\qquad Name: \qquad

Computer Science

Homework for Chapter 12

Due: 2010/06/15

1. An unsolvable problem is a problem for which
A. no solution exists.
B. no one knows the solution.
C. no algorithm exists for finding the solution
D. no one wants to known the solution.
2. Suppose the variables X and Y in the following Bare Bones program have the values 3 and 2, respectively, when execution begins.

clear Z;

while X not 0 do;
while Y not 0 do;
decr Y;
incr Z;
end;
incr Z;
decr X;
end;
What will be the value of Z when the program terminates?
A. 0
B. 1
C. 5
D. 6
3. The class of problems known as NP is so named because it is composed of which of the following?
A. Non-polynomial problems
B. Non-programmable problems
C. Non-universal problems
D. Non-deterministic polynomial problems
4. If an RSA public key encryption system were based on the primes $\mathrm{p}=3$ and $\mathrm{q}=7$, which of the following pairs of values would be suitable for the encryption and decryption keys e and d?
A. 2 and 6
B. 5 and 29
C. 4 and 9
D. 7 and 23
\qquad 5. Which of the following is the most precise classification of a problem X?
A. X is in NP.
B. X is in P.
C. X is in $\mathrm{O}\left(n^{2}\right)$.
D. X is in $\Theta\left(n^{2}\right)$.
6. List the following complexity classes in order of increasing complexity.

$$
\Theta\left(n^{3}\right), \quad \Theta\left(2^{n}\right), \quad \Theta(\lg n), \quad \Theta(n), \quad \Theta(n \lg n), \quad \Theta(n!)
$$

ANSWER: \qquad
7. In the following table, connect the term to each phrase that gives the best description of the term. (40\%)

Term

nonpolynomial problems
merge sort algorithm
private keys
Turing computable
Insertion sort algorithm
unsolvable problem
RSA
P
Church-Turing thesis
universal language
nondeterministic algorithm

NP

computable function
Turing machine
halting problem
traveling salesman problem \qquad
\qquad

Descriptive Phrase

A. A relationship between input and output values that can be determined algorithmically
B. An elementary, yet universal, computing device
C. The conjecture that the Turing-computable functions are the same as the computable functions
D. Solvable by a Turing machine
E. An example of an unsolvable problem
F. Allows a solution to any solvable problem to be expressed
G. A problem with no algorithmic solution
H. A class of problems whose time complexity is not yet completely understood
I. The problems that have a polynomial time solution
J. Problems with a high time complexity
K. May not perform the same if repeated in the identical environment
L. Has time complexity of $(n \lg n)$
M. An NP complete problem
N. The decryption values in a public key encryption system
O. A public key encryption system
P. Has time complexity of $\left(n^{2}\right)$

