Chapter 1

computer science

| AN.OVERVIEW

J.Glenn Brookshear

‘ Chapter 1: Data Storage (continued)

1.6 Storing Integers

1.7 Storing Fractions

» 1.8 Data Compression

» 1.9 Communications Errors

1l 111
_;\’\, ‘t.“.
Chapter 1. Data Storage Bits and Bit Patterns
1.1 Bits and Their Storage e Bit (> =): Binary Digit (= &= #3%0or 1)
» 1.2 Main Memory * Bit Patterns are used to represent information.
1.3 Mass Storage — Numbers
« 1.4 Representing Information as Bit Patterns — Text characters
e 1.5 The Binary System ~ Images
— Sound
— And others
(11 L1}
- ‘t‘

Boolean Operations

» Boolean Operation(# +ki& ¥): An operation
that manipulates one or more true/false values
 Specific operations
—~AND (®)
- OR (&)
— XOR (exclusive or) (7 & &)
- NOT (%)

o Gate (:B48R/): A device that computes a
Boolean operation
— Often implemented as (small) electronic circuits

— Provide the building blocks from which computers
are constructed

Figure 1.1 The Boolean operations
AND, OR, and XOR (exclusive or)

The AND operation
0 0 1 1
AND o AND 1 AND o AND 1
0 0 0 1
The OR operation
0 0 1 1
OR o0 OR 1 OR o OR 1
0 1 i T
The XOR operation
0 0 1 1 —
XOR o XOR 1 XOR o XOR 1
0 1 1 [i] ¢

Figure 1.2 A pictorial representation of
AND, OR, XOR, and NOT gates as well as
their input and output values

AND OR
Inputs :D— Output Inputs :Df Output
Inputs Output Inputs Output

(] U]
0

o
=N
oo
-1
oMo

oo

Inputs jD— Output Inputs —Do— Output

Inputs Output Inputs Output

o 1
1 [\Rgian":

-1
CR-N-1
o H RO

Flip-flops

* Flip-flop (& ¥ %8): A circuit built from gates
that can store one bit.
— Has an input line which sets its stored value to 1
— Has an input line which sets its stored value to 0

— While both input lines are 0, the most recently
stored value is preserved

Figure 1.4 Setting the output of a

flip-flop to 1

a. 1is placed on the upper input.

Input

——> Output

Input >

Figure 1.4 Setting the output of a
flip-flop to 1 (continued)

b. This causes the output of the OR gate to be 1 and,
in turn, the output of the AND gate to be 1.

1

Figure 1.4 Setting the output of a
flip-flop to 1 (continued)

c. The 1 from the AND gate keeps the OR gate from
changing after the upper input returns to 0.

0

Hexadecimal Notation

« Hexadecimal notation(16:& i~ 4 ;%): A
shorthand notation for long bit patterns
— Divides a pattern into groups of four bits each
— Represents each group by a single symbol

* Example: 10100011 becomes A3

Input

Figure 1.5 Another way of
constructing a flip-flop

Figure 1.6 The hexadecimal
coding system

Hexadecimal
Bit pattern representation
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 A
1011 B
1100 c
1101 D
1110 E
1111 K

Main Memory Cells

o Cell (321 H ~): A unit of main memory
(typically 8 bits which is one byte (= = %))
— Most significant bit: the bit at the left (high-order)
end of the conceptual row of bits in a memory cell

— Least significant bit: the bit at the right (low-order)
end of the conceptual row of bits in a memory cell

Main Memory Addresses

o Address(i*xt): A “name” that uniquely
identifies one cell in the computer’s main
memory
— The names are actually numbers.

— These numbers are assigned consecutively starting
at zero.

— Numbering the cells in this manner associates an
order with the memory cells.

Figure 1.7 The organization of a
byte-size memory cell

High-orderend 0 1 0 1 1 0 1 0 Low-orderend

Most Least
significant significant
bit bit

Figure 1.8 Memory cells
arranged by address

Memory Terminology

» Random Access Memory (RAM): Memory in
which individual cells can be easily accessed in
any order (“f 1% 5 B3z B 48)

* Dynamic Memory (DRAM): RAM composed
of volatile memory (# i s %8)

L
\; 232

Mass Storage

On-line versus off-line

Typically larger than main memory
Typically less volatile than main memory
Typically slower than main memory

