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Second-generation:
Assembly language

* A mnemonic system for representing machine
instructions
— Mnemonic names for op-codes

— Identifiers: Descriptive names for memory locations,
chosen by the programmer




Assembly Language
Characteristics

» One-to-one correspondence between machine
instructions and assembly instructions
— Programmer must think like the machine

* Inherently machine-dependent

» Converted to machine language by a program
called an assembler

Uses high-level primitives

— Similar to our pseudocode in Chapter 5
Machine independent (mostly)
Examples: FORTRAN, COBOL

Third Generation Language

Each primitive corresponds to a sequence of

machine language instructions

Converted to machine language by a program

called a compiler

Program Example

Machine language Assembly language
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Figure 6.3 A function for checkbook
balancing constructed from simpler
functions

Output: New_balance

Data Types

* Integer: Whole numbers

* Real (float): Numbers with fractions
» Character: Symbols

» Boolean: True/false

Figure 6.4 The composition of a
typical imperative program or
program unit

Program

The first part consists of
declaration statements
describing the data that is
manipulated by the program.

The second part consists
| of imperative statements
describing the action to
be performed.

Length, Width;
Price, Total, Tax;
Symbol ;




Scores

Figure 6.5 A two-dimensional
array with two rows and nine
columns
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Scores (2,4) in
FORTRAN where
indices start at one.

\ Scores [1] [3] inC
and its derivatives
where indices start
at zero.

Figure 6.7 The for loop structure
and its representation in C++, C#,
and Java
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Assign Count the value 1

l

Count < 4?7
l True
Assign Count the
Body =4 value Count + 1

False

for (int Count = 1; Count<4; Count++)
body ; b

Figure 6.6 The conceptual structure
of the heterogeneous array Employee

Meredith W Linsmeyer

Employee— 23
Py \Employee.Age

6.2
T Employee.SkillRating

Procedural Units

 Local versus Global Variables

» Formal versus Actual Parameters

 Passing parameters by value versus reference
» Procedures versus Functions




Figure 6.8 The flow of control
involving a procedure

Calling
program unit

Control is Procedme
transferred
to procedure.

) e Procedure is
Ca!lmg program —_— executed.
unit requests
procedure.

Calling program
unit continues.

Control is returned to
calling environment when
procedure is completed. d

Fi gure 6.10 o When the procedure s called,  copy of the data s given o
Executing th e Calling environment Proceikins ot
procedure Demo = s—— s

and passing
parameters by
value

b. and the procedure manipulates its copy.

Calling environment Procedure’s environment

¢. Thus, when the procedure has terminated, the calling
environment has not been changed.

Calling environment

Figure 6.9 The procedure
ProjectPopulation written in the
programming language C

Starting the head with the term

The formal parameter list. Note

"void” is the way that a C that C, ag with many programming
programmer specifies that the languages, requires that the data
program unit is a procedure type of each parameter be specified.
rather than a function. We will

learn about functions shortly.

/

void ProjectPopulation (float GrowthRate)

Thig declares a local variable
{Hint Year; — 7 roqVear,

Populatien[0] = 100.0;
for (Year = 0; Year =< 10; Year++)
Populaticon[Year+l] = Populaticn[Year] + (Population[Year] * GrowthRate);

These statements describe how the
populations are to be computed and
stored in the global array named
Population.

a. When the procedure is called, the formal parameter becomes
a reference to the actual parameter.

Figure 6.11 orane
Exe C U ti n g th e Cﬁ":cgml:r:\.‘lrnnment - Pmced:;::lnwronmem
procedure Demo s+« =

and passing

pafra m ete rS by b. ThusrI changes directed by the procedure are made to the
rerterence actual parameter

Calling environment Procedure’s environment
Actual = Formal
6 & .

c. and are, therefore, preserved after the procedure has
terminated.

Calling environment

Actual
6




Figure 6.12 The function
CylinderVolume written in the
programming language C

The function header begins with
/ the type of the data that will

be returned.

/

float CylinderVolume (float Radius, float Height)

Declare a
{ float Volume; ~—— local variable

named Volume.

