

The Bare Bones Language

The functions that are computable by a Turing

- Bare Bones is a simple, yet universal language. machine are exactly the functions that can be
- Statements
- clear name;
- incr name;
- decr name;
- while name not 0 do; ... end;

A language with which a solution to any computable function can be expressed

- Examples: "Bare Bones" and most popular programming languages

Figure 12.4 A Bare Bones program for computing $X \times Y$

```
clear Z;
while X not 0 do;
    clear W;
    while Y not 0 do;
        incr Z;
        incr W;
        decr Y;
    end;
    while W not O do;
        incr Y;
        decr W;
    end;
    decr X;
end;
```


Complexity of Problems

Figure 12.9 The merge sort algorithm implemented as a procedure MergeSort

- Time Complexity: The number of instruction executions required
- Unless otherwise noted, "complexity" means "time procedure MergeSort (List) complexity."
if (List has more than one entry)
- A problem is in class $\mathrm{O}(\mathrm{f}(\mathrm{n}))$ if it can be solved by an algorithm in $\Theta(f(n))$.
- A problem is in class $\Theta(\mathrm{f}(\mathrm{n}))$ if the best algorithm to solve it is in class $\Theta(\mathrm{f}(\mathrm{n}))$.
then (Apply the procedure MergeSort to sort the first half of List; Apply the procedure MergeSort to sort the second half of List; Apply the procedure MergeLists to merge the first and second halves of List to produce a sorted version of List

Figure 12.8 A procedure

 MergeLists for merging two lists

Figure 12.10 The hierarchy of problems generated by the merge sort algorithm
procedure MergeLists (InputListA, InputListB, OutputList)
if (both input lists are empty) then (Stop, with OutputList empty)
f (InputListA is empty)
then (Declare it to be exhausted)
else (Declare its first entry to be its current entry)
if (InputListB is empty)
then (Declare it to be exhausted)
else (Declare its first entry to be its current entry)
while (neither input list is exhausted) do
if (that current entry is the last entry in its corresponding input list) then (Declare that input list to be exhausted)
else (Declare the next entry in that input list to be the list's current entry)
Starting with the current entry in the input list that is not exhausted copy the remaining entries to OutputList.

- Encrypting keys: $\mathrm{n}=91$ and $\mathrm{e}=5$
- $10111_{\text {two }}=23_{\text {ten }}$
- $23^{\mathrm{e}}=23^{5}=6,436,343$
- $6,436,343 \div 91$ has a remainder of 4
- $4_{\text {ten }}=100_{\text {two }}$
- Therefore, encrypted version of 10111 is 100 .

Figure 12.13 Public key
cryptography

Figure 12.14 Establishing a RSA public key encryption system

- Decrypting keys: $\mathrm{d}=29, \mathrm{n}=91$
- $100_{\text {two }}=4_{\text {ten }}$
- $4^{\mathrm{d}}=4^{29}=288,230,376,151,711,744$
- $288,230,376,151,711,744 \div 91$ has a remainder

