Chapter 2

computer science

 ANOVERVIEW
et |

J.Glenn Brookshear

Computer Architecture

 Central Processing Unit (CPU) or processor
— Arithmetic/Logic unit versus Control unit
— Registers
* General purpose
* Special purpose

* Bus (% init)
» Motherboard (& #4%)

Chapter 2. Data Manipulation

2.1 Computer Architecture 7. "% 2 H

2.2 Machine Language # ®3% 3

2.3 Program Execution #2 ;% # {7

2.4 Arithmetic/Logic Instructions i& & B g4, 4
2.5 Communicating with Other Devices

2.6 Other Architectures

Figure 2.1 CPU and main
memory connected via a bus

Central processing unit Main memory

Control Bus
unit

Arithmetic/logic
unit

000---0000

4[

Registers

Stored Program Concept

A program can be encoded as bit patterns and
stored in main memory. From there, the CPU
can then extract the instructions and execute
them. In turn, the program to be executed can
be altered easily.

Machine Language Philosophies

* Reduced Instruction Set Computing (RISC)
— Few, simple, efficient, and fast instructions
— Example: PowerPC from Apple/IBM/Motorola
and SPARK from Sun Microsystems
» Complex Instruction Set Computing (CISC)
— Many, convenient, and powerful instructions
— Example: Pentium from Intel

T

Terminology

» Machine instruction: An instruction (or
command) encoded as a bit pattern
recognizable by the CPU

* Machine language: The set of all instructions
recognized by a machine

T

Machine Instruction Types

 Data Transfer: copy data from one location to
another

 Arithmetic/Logic: use existing bit patterns to
compute a new bit patterns

 Control: direct the execution of the program

T

Figure 2.4 The architecture of the
machine described in Appendix C

Figure 2.2 Adding values stored
in memory

Step 1. Get one of the values to be

added from memory and Central processing unit Main memory
place it in a register. Arithmetic/logic Control unit Address Cells
unit Registers
Step 2. Get the other value to be o6 [
added from memory and o Program counter -
place it in another register. ‘:’ Bus o1 [
1 = -
Step 3. Activate the addition circuitry InetUCtion B gietar —— [
with the registers used in 2
Steps 1 and 2 as inputs and |:’ 03 [

another register designated

to hold the result. .
CFE FF |

Step 4. Store the result in memory.

Step 5. Stop.

Figure 2.3 Dividing values stored
in memory

Step 1. LOAD a register with a value e . . .
from memory. * Op-code(i& & #5): Specifies which operation to

Step 2. LOAD another register with execute
another value from memory.

Step 3. If this second value is zero, S e @5 0 b Operand(i@’_}lﬁ ;1..): Gives more detailed
Aol sens: R information about the operation

Step 4. Divide the contents of the . . .
first register by the second — Interpretation of operand varies depending on op-

register and leave the result
in a third register. COde

Step 5. STORE the contents of the
third register in memory. i

Step 6. STOP.

Figure 2.5 The composition of an
instruction for the machine in
Appendix C

Op-code

| |
I [1

0011 0101 1010 0111 Actual bit pattern (16 bits)

3 5 A 7 Hexadecimal form (4 digits)

Operand

Figure 2.7 An encoded version of
the instructions in Figure 2.2

Encoded
instructions Translation
156C Load register 5 with the bit pattern
found in the memory cell at
address 6C.
166D Load register 6 with the bit pattern
found in the memory cell at
address 6D.
5056 Add the contents of register 5 and
6 as though they were two's
complement representation and
leave the result in register 0.
306E Store the contents of register 0
in the memory cell at address 6E.
i i\
Cooo Halt. F;
326

Figure 2.6 Decoding the
instruction 35A7

Instruction{ 3 5 A 7

Op-code 3 means ‘

to store the contents This part of the operand identifies
of a register in a the address of the memory cell
memory cell. that is to receive data.

This part of the operand identifies
the register whose contents are -
to be stored. i

Program Execution

 Controlled by two special-purpose registers
— Program counter: address of next instruction
— Instruction register: current instruction
» Machine Cycle
— Fetch
— Decode
— Execute

1. Retrieve the next
instruction from
memory |as indicated
by the program
counter) and then
increment the
program counter.