Measuring Memory Capacity

 Kilobyte: 210 bytes = 1024 bytes
— Example: 3 KB = 3 x 1024 bytes
— Sometimes “kibi” rather than “kilo”
» Megabyte: 220 bytes = 1,048,576 bytes
— Example: 3 MB = 3 x 1,048,576 bytes
— Sometimes “megi” rather than “mega”
« Gigabyte: 230 bytes = 1,073,741,824 bytes
— Example: 3 GB = 3 x 1,073,741,824 bytes
— Sometimes “gigi” rather than “giga”

L
\; 233

Mass Storage Systems

* Magnetic Systems
— Disk
— Tape

 Optical Systems
-CD
- DVD

 Flash Drives

Figure 1.9 A magnetic disk
storage system

Track divided
into sectors

Read/write head

Disk motion

Data recorded on a single track,
consisting of individual sectors,
that spirals toward the outer edge

Disk motion L Y 1

Figure 1.10 Magnetic tape
storage

Tape reel Take-up reel

Tape motion

» File(# %): A unit of data stored in mass
storage system

— Fields and keyfields
* Physical record versus Logical record

(See the figure on the next page)

o Buffer(¥ # 3% %): A memory area used for
the temporary storage of data (usually as a step
in transferring the data)

Figure 1.12 Logical records

Logical records correspond
to natural divisions within the data

Physical records correspond
to the size of a sector

versus physical records on a disk

Figure 1.13 The message “Hello.”
in ASCII

01001000 01100101 01101100 01101100 01101111 00101110
H e | | 0

R
i n
(2 .42

Representing Text

» Each character (letter, punctuation, etc.) is
assigned a unique bit pattern.

— ASCII: Uses patterns of 7-bits to represent most

symbols used in written English text

— Unicode: Uses patterns of 16-bits to represent the

major symbols used in languages world side

— ISO standard: Uses patterns of 32-bits to represent

most symbols used in languages world wide

R
i n
(241

Representing Numeric Values

 Binary notation(= i = % 77 ;2): Uses bits to
represent a number in base two

 Limitations of computer representations of
numeric values

— Overflow — happens when a value is too big to be
represented

— Truncation — happens when a value is between two

representable values
LY o,
@243

Representing Images

 Bit map techniques
— Pixel: short for “picture element”
- RGB
— Luminance and chrominance
 Vector techniques
— Scalable
— TrueType and PostScript

Figure 1.14 The sound wave represented
by the sequence 0, 1.5, 2.0, 1.5, 2.0, 3.0,
4.0,3.0,0

Encoded sound wave

0 15 20 15 20 30 40 30 0
Amplitudes

Representing Sound

» Sampling techniques
— Used for high quality recordings
— Records actual audio
 MIDI
— Used in music synthesizers
— Records “musical score”

The Binary System

The traditional decimal system is based on
powers of ten.

The Binary system is based on powers of two.

Figure 1.15 The base ten and
binary systems

a. Base ten system

75]—Representation

&S

3
>
2 T .
3]~Posmon s quantity
<

b. Base two system

1]— Representation

& \
(o) Gagi .
Position’s quantity

Step 1.

Step 2.

Step 3.

Figure 1.17 An algorithm for finding
the binary representation of a positive
integer

Divide the value by two and record the remainder.

As long as the quotient obtained is not zero, continue to divide
the newest quotient by two and record the remainder.

Now that a quotient of zero has been obtained, the binary
representation of the original value consists of the remainders
listed from right to left in the order they were recorded.

Figure 1.16 Decoding the binary
representation 100101

el | |||

pattern v vt

1
il
0 X two
1
0

x four

x eight
0 Xx sixteen
1 x thirty-two
Y4 Y—7— 37Total

Value Position's
of bit quantity

L
N O ok o B

Figure 1.18 Applying the algorithm in
Figure 1.15 to obtain the binary
representation of thirteen

Remainder 1 —

Remainder 1 ——

Remainder 0

-+
-+
-+

Remainder 1 l ; |
1

"
1 Binary representation i .
-;2 Sl

=

0

facts

Storing Integers

e Two’s complement notation (= & & %
%) : The most popular means of representing
integer values

 Excess notation (42 %f % -t ;2) : Another
means of representing integer values

» Both can suffer from overflow errors.

