- N	\mathbf{O}	
1.1	v.	

Name:

Due: 2010/06/15

Computer Science	
Homework for Chapter 12	

1. An unsolvable problem is a problem for which

A. no solution exists.

B. no one knows the solution.

C. no algorithm exists for finding the solution.

D. no one wants to known the solution.

_2. Suppose the variables X and Y in the following Bare Bones program have the values 3 and 2, respectively, when execution begins.

clear Z: while X not 0 do: while Y not 0 do: decr Y; incr Z; end; incr Z; decr X; end;

What will be the value of Z when the program terminates?

A. 0 B. 1 C. 5 D. 6

_3. The class of problems known as NP is so named because it is composed of which of the following?

A. Non-polynomial problems

B. Non-programmable problems

C. Non-universal problems

D. Non-deterministic polynomial problems

_4. If an RSA public key encryption system were based on the primes p = 3 and q = 7, which of the following pairs of values would be suitable for the encryption and decryption keys e and d?

A. 2 and 6 B. 5 and 29 C. 4 and 9 D. 7 and 23

5. Which of the following is the most precise classification of a problem X?

A. X is in NP. B. X is in P. C. X is in $O(n^2)$.

D. X is in $\Theta(n^2)$.

6. List the following complexity classes in order of increasing complexity.

 $\Theta(n^3)$, $\Theta(2^n)$, $\Theta(\lg n)$, $\Theta(n)$, $\Theta(n \lg n)$, $\Theta(n!)$

ANSWER:

7. In the following table, connect the term to each phrase that gives the best description of the term. (40%)

Term	Descriptive Phrase
nonpolynomial problems	A. A relationship between input and output values that can be determined algorithmically
merge sort algorithm	B. An elementary, yet universal, computing device
private keys	C. The conjecture that the Turing-computable functions are the same as the computable functions
Turing computable	D. Solvable by a Turing machine
C 1	E. An example of an unsolvable problem
Insertion sort algorithm	F. Allows a solution to any solvable problem to be expressed
unsolvable problem	G. A problem with no algorithmic solution
RSA	H. A class of problems whose time complexity is not yet completely understood
Р	I. The problems that have a polynomial time solution
	J. Problems with a high time complexity
Church-Turing thesis	K. May not perform the same if repeated in the identical
universal language	environment
nondeterministic algorithm	L. Has time complexity of $(n \lg n)$
ND	M. An NP complete problem
NP	N. The decryption values in a public key encryption system
computable function	O. A public key encryption system
Turing machine	P. Has time complexity of (n^2)
halting problem	-

traveling salesman problem