Chapter 7

computer scie

- AN.OVERVIEW "~

J.Glenn Brookshear

: ‘ The Software Engineering Discipline

« Distinct from other engineering fields
— Prefabricated components
— Metrics
* Practitioners versus Theoreticians
 Professional Organizations: ACM, IEEE, etc.
— Codes of professional ethics
— Standards

Chapter 7: Software Engineering

» 7.1 The Software Engineering Discipline
7.2 The Software Life Cycle

7.3 Software Engineering Methodologies
7.4 Modularity

7.5 Tools of the Trade

7.6 Testing

7.7 Documentation

7.8 Software Ownership and Liability

Computer Aided Software
Engineering (CASE) tools

Project planning

Project management
Documentation
Prototyping and simulation
Interface design
Programming

Analysis Stage

* Requirements

— Application oriented
 Specifications

— Technically oriented
» Software requirements document

Figure 7.2 The development
phase of the software life cycle

Design Stage

» Methodologies and tools (discussed later)
» Human interface (psychology and ergonomics)

Implementation Stage

 Create system from design
— Write programs
— Create data files
— Develop databases

* Role of “software analyst” versus “programmer”

o Waterfall Model
 Incremental Model
— Prototyping (Evolutionary vs. Throwaway)
» Open-source Development
» Extreme Programming

R
i n
\ 8 22

Testing Stage

 Validation testing

— Confirm that system meets specifications
 Defect testing

— Find bugs

R
i n
\ 8 21

Modularity

» Procedures -- Imperative paradigm
— Structure charts

 Objects -- Object-oriented paradigm
— Collaboration diagrams

» Components -- Component architecture

R
i n
\ 8 23

Figure 7.3 A simple structure
chart

ControlGame

//

Serve Return ComputePath

UpdateScore

Figure 7.5 The interaction between
objects resulting from PlayerA’s serve

PlayerA PlayerB Judge Score

: I 1
1 I
I evaluateServe
I
1
I

|
/ :‘ returnVolley

<

»i
Lt

PlayerA calls the
method evaluateServe

.] evaluateReturn
in Judge. |

returnVolley

updateScore

N

I
!

}I

| I
| I
Iy |
™~ 1
| |
I I
| N
i >
i i
| |
I i
| |
1 1

I
I
|
I
I
I
evaluateReturn |
]
I
I
I
|
|

Figure 7.4 The structure of
PlayerClass and its instances

Class Objects
PlayerClass
_ mstaf_"iefi--— PlayerA
Skill 4a---"""7
Attributes —
| Endurance R T
instance of . LlayerB
[serve
Methods —
| return
R

Figure 7.6 A structure chart
including data coupling

ControlGame

Serve Return ComputePath UpdateScore

Coupling versus Cohesion

e Coupling
— Control coupling
— Data coupling
» Cohesion
— Logical cohesion
— Functional cohesion

Tools of the Trade

 Data Flow Diagram

* Entity-Relationship Diagram
— One-to-one relation
— One-to-many relation
— Many-to-many relation

 Data Dictionary

Each object is only logically cohesive

V—’ Payments Files
Cg____,/%;

. Process
bills Bills

Patient

828 82
Figure 7.7 Logical and functional cohesion Figure 7.8 A simple dataflow
within an object diagram
Qai\ent reCOrg
?ti?f‘;::gjoh;e A ents Process Hospital

Figure 7.9 A simple use case
diagram

Hospital Records Systam
Retrieve Medical
% e R> %
A §“‘“‘~a Update Medical ~_—|
Physician Record Nurss
Retrieve Laboratory
Results
Update Laboratory %
Results
Laboratory
Retrieve Financial Technician
| e Records
| ™ Update Financial man i o U
Administrator Records | ‘h
&
N

Unified Modeling Language

» Use Case Diagram
— Use cases
— Actors

 Class Diagram

Physician 1

Figure 7.10 A simple class
diagram

* occupies »
Patient Oor1 1 Room

cares for » < hosts

Figure 7.11 One-to-one, one-to-many,
and many-to-many relationships between
entities of types X and Y

One-to-one One-to-many Many-to-many

Entities of Entities of Entities of Entities of Entities of Entities of
type x type y type x type y type x type y

L4

L]

Figure 7.12 A class diagram
gure 2ss dlag Structured Walkthoughs
depicting generalizations
PatientRecord e “Theatrical” experiment
o » Class-responsibility-collaboration cards
Patient Id
PatientFinancialRecord PatientMedicalRecord
AccountBalance Allergies b d
InsuranceCompany e s
RepeatPaymentHistory ReportMedicalHistory : \. : \.
\8 1o _8 38
Figure 7.13 A sequence diagram Design Patterns
depicting a generic volley
s serve » Well designed “templates” for solving recurring
self : PlayerClass : PlayerClass Judge Score p rOb I ems
| svaluatesans i « Examples:
o [V£||dp.w== el — Adapter pattern: Used to adapter a module’s interface to
: : ; I Desinates he current needs
/ = oty || |/ sen — Decorator pattern: Used to control the complexity involved
careoton hagment g | evalustefitu A when many different combinations of the same activities are
R N | o e et required
A ' | « Inspired by the work of Christopher Alexander in
| ‘ . | ¥ architecture
E updataScore -i — W —
\ - \
1837 839

Software Testing Strategies

» Glass-box testing
— Pareto principle
— Basis path testing
 Black-box testing
— Boundary value analysis
— Redundancy testing
— Beta testing

Software Ownership

» Copyright
— The “substantial similarity” test

— Filtration criteria: what is not copyrightable
* Features covered by standards
* Characteristics dictated by software purpose
» Components in the public domain

— The “look and feel” argument

e
! "
| 8 .42

Documentation

» User Documentation
— Printed book for all customers
— On-line help modules
» System Documentation
— Source code
— Design documents
» Technical Documentation
— For installing, customizing, updating, etc.

e
! "
\8.41

Software Ownership (continued)

 Patents
— “Natural laws” are traditionally not patentable

 Trade secrets
— Non-disclosure agreements are legally enforceable

e
! "
| 8 .43

