Chapter

J.Glenn Brookshear

Functions

» Function: A correspondence between a
collection of possible input values and a
collection of possible output values so that each
possible input is assigned a single output

| VSRR G \ ¥
.;\’\ ‘t..‘-
¥ Chapter 12: Theory of Computation Functions (continued)
* 12.1 Functions an eir Computation « Computing a function: Determining the output
12.1F 1 d Their Computati C t funct D h
« 12.2 Turing Machines value associated with a given set of input values
e 12.3 Universal Programming Languages « Noncomputable function: A function that
- 12.4 A Noncomputable Function cannot be computed by any algorithm
* 12.5 Complexity of Problems
* 12.6 Public-Key Cryptography
Ty T
!-.‘- !‘

Figure 12.1 An attempt to display the
function that converts measurements
in yards into meters

Yards Meters
(input) (output)

0.9144
1.8288
2.7432
3.6576
4.5720

=0 hEWN =

Turing Machine Operation

* Inputs at each step
— State
— Value at current tape position
 Actions at each step
— Write a value at current tape position
— Move read/write head
— Change state

Figure 12.2 The components of a
Turing machine

Control
unit

Tape\ l /Read/write head

Figure 12.3 A Turing machine for
incrementing a value

Current state Current cell Value Direction to move New state

content to write to enter
START % o Left ADD
ADD 0 1 Right RETURN
ADD 1 0 Left CARRY
ADD *® * Right HALT
CARRY 0 1 Right RETURN
CARRY 1 0 Left CARRY
CARRY 2 1 Left OVERFLOW
OVERFLOW * * Right RETURN
RETURN 0 0 Right RETURN
RETURN 1 1 Right RETURN
RETURN * * No move HALT

Church-Turing Thesis

The functions that are computable by a Turing

machine are exactly the functions that can be
computed by any algorithmic means.

The Bare Bones Language

» Bare Bones is a simple, yet universal language.

» Statements
—clear name;
—incr name;
—decr name;
—while name not 0 do; .. end;

A language with which a solution to any
computable function can be expressed

— Examples: “Bare Bones” and most popular
programming languages

Figure 12.4 A Bare Bones
program for computing X x Y

clear Z;
while X not 0 do;
clear W;
while Y not 0 do;
incr Z;
incr W;
decr Y;
end;
while W not 0 do;
inecr Y;
decr W;
end;
decr X;
end;

-5 Figure 12.5 “copy Today to Tomorrow”
t.Yq in Bare Bones

clear Aux;
clear Tomorrow;
while Today not 0 do;
incr Aux;
decr Today;
end;
while Aux not 0 do;
incr Today;
incr Tomorrow;
decr Aux; L
end; Wi ¢

Figure 12.6 Testing a program for
self-termination

Encode the
program as
l one long bit LT d;
Wh::_le X not 0 do; Kastg[” using
iner X; >
end; 0111011101101000...0110010000111011

Assign this pattern to X
and execute the program.

The Halting Problem

* Given the encoded version of any program,
return 1 if the program is self-terminating, or 0
if the program is not.

Figure 12.7 Proving the
unsolvability of the halting

while X

Complexity of Problems

» Time Complexity: The number of instruction
executions required
— Unless otherwise noted, “complexity” means “time

complexity.”

* A problem is in class O(f(n)) if it can be solved
by an algorithm in O(f(n)).

» A problem is in class ®(f(n)) if the best
algorithm to solve it is in class O(f(n)).

Figure 12.9 The merge sort
algorithm implemented as a
procedure MergeSort

procedure MergeSort (List)

if (List has more than one entry)
then (Apply the procedure MergeSort to sort the first half of List;
Apply the procedure MergeSort to sort the second half of List;
Apply the procedure Mergelists to merge the first and second
halves of List to produce a sorted version of List

)

Figure 12.8 A procedure
MergeLists for merging two lists

procedure MergelLists (InputListA, InputListB, OutputList)

if (both input lists are empty) then (Stop, with OutputList empty)
if (InputListA is empty)
then (Declare it to be exhausted)
else (Declare its first entry to be its current entry)
if (InputListB is empty)
then (Declare it to be exhausted)
else (Declare its first entry to be its current entry)
while (neither input list is exhausted) do
(Put the “smaller” current entry in OutputList;
if (that current entry is the last entry in its corresponding input list)
then (Declare that input list to be exhausted)
else (Declare the next entry in that input list to be the list's current entry)

)

Starting with the current entry in the input list that is not exhausted,
copy the remaining entries to OutputList.

Figure 12.10 The hierarchy of
problems generated by the merge
sort algorithm

Sort list of
nnames

Sort first half Sort second half
of list of list
Sort first Sort second Sort third Sort last
quarter quarter quarter quarter

of list of list of list of list

R 4n Y 4
FAY 4N FEY FA Y
. ’ . .

. #)

Figure 12.11 Graphs of the
mathematical expression n, Ig, n,

a.nversuslign

Figure 12.12 A graphic
summation of the problem
classification

Solvable problems Unsolvable problems
| |

NP problems
I ——————
v 2
\\ \\
Polynomial Nonpolynomial
problems problems

P versus NP

+ Class P: All problems in any class ©(f(n)), where f(n)
1s a polynomial

 Class NP: All problems that can be solved by a
nondeterministic algorithm in polynomial time

— Nondeterministic algorithm = an “algorithm” whose steps
may not be uniquely and completely determined by the
process state

* Whether the class NP is bigger than class P is currently

unknown. |

» Key: A value used to encrypt or decrypt a
message
— Public key: Used to encrypt messages
— Private key: Used to decrypt messages

* RSA: A popular public key cryptographic
algorithm

— Relies on the (presumed) intractability of the
problem of factoring large numbers

Encrypting the Message 10111

* Encrypting keys:n=91 ande =35

« 10111, =23,

¢ 23¢=235=6,436,343

* 6,436,343 + 91 has a remainder of 4
« 4. =100
* Therefore, encrypted version of 10111 is 100.

two

Figure 12.13 Public key
cryptography

Public domain Private domain

Messages in the form of
bit patterns are encrypted
using public keys.

| ., M ges are decrypted
* using the private keys.

Messages cannot be
decrypted because the
private keys are not known.

* Decrypting keys: d =29, n =91

* 1Ootwo - 4ten
o 44=429=288230,376,151,711,744

» 288,230,376,151,711,744 + 91 has a remainder

of 23
« 23..=10111
 Therefore, decrypted version of 100 1s 10111.

ten two

Figure 12.14 Establishing a RSA
public key encryption system

Public domain Private domain

Based on the choice of
two large prime numbers
p and g, determine the
keys n, e, and d.

—|

The values of p, g, and d
are kept private.

The keys n and e are
provided to anyone who
may want to encrypt

a message.

