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: ‘ The Software Engineering Discipline

« Distinct from other engineering fields
— Prefabricated components
— Metrics
* Practitioners versus Theoreticians
 Professional Organizations: ACM, IEEE, etc.
— Codes of professional ethics
— Standards

Chapter 7: Software Engineering
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Analysis Stage

* Requirements

— Application oriented
 Specifications

— Technically oriented
» Software requirements document

Figure 7.2 The development
phase of the software life cycle

Design Stage

» Methodologies and tools (discussed later)
» Human interface (psychology and ergonomics)




Implementation Stage

 Create system from design
— Write programs
— Create data files
— Develop databases

* Role of “software analyst” versus “programmer”

o Waterfall Model
 Incremental Model
— Prototyping (Evolutionary vs. Throwaway)
» Open-source Development
» Extreme Programming
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Testing Stage

 Validation testing

— Confirm that system meets specifications
 Defect testing

— Find bugs
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Modularity

» Procedures -- Imperative paradigm
— Structure charts

 Objects -- Object-oriented paradigm
— Collaboration diagrams

» Components -- Component architecture
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Figure 7.3 A simple structure
chart
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Figure 7.5 The interaction between
objects resulting from PlayerA’s serve

PlayerA PlayerB Judge Score

: I 1
1 I
I evaluateServe
I
1
I

|
/ :‘ returnVolley

<

»i
Lt

PlayerA calls the
method evaluateServe

. ] evaluateReturn
in Judge. |

returnVolley

updateScore

N

I
!

}I

| I
| I
Iy |
™~ 1
| |
I I
| N
i >
i i
| |
I i
| |
1 1

I
I
|
I
I
I
evaluateReturn |
]
I
I
I
|
|

Figure 7.4 The structure of
PlayerClass and its instances
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Figure 7.6 A structure chart
including data coupling
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Coupling versus Cohesion

e Coupling
— Control coupling
— Data coupling
» Cohesion
— Logical cohesion
— Functional cohesion

Tools of the Trade

 Data Flow Diagram

* Entity-Relationship Diagram
— One-to-one relation
— One-to-many relation
— Many-to-many relation

 Data Dictionary

Each object is only logically cohesive
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Figure 7.7 Logical and functional cohesion Figure 7.8 A simple dataflow
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Figure 7.9 A simple use case
diagram
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Unified Modeling Language

» Use Case Diagram
— Use cases
— Actors

 Class Diagram

Physician 1

Figure 7.10 A simple class
diagram
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Figure 7.11 One-to-one, one-to-many,
and many-to-many relationships between
entities of types X and Y
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Figure 7.12 A class diagram
gure 2ss dlag Structured Walkthoughs
depicting generalizations
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Software Testing Strategies

» Glass-box testing
— Pareto principle
— Basis path testing
 Black-box testing
— Boundary value analysis
— Redundancy testing
— Beta testing

Software Ownership

» Copyright
— The “substantial similarity” test

— Filtration criteria: what is not copyrightable
* Features covered by standards
* Characteristics dictated by software purpose
» Components in the public domain

— The “look and feel” argument
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Documentation

» User Documentation
— Printed book for all customers
— On-line help modules
» System Documentation
— Source code
— Design documents
» Technical Documentation
— For installing, customizing, updating, etc.
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Software Ownership (continued)

 Patents
— “Natural laws” are traditionally not patentable

 Trade secrets
— Non-disclosure agreements are legally enforceable
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