
• 8.1 Data Structure Fundamentals
• 8.2 Implementing Data Structures
• 8.3 A Short Case Study
• 8 4 Customized Data Types• 8.4 Customized Data Types
• 8.5 Classes and Objectsj
• 8.6 Pointers in Machine Language

8-2

• Homogeneous array
• Heterogeneous array
• List

– StackStack
– Queue

• Tree

8-3

8-4

• List: A collection of data whose entries are
arranged sequentially
H d Th b i i f th li t• Head: The beginning of the list

• Tail: The end of the listTail: The end of the list

8-5

• Stack: A list in which entries are removed and
inserted only at the head
LIFO L t i fi t t• LIFO: Last-in-first-out

• Top: The head of list (stack)Top: The head of list (stack)
• Bottom or base: The tail of list (stack)
• Pop: To remove the entry at the top

i h• Push: To insert an entry at the top

8-6

• Queue: A list in which entries are removed at
the head and are inserted at the tail
FIFO Fi t i fi t t• FIFO: First-in-first-out

8-7

8-8

• Tree: A collection of data whose entries have a
hierarchical organization
N d A t i t• Node: An entry in a tree

• Root node: The node at the topRoot node: The node at the top
• Terminal or leaf node: A node at the bottom

8-9

(continued)(continued)

• Parent: The node immediately above a
specified node
Child A d i di t l b l ifi d• Child: A node immediately below a specified
node

• Ancestor: Parent, parent of parent, etc.
• Descendent: Child, child of child, etc.
• Siblings: Nodes sharing a common parent• Siblings: Nodes sharing a common parent

8-10

(continued)(continued)

• Binary tree: A tree in which every node has at
most two children
D th Th b f d i l t th• Depth: The number of nodes in longest path
from root to leaf

8-11

8-12

• Static Data Structures: Size and shape of data
structure does not change
D i D t St t Si d h f• Dynamic Data Structures: Size and shape of
data structure can changeg

• Pointers: Used to locate data

8-13

8-14

• Homogeneous arrays
– Row-major order versus column major order
– Address polynomialAddress polynomial

• Heterogeneous arrays
– Components can be stored one after the other in a

contiguous block
– Components can be stored in separate locations

identified by pointersidentified by pointers

8-15

8-16

Figure 8.6 A two-dimensional array
with four rows and five columns storedwith four rows and five columns stored
in row major order

8-17

Figure 8.7 Storing the heterogeneous
array Employee

8-18

• Contiguous list: List stored in a homogeneous
array
Li k d li t Li t i hi h h t i• Linked list: List in which each entries are
linked by pointersy p
– Head pointer: Pointer to first entry in list

NIL i t A “ i ” l d– NIL pointer: A “non-pointer” value used to
indicate end of list

8-19

8-20

8-21

8-22

8-23

• Stacks usually stored as contiguous lists
• Queues usually stored as Circular Queues

– Stored in a contiguous block in which the first entry
is considered to follow the last entry

– Prevents a queue from crawling out of its allotted
storage spacestorage space

8-24

8-25

Figure 8.13 A queue implementation
with head and tail pointers

8-26

• Linked structure
– Each node = data cells + two child pointers

A d i i t t t d– Accessed via a pointer to root node
• Contiguous array structureg y

– A[1] = root node
– A[2],A[3] = children of A[1]
– A[4],A[5],A[6],A[7] = children of A[2] and A[3]A[4],A[5],A[6],A[7] children of A[2] and A[3]

8-27

8-28

8-29

Figure 8.16 The conceptual and
actual organization of a binary treeactual organization of a binary tree
using a linked storage system

8-30

8-31

Figure 8.18 A sparse, unbalanced
tree shown in its conceptual form andtree shown in its conceptual form and
as it would be stored without pointers

8-32

• Ideally, a data structure should be manipulated
solely by pre-defined procedures.

Example: A stack typically needs at least push– Example: A stack typically needs at least push
and pop procedures.

– The data structure along with these procedures
constitutes a complete abstract tool.co st tutes a co p ete abst act too .

8-33

8-34

Problem: Construct an abstract tool consisting of
a list of names in alphabetical order along with
the operations search print and insertthe operations search, print, and insert.

8-35

8-36

Figure 8.21 The binary search as
it would appear if the list wereit would appear if the list were
implemented as a linked binary tree

8-37

Figure 8.22 The successively smaller trees
considered by the procedure in Figureconsidered by the procedure in Figure
8.18 when searching for the letter J

8-38

8-39

8-40

Figure 8.25 Inserting the entry
M into the list B E G H J K N PM into the list B, E, G, H, J, K, N, P
stored as a tree

8-41

8-42

• A template for a heterogeneous structure
• Example:
define type EmployeeType to be

{char Name[25];{char Name[25];
int Age;
real SkillRating;
}}

8-43

• A user-defined data type with procedures for access and
manipulationmanipulation

• Example:
define type StackType to be
{int StackEntries[20];
int StackPointer = 0;
procedure push(value)procedure push(value)

{StackEntries[StackPointer] ← value;
StackPointer ¬ StackPointer + 1;

}
procedure pop . . .

}}

8-44

• An abstract data type with extra features
– Characteristics can be inherited

C t t b l t d– Contents can be encapsulated
– Constructor methods to initialize new objectsj

8-45

8-46

• Immediate addressing: Instruction contains
the data to be accessed
Di t dd i I t ti t i th• Direct addressing: Instruction contains the
address of the data to be accessed

• Indirect addressing: Instruction contains the
l i f h dd f h d blocation of the address of the data to be
accessed

8-47

Figure 8.28 Our first attempt at expanding
the machine language in Appendix C to takethe machine language in Appendix C to take
advantage of pointers

8-48

Figure 8.29 Loading a register from a
memory cell that is located by meansmemory cell that is located by means
of a pointer stored in a register

8-49

