Computer Science

Supplement Material

Introducing Computer Systems

The Computer Defined

- Electronic device
- Converts data into information
- Modern computers are digital
 - Two digits combine to make data
- Older computers were analog
 - A range of values made data

Computers For Individual Use

- Desktop computers
 - The most common type of computer
 - Sits on the desk or floor
 - Performs a variety of tasks
- Workstations
 - Specialized computers
 - Optimized for science or graphics
 - More powerful than a desktop

Computers For Individual Use

- Notebook computers
 - Small portable computers
 - Weighs between 3 and 8 pounds
 - About 8 ½ by 11 inches
 - Typically as powerful as a desktop
 - Can include a docking station

Computers For Individual Use

- Handheld computers
 - Very small computers
 - Personal Digital Assistants (PDA)
 - Note taking or contact management
 - Data can synchronize with a desktop
- Smart phones
 - Hybrid of cell phone and PDA
 - Web surfing, e-mail access

Computers For Individual Use

- Tablet computers
 - Newest development in portable computers
 - Input is through a pen
 - Run specialized versions of office products

Computers For Organizations

- Network servers
 - Centralized computer
 - All other computers connect
 - Provides access to network resources
 - Multiple servers are called server farms
 - Often simply a powerful desktop

Computers For Organizations

- Mainframes
 - Used in large organizations
 - Handle thousands of users
 - Users access through a terminal

Computers For Organizations

- Supercomputers
 - The most powerful computers made
 - Handle large and complex calculations
 - Process trillions of operations per second
 - Found in research organizations

Computers For Organizations

- Minicomputers
 - Called midrange computers
 - Power between mainframe and desktop
 - Handle hundreds of users
 - Used in smaller organizations
 - Users access through a terminal

Computers In Society

- More impact than any other invention
 - Changed work and leisure activities
 - Used by all demographic groups
- Computers are important because:
 - Provide information to users
 - Information is critical to our society
 - Managing information is difficult

Computers In Society

- Computers at home
 - Many homes have multiple computers
 - Most American homes have Internet
 - Computers are used for
 - Business
 - Entertainment
 - Communication
 - Education

Computers In Society

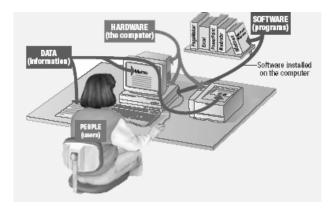
- Computers in government
 - Necessary to track data for population
 - Police officers
 - Tax calculation and collection
 - Governments were the first computer users

Computers In Society

- Computers in education
 - Computer literacy required at all levels
- Computers in small business
 - Makes businesses more profitable
 - Allows owners to manage
- Computers in industry
 - Computers are used to design products
 - Assembly lines are automated

Computers In Society

- Computers in health care
 - Revolutionized health care
 - New treatments possible
 - Scheduling of patients has improved
 - Delivery of medicine is safer

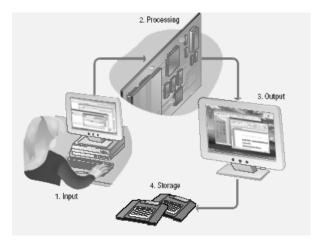

Looking Inside the Computer System

Parts of the Computer System

- Hardware
 - Mechanical devices in the computer
 - Anything that can be touched
- Software
 - Tell the computer what to do
 - Also called a program
 - Thousands of programs exist

Parts of the Computer System

- Computer systems have four parts
 - Hardware
 - Software
 - Data
 - User

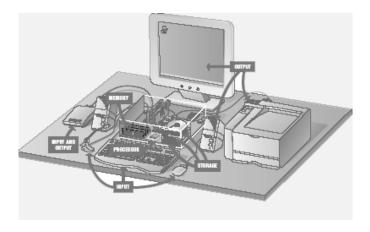


Parts of the Computer System

- Data
 - Pieces of information
 - Computer organize and present data
- Users
 - People operating the computer
 - Most important part
 - Tell the computer what to do

Information Processing Cycle

- Steps followed to process data
- Input
- Processing
- Output
- Storage



Essential Computer Hardware

- Processing devices
 - Brains of the computer
 - Carries out instructions from the program
 - Manipulate the data
 - Most computers have several processors
 - Central Processing Unit (CPU)
 - Secondary processors
 - Processors made of silicon and copper

