m After breaking in, malware will —
m create backdoors, install root kits (conceal 2000 worm %1 billon
malcode existence), join a botnet, generate Source: USA TODAY rexesrch

spam

How Can We Make Reliable
Software?

m Communication: Shannon [1948] used error
detecting and correcting codes for reliable
communication over noisy channels

m Hardware: von Neumann [1956] used
redundancy to create reliable systems from
unreliable components

m Software: Is there a scientific basis for
making reliable software?

Volume of Software and Defects

m World uses hundreds of billions of lines of

software
® 5 million programmers worldwide
m average programmer generates 5,000 new lines
of code annually
m embedded base: hundreds of billions of lines of
software
® Number of embedded defects
m defect densities: 10 to 10,000 defects/million
lines of code
m total number of defects in embedded base: 5 x
10° to 50 x 10°

The Software Development Process

m Specification
m Define system functionality and constraints
m Validation
m Ensure specification meets customer needs
m “Are we building the right product?”’
Development
m Produce software
Verification and testing
m Ensure the software does what the specification calls for
m “Are we building the product right?”’
Maintenance
m Evolve the software to meet changing customer needs
Quality plan

m Ensure product meets user needs

IEEE Spectrum Software Hall of
Shame

Year | Company Costsin US$

2004 | UK Inland Revenue | Software errors contribute to $3.45 billion tax-
credit overpayment

2004 | J Sainsbury PLC [UK] | Supply chain management system abandoned
after deployment costing $527M

2002 | CIGNA Corp Problems with CRM system contribute to $445M
loss
1997 | U. S. Internal Tax modernization effort cancelled after $4
Revenue Service billion is spent
1994 | U. S. Federal Advanced Automation System canceled after
Aviation $2.6 hillion is spent

Administration

Where is the Time Spent?

1/3 planning

1/6 coding

1/4 component test and early system test
1/4 system test, all components in hand

“In examining conventionally scheduled projects, I
have found that few allowed one-half of the
projected schedule for testing, but that most did
indeed spend half of the actual schedule for that
purpose.”

F. B. Brooks, The Mythical Man-Month, 1995.

Why Do Software Projects Fail?

Unrealistic or unarticulated project goals
Inaccurate estimates of needed resources
Badly defined system requirements

Poor reporting of the project’s status
Unmanaged risks

Poor communication among customers, developers, and
users

Use of immature technology

Inability to handle the project’s complexity
Sloppy development practices

Poor project management

Stakeholder politics

Commercial pressures

But the open problem remains

m Is there a scientific basis for making
reliable software?

Ingredients for Making Reliable
Software

Good people/management/communication
Good requirements/modeling /prototyping
Sound software engineering practices

Use of mature technology

Thorough testing

Verification tools
m model checkers

m theorem-proving static analyzers

Question 5

m Can we construct computer systems that
have human-like attributes such as emotion
or intelligence?

Cogito, ergo sum.

An Easier Question, Perhaps

m Can a deterministic program generate
random output?

m BBP algorithm can compute the nth bit of pi

without having to compute the first 7—1 bits.
m http://mathworld.wolfram.com/BBP-TypeFormula.html

m But it is not known whether the digits of pi
are random.

Question 6

m Moore’'s Law for number of transistors on a chip

Transistors.

0,000 00C

un-;fj

Pentium IT1 o
Ferdiam IT » 000,000

1.JO00 000

000

Marriage with Robots?

“ My forecast is that around 2050, the state of
Massachusetts will be the first jurisdiction to
legalize marriages with robots.”

David Levy

Al researcher

University of Maastricht, Netherlands
Live Science, October 12, 2007

Question 6

m Moore’s Law for number of transistors on a chip

100

Chg mas¥am
Fower nwattvon’ Fol o keng 1o rexch Nudear Reacter

Fasitm - 13) watts 4

1%

ium 4 - 75 walls

Pemtiurn [1- 35 warts Peatim |1 -35wams

Fetthem Fro- S0w3TTs fp

jo | Pentum- 14wt gy Supised Healing Mlate

&1 2wtk
1 386 - Twant

Question 6

m How do we extend Moore’s Law?

m Are multi-core architectures the answer?

Summary

1. How do we determine the difficulty of a problem?

2. How do we model the behavior of complex
systems that we would like to simulate?

3. How do we build a trustworthy information
infrastructure?

4. Is there a scientific basis for making reliable
software?

5. Can we construct computer systems that have
human-like attributes such as emotion or
intelligence?

6. How do we extend Moore’s Law?