Volume = 3.14 * Radius * Radius * Height;

\\ Compute the volume of

return Volume; the cylinder.

\ Terminate the function and
} return the value of the

variable Volume.

Figure 6.14 A syntax diagram
of our if-then-else pseudocode
statement
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—» if —» expression —» then —» StatementT else —» Statement T

Figure 6.13 The translation
process

Source Lexical Code Object
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Figure 6.15 Syntax diagrams
describing the structure of a simple
algebraic expression

Expression

Term

Factor




Figure 6.16 The parse tree for
the string x + y x z based on the
syntax diagrams in Figure 6.17

Figure 6.18 An object-oriented
approach to the translation

Source
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Code
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Parser a/ ) }
Object
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Objects and Classes

» Object: Active program unit containing both
data and procedures

» Class: A template from which objects are
constructed

An object is called an instance of the class.




Figure 6.19 The structure of a
class describing a laser weapon in
a computer game

class LaserClass

{ int RemainingPower = 100; ~——___ Description of the data
that will reside inside of

void turnRight ( ) each object of this “type.”
F i

void turnLeft ( ) Methods describing how an

{ } object of this “type” should

respond to various messages

void fire ( )

i)

Figure 6.20 The Structure of a
typical object-oriented program

Program
ma;” | Procedural unit (often called
main) that directs the

b construction of the objects and

class .. makes appropriate calls to their
{. methods.
}

class
{- o Class descriptions
}

class .. ST \
} \ 7 42

* Instance Variable: Variable within an object
— Holds information within the object
» Method: Procedure within an object
— Describes the actions that the object can perform
» Constructor: Special method used to initialize
a new object when it is first constructed
LY o,
:%\7 41 \

Figure 6.21 A class with a
constructor

class LaserClass Constructor assigns a
value to Remaining Power
{ int RemainingPower; when an object is created.

{ LaserClass (InitialPower)
{ RemainingPower = InitialPower;

void turnRight ( )

{1

void turnLeft ( )

{o)

void fire ( )

{1

g\ 743




Additional Object-oriented

Object Integrity Concepts

» Encapsulation: A way of restricting access to  Inheritance: Allows new classes to be defined
the internal components of an object in terms of previously defined classes

— Private versus public « Polymorphism: Allows method calls to be
interpreted by the object that receives the call

Figure 6.22 Our LaserClass definition
using encapsulation

class LaserClass

 Parallel (or concurrent) processing:

private int RemainingPower;

Componentsin heclase A Liie uaercrase (inieiatzouer) simultaneous execution of multiple processes
rivate depanding on P a - - -
whether hey snovdbo \\, | {Renainingbower = Initialrover; — True concurrent processing requires multiple CPUs
program units, . - - - M -
public void turnRight ( ) — Can be simulated using time-sharing with a single
(o) CPU

public void turnLeft ( )
{ ..o}
public void fire ( )

{0}
}




Figure 6.23 Spawning threads
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Declarative Programming

» Resolution: Combining two or more statements to

produce a new statement (that is a logical consequence

of the originals).

— Example: (P or Q) AND (R OR —=Q)
resolves to (P or R)

— Resolvent: A new statement deduced by resolution

— Clause form: A statement whose elementary components

are connected by the Boolean operation OR

 Unification: Assigning a value to a variable so that

two statements become “compatible.”

Controlling Access to Data

» Mutual Exclusion: A method for ensuring that
data can be accessed by only one process at a
time

* Monitor: A data item augmented with the
ability to control access to itself

i
! "
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(P OR R)
POR Q ROR -Q

PORR

Figure 6.24 Resolving the statements
(P OR Q) and (R OR -Q) to produce

i
! "
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Figure 6.25 Resolving the
statements (P OR Q), (R OR —Q),
“R, and 7P

POFIO ROR-'O

errlpty clause

» Fact: A Prolog statement establishing a fact
— Consists of a single predicate
— Form: predicateName(arguments).
e Example: parent(bill, mary).
* Rule: A Prolog statement establishing a general rule
— Form: conclusion :- premise.
e - means “if”
— Example: wise(x) :- old(x).
- Example: faster(X,z) :- faster(X,Y), faster(Y,Z). d