Essential Computer Hardware

- Computers use the same basic hardware
- Hardware categorized into four types

Essential Computer Hardware

- Memory devices
 - Stores data or programs
 - Random Access Memory (RAM)
 - Volatile
 - Stores current data and programs
 - More RAM results in a faster system
 - Read Only Memory (ROM)
 - Permanent storage of programs
 - Holds the computer boot directions

Essential Computer Hardware

- Input and output devices
 - Allows the user to interact
 - Input devices accept data
 - Keyboard, mouse
 - Output devices deliver data
 - Monitor, printer, speaker
 - Some devices are input and output
 - Touch screens

Software Runs The Machine

- Tells the computer what to do
- Reason people purchase computers
- Two types
 - System software
 - Application software

Essential Computer Hardware

- Storage devices
 - Hold data and programs permanently
 - Different from RAM
 - Magnetic storage
 - Floppy and hard drive
 - Uses a magnet to access data
 - Optical storage
 - CD and DVD drives
 - Uses a laser to access data

Software Runs The Machine

- System software
 - Most important software
 - Operating system
 - Windows XP
 - Network operating system (OS)
 - Windows Server 2003
 - Utility
 - Symantec AntiVirus

Software	Runs	The	Mac	hine
Sonware	1111111111111	1116	wac	

- Application software
 - Accomplishes a specific task
 - Most common type of software
 - MS Word
 - Covers most common uses of computers

Computer users

- Role depends on ability
 - Setup the system
 - Install software
 - Mange files
 - Maintain the system
- "Userless" computers
 - Run with no user input
 - Automated systems

Computer data

- Fact with no meaning on its own
- Stored using the binary number system
- Data can be organized into files

Using the Keyboard And Mouse

The 1	Keyboard
-------	----------

- The most common input device
 - Must be proficient with keyboard
 - Skill is called keyboarding

The Mouse

- All modern computers have a variant
- Allows users to select objects
 - Pointer moved by the mouse
- Mechanical mouse
 - Rubber ball determines direction and speed
 - The ball often requires cleaning

The Keyboard

- How keyboard works
 - Keyboard controller detects a key press
 - Controller sends a code to the CPU
 - Code represents the key pressed
 - Controller notifies the operating system
 - Operating system responds
 - Controller repeats the letter if held

The Mouse

- Optical mouse
 - Light shown onto mouse pad
 - Reflection determines speed and direction
 - Requires little maintenance

The Mouse

- Interacting with a mouse
 - Actions involve pointing to an object
 - Clicking selects the object
 - Clicking and holding drags the object
 - Releasing an object is a drop
 - Right clicking activates the shortcut menu
 - Modern mice include a scroll wheel

The Mouse

- Mouse button configuration
 - Configured for a right-handed user
 - Can be reconfigured
 - Between 1 and 6 buttons
 - Extra buttons are configurable

The Mouse

- Benefits
 - Pointer positioning is fast
 - Menu interaction is easy
 - Users can draw electronically

Variants of the Mouse

- Trackballs
 - Upside down mouse
 - Hand rests on the ball
 - User moves the ball
 - Uses little desk space

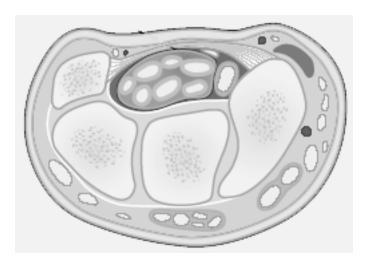
Variants of the Mouse

- Track pads
 - Stationary pointing device
 - Small plastic rectangle
 - Finger moves across the pad
 - Pointer moves with the pointer
 - Popular on laptops

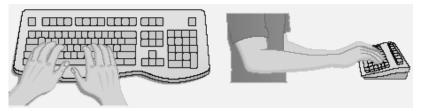
Ergonomics and Input Devices

- Ergonomics
 - Study of human and tool interaction
 - Concerned with physical interaction
 - Attempts to improve safety and comfort

Variants of the Mouse


- Track point
 - Little joystick on the keyboard
 - Move pointer by moving the joystick

Ergonomics and Input Devices


- Repetitive Strain Injury (RSI)
 - Caused by continuous misuse of the body
 - Many professions suffer from RSI
- Carpal Tunnel Syndrome
 - Carpal tunnel is a passage in the wrist
 - Holds nerves and tendons
 - Prolonged keyboarding swells tendons