Figure 2.8 The machine cycle

2. Decode the bit pattern
in the instruction ragister.

3. Perform the action "
required by the |
instruction in the i
instruction register. VIR W |

Figure 2.10 The program from Figure
2.7 stored in main memory ready for
execution

Program counter contains
address of first instructions.

CPU Main memory
Address Cells
Registers
- Program counter A0 L35}
0
e M &
E— E—— A2 Ge] I~ Program is
[6D] stored in
O A3 0 main memory
2 R4 [s0] beginning at
==CEE address AQ.
AS 56 |
Instruction register As [Eo]
— m o e
A8 co
F l——l i
as [oo] |

Op-code B means to
change the value of
the program counter
if the contents of the
indicated register is
the same as that in

register 0.

Instruction«l: B

Figure 2.9 Decoding the
instruction B258

/

This part of the operand is the
address to be placed in the
program counter.

This part of the operand identifies
the register to be compared to
register 0.

Figure 2.11 Performing the fetch
step of the machine cycle

CPU Main memory

Program counter

Address Cells
A0 £ L3

Bus

: . Al
Instruction register

156C

A2

5

(o}
(]

A3

|

a. At the beginning of the fetch step the instruction starting at address A0 is
retrieved from memory and placed in the instruction register.

Figure 2.11 Performing the fetch
step of the machine cycle (cont’d)

CPU Main memory
Program counter Address Cells
A0 HESH|

.) —_— Al | 6C |
Instruction register

156C A2 187

A3 6D

b. Then the program counter is incremented so that it points to the next instruction.

Figure 2.12 Rotating the bit
pattern 65 (hex) one bit to the right

0 1 1 0 0 1 0 1 The original bit pattern

The bits move one position
to the right. The rightmost
bit “falls off” the end and
is placed in the hole at the
other end.

1 0 1 1 0 0 1 0 The final bit pattern

* Logic: AND, OR, XOR
— Masking

 Rotate and Shift: circular shift, logical shift,
arithmetic shift

» Arithmetic: add, subtract, multiply, divide

— Precise action depends on how the values are
encoded (two’s complement versus floating-point).

e
! "
\ 3 33

» Controller: An intermediary apparatus that handles
communication between the computer and a device
— Specialized controllers for each type of device
— General purpose controllers (USB and FireWire)

» Port: The point at which a device connects to a
computer

* Memory-mapped 1/0: CPU communicates with
peripheral devices as though they were memory cells

i
! "
\ 3 35

Figure 2.13 Controllers attached
to a machine’s bus

CD drive Modem

Controller Controller

Baa Main

CPU memory

Controller Controller

Monitor Disk drive G
g\ 336

3 Communicating with Other Devices
—« (continued)

 Direct memory access (DMA): Main memory
access by a controller over the bus

* VVon Neumann Bottleneck: Insufficient bus
speed impedes performance

» Handshaking: The process of coordinating the
transfer of data between components
RS |
| g\ 338 \

Figure 2.14 A conceptual
representation of memory-mapped 1/O

Bus Main
memory

%—{/,:J — Controller — Peripheral device
Port

CPU

AVERE
B \ o
\ 3 37

3 Communicating with Other Devices
« (continued)

» Parallel Communication: Several
communication paths transfer bits
simultaneously.

 Serial Communication: Bits are transferred
one after the other over a single communication

path.
AVERE
| g\ 339 ‘

Data Communication Rates

* Measurement units
— Bps: Bits per second
— Kbps: Kilo-bps (1,000 bps)
— Mbps: Mega-bps (1,000,000 bps)
— Gbps: Giga-bps (1,000,000,000 bps)
» Bandwidth: Maximum available rate

Other Architectures

» Technologies to increase throughput:
— Pipelining(-¢ #): Overlap steps of the machine
cycle
— Parallel Processing: Use multiple processors
simultaneously
* SISD: No parallel processing
* MIMD: Different programs, different data
» SIMD: Same program, different data

