

Machine Language Philosophies

A program can be encoded as bit patterns and

- Reduced Instruction Set Computing (RISC)
- Few, simple, efficient, and fast instructions
- Example: PowerPC from Apple/IBM/Motorola and SPARK from Sun Microsystems
- Complex Instruction Set Computing (CISC)
- Many, convenient, and powerful instructions
- Example: Pentium from Intel

Machine Instruction Types

- Machine instruction: An instruction (or
- Data Transfer: copy data from one location to another command) encoded as a bit pattern recognizable by the CPU
- Arithmetic/Logic: use existing bit patterns to compute a new bit patterns
- Machine language: The set of all instructions
- Control: direct the execution of the program

b. Then the program counter is incremented so that it points to the next instruction.

Arithmetic/Logic Operations

- Logic: AND, OR, XOR
- Masking
- Rotate and Shift: circular shift, logical shift, arithmetic shift
- Arithmetic: add, subtract, multiply, divide

Communicating with Other Devices

- Controller: An intermediary apparatus that handles communication between the computer and a device
- Specialized controllers for each type of device
- General purpose controllers (USB and FireWire)
- Port: The point at which a device connects to a computer
- Precise action depends on how the values are
- Memory-mapped I/O: CPU communicates with peripheral devices as though they were memory cells

Data Communication Rates

- Measurement units
- Bps: Bits per second
- Kbps: Kilo-bps (1,000 bps)
- Mbps: Mega-bps (1,000,000 bps)
- Gbps: Giga-bps (1,000,000,000 bps)
- Bandwidth: Maximum available rate

Other Architectures

- Technologies to increase throughput:
- Pipelining(管線): Overlap steps of the machine cycle
- Parallel Processing: Use multiple processors simultaneously
- SISD: No parallel processing
- MIMD: Different programs, different data
- SIMD: Same program, different data