Carpal Tunnel Syndrome

Ergonomics and Input Devices

- Techniques to avoid RSI
 - Sit up straight
 - Have a padded wrist support
 - Keep your arms straight
 - Keyboard properly
 - Take frequent breaks

Ergonomics and Input Devices

- Office hardware suggestions
 - Office chairs should have
 - Adjustable armrests and height
 - Armrests
 - Lower back support
 - Desks should have
 - Have a keyboard tray
 - Keep hands at keyboard height
 - Place the monitor at eye level

Inputting Data In Other Ways

Devices for the Hand

- Pen based input
 - Tablet PCs, PDA
 - Pen used to write data
 - Pen used as a pointer
 - Handwriting recognition
 - On screen keyboard

Devices for the hand

- Game controllers
 - Enhances gaming experience
 - Provide custom input to the game
 - Modern controllers offer feedback
 - Joystick
 - Game pad

Devices for the hand

- Touch screens
 - Sensors determine where finger points
 - Sensors create an X,Y coordinate
 - Usually presents a menu to users
 - Found in cramped or dirty environments

Optical Input Devices

- Allows the computer to see input
- Bar code readers
 - Converts bar codes to numbers
 - UPC code
 - Computer find number in a database
 - Works by reflecting light
 - Amount of reflected light indicates number

Optical Input Devices

- Image scanners
 - Converts printed media into electronic
 - Reflects light off of the image
 - Sensors read the intensity
 - Filters determine color depths

Optical input devices

- Optical character recognition (OCR)
 - Converts scanned text into editable text
 - Each letter is scanned
 - Letters are compared to known letters
 - Best match is entered into document
 - Rarely 100% accurate

Audiovisual Input Devices

- Microphones
 - Used to record speech
 - Speech recognition
 - "Understands" human speech
 - Allows dictation or control of computer
 - Matches spoken sound to known phonemes
 - Enters best match into document

Audiovisual Input Devices

- Musical Instrument Digital Interface
 - MIDI
 - Connects musical instruments to computer
 - Digital recording or playback of music
 - Musicians can produce professional results

Audiovisual Input Devices

- Digital cameras
 - Captures images electronically
 - No film is needed
 - Image is stored as a JPG file
 - Memory cards store the images
 - Used in a variety of professions

Video and Sound

Monitors

- Most common output device
- Connects to the video card
- Categorized by color output
 - Monochrome
 - One color with black background
 - Grayscale
 - Varying degrees of gray
 - Color
 - Display 4 to 16 million colors

59

Monitors

- Cathode Ray Tube (CRT)
 - Most common type of monitor
 - Electrons fired from the back
 - Electrons excite phosphor to glow
 - Phosphor is arranged in dots called pixels
 - Dot mask ensures proper pixel is lit

Monitors	Monitors
CRT color	■ Liquid Crystal Display (LCD)
■ Phosphor dots arranged in triads	■ Commonly found on laptops
Red, green, and blue dots	■ Desktop versions exist
■ Three colors blend to make colors	■ Solve the problems of CRT
■ Varying the intensity creates new colors	■ Fluorescent lights provide illumination
Monitors	Monitors
CRT drawbacks	■ Passive matrix LCD
■ Very large	■ Pixels arranged in a grid
■ Very heavy	■ Pixels are activated indirectly
■ Use a lot of electricity	■ Row and column are activated
	■ Animation can be blurry

Monitors

- Active matrix LCD
 - Each pixel is activated directly
 - Pixels have 4 transistors
 - One each for red, green, blue
 - One for opaqueness
 - Transistors arranged in a thin film
 - Animation is crisp and clean

Monitors

- Drawbacks to LCD
 - More expensive than CRT
 - Must sit directly in front of screen
 - Can be more fragile than CRT

Monitors

- Paper-white displays
 - High contrast between fore and background
- Electro-luminescent displays (ELD)
 - Similar to LCD
 - Uses phosphor to produce light
- Plasma monitor
 - Gas is excited to produce light

Monitors and Video Cards

- Monitors impacts user effectiveness
- Monitors should have
 - Crisp text
 - Clear graphics
 - Adjustable controls
 - Clear edges

Monitors and Video Cards

- Size of monitor
 - Measured in inches
 - Measured diagonally
 - Actual size
 - Distance from corner to corner
 - Viewable size
 - Useable portion of the screen

