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• Distinct from other engineering fields
– Prefabricated components

M t i– Metrics
• Practitioners versus Theoreticians
• Professional Organizations: ACM, IEEE, etc.

– Codes of professional ethics
– Standards– Standards
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• Project planning
• Project management
• Documentation
• Prototyping and simulation• Prototyping and simulation
• Interface designg
• Programming
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• Requirements
– Application oriented

S ifi i• Specifications
– Technically orientedTechnically oriented

• Software requirements document
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• Methodologies and tools (discussed later)
• Human interface (psychology and ergonomics)
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• Create system from design
– Write programs

C t d t fil– Create data files
– Develop databasesp

• Role of “software analyst” versus “programmer”
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• Validation testing
– Confirm that system meets specifications

D f i• Defect testing
– Find bugsFind bugs
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• Waterfall Model
• Incremental Model

– Prototyping (Evolutionary vs. Throwaway)
• Open-source DevelopmentOpen source Development
• Extreme Programming
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• Procedures -- Imperative paradigm
– Structure charts

Obj Obj i d di• Objects -- Object-oriented paradigm
– Collaboration diagramsCollaboration diagrams

• Components -- Component architecture
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Figure 7.5 The interaction between 
objects resulting from PlayerA’s serve
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• Coupling 
– Control coupling

D t li– Data coupling
• Cohesion

– Logical cohesion
– Functional cohesion
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Figure 7.7 Logical and functional cohesion 
within an object
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• Data Flow Diagram
• Entity-Relationship Diagram

– One-to-one relation
– One-to-many relationOne to many relation
– Many-to-many relation

• Data Dictionary
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• Use Case Diagram
– Use cases

A t– Actors
• Class Diagramg
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Figure 7.11 One-to-one, one-to-many, 
and many-to-many relationships betweenand many to many relationships between 
entities of types X and Y
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• “Theatrical” experiment
• Class-responsibility-collaboration cards
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• Well designed “templates” for solving recurring 
blproblems

• Examples:
– Adapter pattern: Used to adapter a module’s interface to 

current needs
– Decorator pattern: Used to control the complexity involved 

when many different combinations of the same activities are 
i drequired

• Inspired by the work of Christopher Alexander in 
architecture
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• Glass-box testing
– Pareto principle

B i th t ti– Basis path testing
• Black-box testingg

– Boundary value analysis
– Redundancy testing
– Beta testingBeta testing
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• User Documentation
– Printed book for all customers
– On-line help modulesOn line help modules

• System Documentation
– Source code
– Design documentses g docu e ts

• Technical Documentation
i lli i i d i– For installing, customizing, updating, etc.
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• Copyright
– The “substantial similarity” test

Filt ti it i h t i t i ht bl– Filtration criteria: what is not copyrightable
• Features covered by standards
• Characteristics dictated by software purpose
• Components in the public domainp p

– The “look and feel” argument
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(continued)(continued)

• Patents
– “Natural laws” are traditionally not patentable

T d• Trade secrets
– Non-disclosure agreements are legally enforceableNon disclosure agreements are legally enforceable
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