Chapter 6

computer science

| ANOVERVIEW
SR i

J.Glenn Brookshear

Figure 6.1 Generations of
programming languages

Problems solved in an environment
in which the machine conforms
to the human's characteristics

Problems solved in an environment
in which the human must conform
to the machine’s characteristics

S pa
| I I 1 I 1 I I I 1 I I I 1 il Zal I 1 I
st 2nd 3rd 4th
Generations

Chapter 6: Programming
Languages

6.1 Historical Perspective

6.2 Traditional Programming Concepts
6.3 Procedural Units

6.4 Language Implementation

6.5 Object Oriented Programming

6.6 Programming Concurrent Activities
6.7 Declarative Programming

Second-generation:
Assembly language

* A mnemonic system for representing machine
instructions
— Mnemonic names for op-codes

— Identifiers: Descriptive names for memory locations,
chosen by the programmer

Assembly Language
Characteristics

» One-to-one correspondence between machine
instructions and assembly instructions
— Programmer must think like the machine

* Inherently machine-dependent

» Converted to machine language by a program
called an assembler

Uses high-level primitives

— Similar to our pseudocode in Chapter 5
Machine independent (mostly)
Examples: FORTRAN, COBOL

Third Generation Language

Each primitive corresponds to a sequence of

machine language instructions

Converted to machine language by a program

called a compiler

Program Example

Machine language Assembly language
156C LD RS5, Price
166D LD R6, ShippingCharge
5056 ADDI R0, R5 R6
30CE ST RO, TotalCost

C000 HLT

programming paradigms

LI%P

ML Scheme

Figure 6.2 The evolution of

| Ct+

C#

I
[l
I
I
I
| Smalltalk | Visual Basic
I I

1
1
1
I
[}
Machine ! FORTRAN |

BASIC C! 'AE

LMDH!E“: COBOL ALqOL APL : Pascal |

Object-oriented

Imperative

I
! ' GPss ' prolog !
I

1 I 1
1 1 1 1

1950 1960 1970 1980 1990

I
I
T
I
I
1
1
2000

Figure 6.3 A function for checkbook
balancing constructed from simpler
functions

Output: New_balance

Data Types

* Integer: Whole numbers

* Real (float): Numbers with fractions
» Character: Symbols

» Boolean: True/false

Figure 6.4 The composition of a
typical imperative program or
program unit

Program

The first part consists of
declaration statements
describing the data that is
manipulated by the program.

The second part consists
| of imperative statements
describing the action to
be performed.

Length, Width;
Price, Total, Tax;
Symbol ;

Scores

Figure 6.5 A two-dimensional
array with two rows and nine
columns

2 &

Scores (2,4) in
FORTRAN where
indices start at one.

\ Scores [1] [3] inC
and its derivatives
where indices start
at zero.

Figure 6.7 The for loop structure
and its representation in C++, C#,
and Java

l

Assign Count the value 1

l

Count < 4?7
l True
Assign Count the
Body =4 value Count + 1

False

for (int Count = 1; Count<4; Count++)
body ; b

Figure 6.6 The conceptual structure
of the heterogeneous array Employee

Meredith W Linsmeyer

Employee— 23
Py \Employee.Age

6.2
T Employee.SkillRating

Procedural Units

 Local versus Global Variables

» Formal versus Actual Parameters

 Passing parameters by value versus reference
» Procedures versus Functions

Figure 6.8 The flow of control
involving a procedure

Calling
program unit

Control is Procedme
transferred
to procedure.

) e Procedure is
Ca!lmg program —_— executed.
unit requests
procedure.

Calling program
unit continues.

Control is returned to
calling environment when
procedure is completed. d

Fi gure 6.10 o When the procedure s called, copy of the data s given o
Executing th e Calling environment Proceikins ot
procedure Demo = s—— s

and passing
parameters by
value

b. and the procedure manipulates its copy.

Calling environment Procedure’s environment

¢. Thus, when the procedure has terminated, the calling
environment has not been changed.

Calling environment

Figure 6.9 The procedure
ProjectPopulation written in the
programming language C

Starting the head with the term

The formal parameter list. Note

"void” is the way that a C that C, ag with many programming
programmer specifies that the languages, requires that the data
program unit is a procedure type of each parameter be specified.
rather than a function. We will

learn about functions shortly.

/

void ProjectPopulation (float GrowthRate)

Thig declares a local variable
{Hint Year; — 7 roqVear,

Populatien[0] = 100.0;
for (Year = 0; Year =< 10; Year++)
Populaticon[Year+l] = Populaticn[Year] + (Population[Year] * GrowthRate);

These statements describe how the
populations are to be computed and
stored in the global array named
Population.

a. When the procedure is called, the formal parameter becomes
a reference to the actual parameter.

Figure 6.11 orane
Exe C U ti n g th e Cﬁ":cgml:r:\.‘lrnnment - Pmced:;::lnwronmem
procedure Demo s+« =

and passing

pafra m ete rS by b. ThusrI changes directed by the procedure are made to the
rerterence actual parameter

Calling environment Procedure’s environment
Actual = Formal
6 & .

c. and are, therefore, preserved after the procedure has
terminated.