Monitors and Video Cards

- Refresh rate
 - Number of time the screen is redrawn
 - Modern equipment sets this automatically
 - Improper settings can cause eyestrain

Monitors and Video Cards

- Resolution
 - Number of pixels on the screen
 - Higher number creates sharper images
 - Higher number creates smaller images

Monitors and Video Cards

- Dot pitch
 - Distance between the same color dots
 - Ranges between .15 mm and .40 mm
 - Smaller creates a finer picture
 - Should be less than .22

Video Cards

- Device between the CPU and monitor
- Better cards result in better output
- Removes burden of drawing from CPU
- Have their own processor and RAM
- Modern cards have up to 512 MB RAM
- Capable of rendering 3D images

Ergonomics and Monitors

- Electronic magnetic fields (EMF)
 - Generated by all electronic devices
 - EMF may be detrimental to health
 - Steps to avoid
 - Keep the computer at arms length
 - Take frequent breaks
 - Use an LCD monitor

Ergonomics and Monitors

- Eyestrain
 - Fatigue of the eyes
 - Steps to avoid
 - Choose a good monitor
 - Place the monitor 2 3 feet away
 - Center of screen below eye level
 - Avoid reflected light

Data Projectors

- Replaced overhead and slide projectors
- Project image onto wall or screen
- LCD projectors
 - Most common type of projector
 - Small LCD screen
 - Very bright light
 - Require a darkened room

	D '	• ,
I Jata	17tO	ectors
Data		

- Digital Light Projectors
 - A series of mirrors control the display
 - May be used in a lighted room

Sound Systems

- Sound card
 - Device between the CPU and speakers
 - Converts digital sounds to analog
 - Can be connected to several devices
 - Modern cards support Dolby Surround Sound

Sound Systems

- Integral part of the computer experience
- Capable of recording and playback

Sound Systems

- Headphones and headsets
 - Replacement for speakers and microphones
 - Offer privacy
 - Does not annoy other people
 - Outside noise is not a factor
 - Headsets have speakers and a microphone

Modern CPUs

Microcomputer Processors

- Intel
 - Leading manufacturer of processors
 - Intel 4004 was worlds first microprocessor
 - IBM PC powered by Intel 8086
 - Current processors
 - Centrino
 - Itanium
 - Pentium IV
 - Xeon

A Look Inside The Processor

- Architecture
 - Determines
 - Location of CPU parts
 - Bit size
 - Number of registers
 - Pipelines
 - Main difference between CPUs

Microcomputer Processors

- Advanced Micro Devices (AMD)
 - Main competitor to Intel
 - Originally produced budget products
 - Current products outperform Intel
 - Current processors
 - Sempron
 - Athlon FX 64
 - Athlon XP

Microcomputer Processors

- Freescale
 - A subsidiary of Motorola
 - Co-developed the Apple G4 PowerPC
 - Currently focuses on the Linux market

Comparing Processors

- Speed of processor
- Size of cache
- Number of registers
- Bit size
- Speed of Front side bus

Microcomputer Processors

- IBM
 - Historically manufactured mainframes
 - Partnered with Apple to develop G5
 - First consumer 64 bit chip

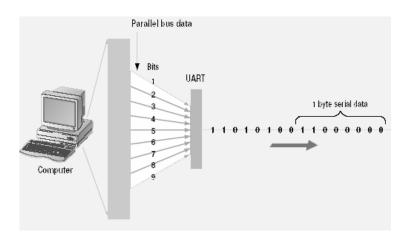
Advanced Processor Topics

- RISC processors
 - Reduced Instruction Set Computing
 - Smaller instruction sets
 - May process data faster
 - PowerPC and G5

Advanced Processor Topics

- Parallel Processing
 - Multiple processors in a system
 - Symmetric Multiple Processing
 - Number of processors is a power of 2
 - Massively Parallel Processing
 - Thousands of processors
 - Mainframes and super computers

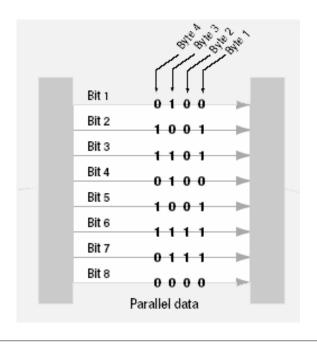
Standard Computer Ports


Extending The Processors Power

- Standard computer ports
 - Keyboard and mouse ports
 - USB ports
 - Parallel
 - Network
 - Modem
 - Audio
 - Serial
 - Video

