
• 7.1 The Software Engineering Discipline
• 7.2 The Software Life Cycle
• 7.3 Software Engineering Methodologiesg g g
• 7.4 Modularity

7 5 T l f th T d• 7.5 Tools of the Trade
• 7.6 Testing
• 7.7 Documentation
• 7 8 Software Ownership and Liability7.8 Software Ownership and Liability

7-2

• Distinct from other engineering fields
– Prefabricated components

M t i– Metrics
• Practitioners versus Theoreticians
• Professional Organizations: ACM, IEEE, etc.

– Codes of professional ethics
– Standards– Standards

7-3

• Project planning
• Project management
• Documentation
• Prototyping and simulation• Prototyping and simulation
• Interface designg
• Programming

7-4



7-5

7-6

• Requirements
– Application oriented

S ifi i• Specifications
– Technically orientedTechnically oriented

• Software requirements document

7-7

• Methodologies and tools (discussed later)
• Human interface (psychology and ergonomics)

7-8



• Create system from design
– Write programs

C t d t fil– Create data files
– Develop databasesp

• Role of “software analyst” versus “programmer”

7-9

• Validation testing
– Confirm that system meets specifications

D f i• Defect testing
– Find bugsFind bugs

7-10

• Waterfall Model
• Incremental Model

– Prototyping (Evolutionary vs. Throwaway)
• Open-source DevelopmentOpen source Development
• Extreme Programming

7-11

• Procedures -- Imperative paradigm
– Structure charts

Obj Obj i d di• Objects -- Object-oriented paradigm
– Collaboration diagramsCollaboration diagrams

• Components -- Component architecture

7-12



7-13

7-14

Figure 7.5 The interaction between 
objects resulting from PlayerA’s serve

7-15

7-16



• Coupling 
– Control coupling

D t li– Data coupling
• Cohesion

– Logical cohesion
– Functional cohesion

7-17

Figure 7.7 Logical and functional cohesion 
within an object

7-18

• Data Flow Diagram
• Entity-Relationship Diagram

– One-to-one relation
– One-to-many relationOne to many relation
– Many-to-many relation

• Data Dictionary

7-19

7-20



7-21

7-22

• Use Case Diagram
– Use cases

A t– Actors
• Class Diagramg

7-23

Figure 7.11 One-to-one, one-to-many, 
and many-to-many relationships betweenand many to many relationships between 
entities of types X and Y

7-24



7-25

7-26

• “Theatrical” experiment
• Class-responsibility-collaboration cards

7-27

• Well designed “templates” for solving recurring 
blproblems

• Examples:
– Adapter pattern: Used to adapter a module’s interface to 

current needs
– Decorator pattern: Used to control the complexity involved 

when many different combinations of the same activities are 
i drequired

• Inspired by the work of Christopher Alexander in 
architecture

7-28



• Glass-box testing
– Pareto principle

B i th t ti– Basis path testing
• Black-box testingg

– Boundary value analysis
– Redundancy testing
– Beta testingBeta testing

7-29

• User Documentation
– Printed book for all customers
– On-line help modulesOn line help modules

• System Documentation
– Source code
– Design documentses g docu e ts

• Technical Documentation
i lli i i d i– For installing, customizing, updating, etc.

7-30

• Copyright
– The “substantial similarity” test

Filt ti it i h t i t i ht bl– Filtration criteria: what is not copyrightable
• Features covered by standards
• Characteristics dictated by software purpose
• Components in the public domainp p

– The “look and feel” argument

7-31

(continued)(continued)

• Patents
– “Natural laws” are traditionally not patentable

T d• Trade secrets
– Non-disclosure agreements are legally enforceableNon disclosure agreements are legally enforceable

7-32