Calling environment

Actual
6

Figure 6.12 The function
CylinderVolume written in the
programming language C

The function header begins with
/ the type of the data that will

be returned.

/

float CylinderVolume (float Radius, float Height)

Declare a
{ float Volume; ~—— local variable

named Volume.

Volume = 3.14 * Radius * Radius * Height;

\\ Compute the volume of

return Volume; the cylinder.

\ Terminate the function and
} return the value of the

variable Volume.

Figure 6.14 A syntax diagram
of our if-then-else pseudocode
statement

¢ Boolean
—» if —» expression —» then —» StatementT else —» Statement T

Figure 6.13 The translation
process

Source Lexical Code Object
— —» P — —
program analyzer el generator program
Ao ay Y 1

Figure 6.15 Syntax diagrams
describing the structure of a simple
algebraic expression

Expression

Term

Factor

Figure 6.16 The parse tree for
the string x + y x z based on the
syntax diagrams in Figure 6.17

Figure 6.18 An object-oriented
approach to the translation

Source
program Q‘
Lexical
analyzer
Code
[(generator
Parser a/) }
Object
program

Figure 6.17
Two distinct /// \\

Boolean

parse trees for " e e S
the statement / \ N
if B1 then if B2 4 BN
then S1 else S2 !)

AN

: .Bu_dun ;

hen

AN

Objects and Classes

» Object: Active program unit containing both
data and procedures

» Class: A template from which objects are
constructed

An object is called an instance of the class.

Figure 6.19 The structure of a
class describing a laser weapon in
a computer game

class LaserClass

{ int RemainingPower = 100; ~——___ Description of the data
that will reside inside of

void turnRight () each object of this “type.”
F i

void turnLeft () Methods describing how an

{ } object of this “type” should

respond to various messages

void fire ()

i)

Figure 6.20 The Structure of a
typical object-oriented program

Program
ma;” | Procedural unit (often called
main) that directs the

b construction of the objects and

class .. makes appropriate calls to their
{. methods.
}

class
{- o Class descriptions
}

class .. ST \
} \ 7 42

* Instance Variable: Variable within an object
— Holds information within the object
» Method: Procedure within an object
— Describes the actions that the object can perform
» Constructor: Special method used to initialize
a new object when it is first constructed
LY o,
:%\7 41 \

Figure 6.21 A class with a
constructor

class LaserClass Constructor assigns a
value to Remaining Power
{ int RemainingPower; when an object is created.

{ LaserClass (InitialPower)
{ RemainingPower = InitialPower;

void turnRight ()

{1

void turnLeft ()

{o)

void fire ()

{1

g\ 743

Additional Object-oriented

Object Integrity Concepts

» Encapsulation: A way of restricting access to Inheritance: Allows new classes to be defined
the internal components of an object in terms of previously defined classes

— Private versus public « Polymorphism: Allows method calls to be
interpreted by the object that receives the call

Figure 6.22 Our LaserClass definition
using encapsulation

class LaserClass

 Parallel (or concurrent) processing:

private int RemainingPower;

Componentsin heclase A Liie uaercrase (inieiatzouer) simultaneous execution of multiple processes
rivate depanding on P a - - -
whether hey snovdbo \\, | {Renainingbower = Initialrover; — True concurrent processing requires multiple CPUs
program units, . - - - M -
public void turnRight () — Can be simulated using time-sharing with a single
(o) CPU

public void turnLeft ()
{ ..o}
public void fire ()

{0}
}

Figure 6.23 Spawning threads

Calling
program unit

Procedure

Procedure is

activated.
Calling program v
unit requests
procedure.

\ / v
Both units

- execute i
simultaneously. s
\ N
‘\
|7 48

Declarative Programming

» Resolution: Combining two or more statements to

produce a new statement (that is a logical consequence

of the originals).

— Example: (P or Q) AND (R OR —=Q)
resolves to (P or R)

— Resolvent: A new statement deduced by resolution

— Clause form: A statement whose elementary components

are connected by the Boolean operation OR

 Unification: Assigning a value to a variable so that

two statements become “compatible.”

Controlling Access to Data

» Mutual Exclusion: A method for ensuring that
data can be accessed by only one process at a
time

* Monitor: A data item augmented with the
ability to control access to itself

i
! "
[7 .49

(P OR R)
POR Q ROR -Q

PORR

Figure 6.24 Resolving the statements
(P OR Q) and (R OR -Q) to produce

i
! "
\7 51

Figure 6.25 Resolving the
statements (P OR Q), (R OR —Q),
“R, and 7P

POFIO ROR-'O

errlpty clause

» Fact: A Prolog statement establishing a fact
— Consists of a single predicate
— Form: predicateName(arguments).
e Example: parent(bill, mary).
* Rule: A Prolog statement establishing a general rule
— Form: conclusion :- premise.
e - means “if”
— Example: wise(x) :- old(x).
- Example: faster(X,z) :- faster(X,Y), faster(Y,Z). d