Extending The Processors Power

- Serial and parallel ports
 - Connect to printers or modems
 - Parallel ports move bits simultaneously
 - Made of 8 32 wires
 - Internal busses are parallel
 - Serial ports move one bit
 - Lower data flow than parallel
 - Requires control wires
 - UART converts from serial to parallel


Serial Communications

Extending The Processors Power

- SCSI
 - Small Computer System Interface
 - Supports dozens of devices
 - External devices daisy chain
 - Fast hard drives and CD-ROMs

Parallel Communications

Extending The Processors Power

- USB
 - Universal Serial Bus
 - Most popular external bus
 - Supports up to 127 devices
 - Hot swappable

Extending the Processors Power

- FireWire
 - IEEE 1384
 - Cameras and video equipment
 - Hot swappable
 - Port is very expensive

Extending the Processors Power

- PC Cards
 - Expansion bus for laptops
 - PCMCIA
 - Hot swappable
 - Small card size
 - Three types, I, II and III
 - Type II is most common

Extending the Processors Power

- Expansion slots and boards
 - Allows users to configure the machine
 - Slots allow the addition of new devices
 - Devices are stored on cards
 - Computer must be off before inserting

Extending the Processors Power

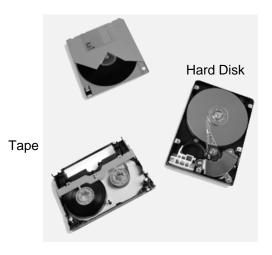
- Plug and play
 - New hardware detected automatically
 - Prompts to install drivers
 - Non-technical users can install devices

Types of Storage Devices

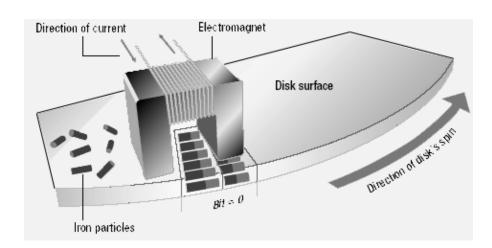
Describing Storage Devices

- Storage terms
 - Media is the material storing data
 - Storage devices manage the media
 - Magnetic devices use a magnet
 - Optical devices use lasers
 - Solid-state devices have physical switches

Describing Storage Devices


- Store data when computer is off
- Two processes
 - Writing data
 - Reading data

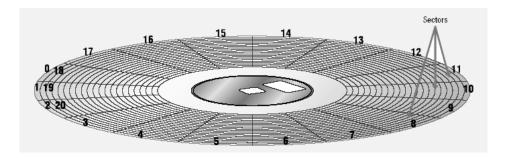
Magnetic Storage Devices


- Most common form of storage
- Hard drives, floppy drives, tape
- All magnetic drives work the same

Magnetic Storage Devices

Floppy Disk

Data Retrieval


Magnetic Storage Devices

- Data storage and retrieval
 - Media is covered with iron oxide
 - Read/write head is a magnet
 - Magnet writes charges on the media
 - Positive charge is a 1
 - Negative charge is a 0
 - Magnet reads charges
 - Drive converts charges into binary

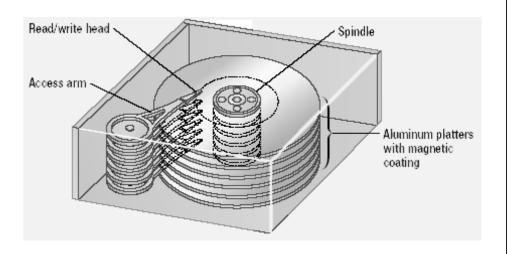
Magnetic Storage Devices

- Data organization
 - Disks must be formatted before use
 - Format draws tracks on the disk
 - Tracks is divided into sectors
 - Amount of data a drive can read

Tracks and Sectors

Magnetic Storage Devices

- Diskettes
 - Also known as floppy disks
 - Read with a disk drive
 - Mylar disk
 - Spin at 300 RPM
 - Takes .2 second to find data
 - 3 ½ floppy disk holds 1.44 MB


Magnetic Storage Devices

- Finding data on disk
 - Each track and sector is labeled
 - Some are reserved
 - Listing of where files are stored
 - File Allocation Table (FAT)
 - FAT32
 - NTFS
 - Data is organized in clusters
 - Size of data the OS handles

Magnetic Storage Devices

- Hard disks
 - Primary storage device in a computer
 - 2 or more aluminum platters
 - Each platter has 2 sides
 - Spin between 5,400 to 15,000 RPM
 - Data found in 9.5 ms or less
 - Drive capacity greater than 40 GB

Illustrated Hard Disk

Magnetic Storage Devices

- Tape drives
 - Best used for
 - Infrequently accessed data
 - Back-up solutions
 - Slow sequential access
 - Capacity exceeds 200 GB

Magnetic Storage Devices

- Removable high capacity disks
 - Speed of hard disk
 - Portability of floppy disk
 - Several variants have emerged
 - High capacity floppy disk
 - Stores up to 750 MB of data
 - Hot swappable hard disks
 - Provide GB of data
 - Connect via USB

Optical Storage Devices

- CD-ROM
 - Most software ships on a CD
 - Read using a laser
 - Lands, binary 1, reflect data
 - Pits scatter data
 - Written from the inside out
 - CD speed is based on the original
 - Original CD read 150 Kbps
 - A 10 X will read 1,500 Kbps
 - Standard CD holds 650 MB

Optical Storage Devices

- DVD-ROM
 - Digital Video Disk
 - Use both sides of the disk
 - Capacities can reach 18 GB
 - DVD players can read CDs

Recordable Optical Technologies

- CD Regrettable (CD-RW)
 - Create a reusable CD
 - Cannot be read in all CD players
 - Can reuse about 100 times

Recordable Optical Technologies

- CD Recordable (CD-R)
 - Create a data or audio CD
 - Data cannot be changed
 - Can continue adding until full

Recordable Optical Technologies

- Photo CD
 - Developed by Kodak
 - Provides for photo storage
 - Photos added to CD until full
 - Original pictures cannot be changed

Recordable Op	otical 7	Fechno l	logies
---------------	----------	-----------------	--------

- DVD Recordable
 - Several different formats exist
 - None are standardized
 - Allows home users to create DVDs
 - Cannot be read in all players

Solid State Devices

- Data is stored physically
- No magnets or laser
- Very fast

Recordable Optical Technologies

- DVD-RAM
 - Allow reusing of DVD media
 - Not standardized
 - Cannot be read in all players

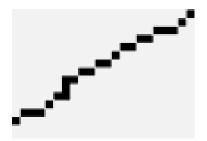
Solid State Devices

- Flash memory
 - Found in cameras and USB drives
 - Combination of RAM and ROM
 - Long term updateable storage

Solid State Devices

- Smart cards
 - Credit cards with a chip
 - Chip stores data
 - Eventually may be used for cash
 - Hotels use for electronic keys

Graphics and Multimedia


Solid State Devices

- Solid-state disks
 - Large amount of SDRAM
 - Extremely fast
 - Volatile storage
 - Require battery backups
 - Most have hard disks copying data

Graphic File Formats

- Bitmapped images
 - Most common image type
 - Also called raster images
 - Image is drawn using a pixel grid
 - Each grid contains a color
 - Color depth
 - Number of usable colors
 - Used to store drawings or photographs
 - Resizing image can reduce quality

Bitmap Resized

This image was drawn as a straight line.

Graphic File Formats

- File formats and compatibility
 - Method for storing an image
 - Each method has pros and cons
 - Some formats are proprietary
 - Graphic software can handle all formats

Graphic File Formats

- Vector images
 - Drawn using mathematical formulas
 - Formulas describe the line properties
 - CAD and animation software
 - Resizing image will not reduce quality

Graphic File Formats

- Common bitmapped file formats
 - BMP
 - EMF
 - GIF
 - JPG
 - PICT
 - PNG
 - TIFF

Graphic File Formats

- Vector file formats
 - Most vector formats are proprietary
 - Two universal formats exist
 - DXF
 - IGES

Acquiring Images

- Digital cameras
 - Stores digitized images
 - Uses long term storage
 - Image is usually a JPG file

Acquiring Images

- Scanners
 - Like a photocopier
 - Image is saved onto disk
 - Scanners import a variety of formats

Acquiring Images

- Digital video cameras
 - Stores full motion video
 - Uses long term storage
 - Movie can be transferred to DVD

Acquiring Images

- Clip art
 - Originally a book with images
 - Now a CD with images
 - Most office suites include a selection

■ Additional clip art is online

Graphics Software

- Draw programs
 - Create vector based images
 - Used when accuracy is critical
 - Objects have an outline and fill
 - Both have line style and color
 - Can fill using pictures
 - Adobe Illustrator

Graphics Software

- Paint programs
 - Create bitmap images
 - Includes sophisticated tools
 - Artists draw with several brushes
 - Objects drawn become permanent
 - Windows Paint

Graphics Software

- Photo-editing software
 - Modify and manipulate digital images
 - Work at the pixel level
 - Images can be enhanced
 - Picture flaws can be repaired
 - Pictures can be completely changed
 - Photoshop and GIMP

Enhancing a Photo

■ 3D modeling software Generates three dimens

- Generates three dimensional images
- Image can be shaped on screen
- Image is animated frame by frame

Graphics Software

Graphics Software

- Computer Aided Drafting (CAD)
 - Generates vector files
 - Engineering and design fields
 - Drawings accurate to the millimeter
 - AutoCAD

Graphics Software

- Computer generated imaging
 - Generates photo realistic images
 - Used for movies and television
 - Software eliminates tedious parts

Multimedia Basics

- Medium
 - Way of sharing information
 - Voice, pictures, text
 - More effective with multiple mediums
 - Multimedia presents information with one medium

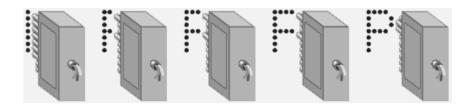
Printing

Multimedia Basics

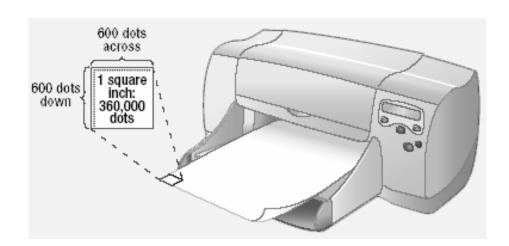
- Interactivity
 - Users and program respond
 - Users can control the content
 - Main difference between TV and computer

Commonly Used Printers

- Impact printers
 - Generate output by striking the paper
 - Uses an inked ribbon
- Non-impact printers
 - Use methods other than force
 - Tend to be quiet and fast


Commonly Used Printers

- Dot matrix printers
 - Impact printer
 - Used to print to multi-sheet pages
 - Print head strikes inked ribbon
 - Line printers
 - Band printers
 - Speed measured in characters per second


Commonly Used Printers

- Ink-jet printers
 - Non-impact printer
 - Inexpensive home printer
 - Color output common using CMYK
 - Cyan, magenta, yellow, black
 - Sprays ink onto paper
 - Speed measured in pages per minute
 - Quality expressed as dots per inch

Dot Matrix Print Head

Dots Per Inch

Commonly Used Printers

- Laser printer
 - Non-impact printer
 - Produces high quality documents
 - Color or black and white
 - Print process
 - Laser draws text on page
 - Toner sticks to text
 - Toner melted to page
 - Speed measured in pages per minute
 - Quality expressed as dots per inch

Commonly Used Printers

- All-in-one peripherals
 - Scanner, copier, printer and fax
 - Popular in home offices
 - Prices are very reasonable

Comparing Printers

- Determine what you need
- Determine what you can spend
- Initial cost
- Cost of operating
- Image quality
- Speed

High-Quality Printers

- Special purpose printers
 - Used by a print shop
 - Output is professional grade
 - Prints to a variety of surfaces

High-Quality Printers

- Photo printers
 - Produces film quality pictures
 - Prints very slow
 - Prints a variety of sizes

High-Quality Printers

- Thermal wax printers
 - Produces bold color output
 - Color generated by melting wax
 - Colors do not bleed
 - Operation costs are low
 - Output is slow

High-Quality Printers

- Dye sublimation printers
 - Produces realistic output
 - Very high quality
 - Color is produced by evaporating ink
 - Operation costs are high
 - Output is very slow

High-Quality Printers

- Plotters
 - Large high quality blueprints
 - Older models draw with pens
 - Operational costs are low
 - Output is very slow