Binary
pattern

Figure 1.20 Decoding the binary
representation 101.101

~{ [o 1 =] fal !
1 X one-eigth = 14
0 x one-fourth = ¢
1 x one-half = 14
1 X one = 1
0 X two = 0
1 x four = 4

b B—ag— 5% Total
Value Position’s
of bit quantity

Figure 1.21 Two’s complement
notation systems

a. Using patterns of length three b. Using patterns of length four

Bit Value Bit Value

pattern represented pattern represented
011 3 0111 7
o010 2 0110 6
001 1 0101 5
000 0 0100 4
111 -1 0011 3
110 -2 0010 2
101 -3 0001 1
100 -4 0000]
1111 =1
1110 -2
1101 -3
1100 -4
1011 =5
1010 -6
1001 -7

1000 -8

Figure 1.22 Coding the value -6
in two’s complement notation using
four bits

=
=]

Two’s complement notation {0
for 6 using four bits

Copy the bits from
e right to left until a
L 1 has been copied

|

|

|

|

|

|

|

|

|

|

|

|

: Complement the

| || remaining bits
Two's complement notation v ¥ v v
for -6 using four bits 1 0

1
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|

1 0 ¥

Figure 1.24 An excess eight
conversion table

Bit Value
pattern represented
1111 7
1110 6
1101 5
1100 4
1011 3
1010 2
1001 1
1000 0
0111 -1
0110 -2
0101 -3
0100 -4
0011 -5
0010 -6
0001 =7
0000 -8

Figure 1.23 Addition problems
converted to two’s complement
notation

Problem in Problem in Answer in
base ten two's complement base ten
3 0011
5 - +0010
—— 0101 = 5
-3 1101
2o | =P 10
1011 —» -5
7 0111
5 - +1011
= 0010 —P 2 i i

Figure 1.25 An excess notation
system using bit patterns of length
three

Bit Value
pattern represented

111 3
110 2
101 il
100 0
011 -1
010 -2
001 -3
000 -4

Storing Fractions

 Floating-point Notation: Consists of a sign bit,
a mantissa field, and an exponent field.
 Related topics include
— Normalized form
— Truncation errors

Figure 1.27 Encoding the value
258

23/, Original representation
10.101 Basetwo reresentation
10101 Raw bitpattern
il (04 (14 (@)
L Il | .
] Lost bit
Mantissa
Exponent
Sign bit

Figure 1.26 Floating-point
notation components

]—Bit positions

I | | | |
Mantissa &k

Exponent ;&

Sign bit & § 5

Data Compression

Lossy versus lossless

Run-length encoding

Frequency-dependent encoding
(Huffman codes)

Relative encoding

Dictionary encoding (Includes adaptive
dictionary encoding such as LZW encoding.)

Compressing Images

» GIF: Good for cartoons
» JPEG: Good for photographs
» TIFF: Good for image archiving

Communication Errors

* Parity bits (even versus odd)
» Checkbytes
 Error correcting codes

* MPEG
— High definition television broadcast
— Video conferencing
* MP3
— Temporal masking
— Frequency masking

Figure 1.28 The ASCII codes for the
letters A and F adjusted for odd parity

Parity bit ASCIl A containing an even Parity bit ASCIl F containing an odd
number of 1s number of 1s
I | I I
101000001 0010001180
I I
Total pattern has an odd Total pattern has an odd
number of 1s number of 1s

Figure 1.29 An error-correcting
code

Symbol Code

000000
001111
010011
011100
100110
101001
110101
111010

mQHMEHOQW D

WRFAOTREACEA R R FFNBTREA R
AR~ KB R 25k A ki

2k>n+k+1

Br2 A gEat20,2, 22 Lol 0 FRET
A2 5 DD,D,Dy » &~ I At E P RS S

D3D2D1P4D0P2P1
P,PP.P,P,P,P,

Figure 1.30 Decoding the pattern
010100 using the code in Figure 1.30

Distance between
the received pattern and
Character the character being considered

Smallest
distance

i o e I = B w A T v < B
BNUWEWeN

SnfB AP B AR N

Fr i (PP, P) BB E T 5 a5

P,®P,®P.BP,=0
P,®P;&P;®P;=0
P,OP,DOP,BP,=0

2 2 32 PP PP PP E 5 T A2 R
C,=P,®P,HP,®P,

C2:P2®P3®P6®P7
C,=P,®P,BP, BP, —

CZ'}C2Cl [i %

33 4c 3| hP P P,P,P,P,P FH I ML

P, g

P, g

Pgix ~ 45 3%

P, A

P =~

Pz~

~Njojol~A|lW|IN|(FL|O

P, in %438

Aliap d o el 2 TR (A E0l) § o5

7 -
s+] + 0100101 11001
0010101 01110
tt Tttt
BRI L2 BRI 4

N (BEL) 2 EPis: N B R T2 P
ol ¥ 5 BB AB PR
FERABLFMIEG T |V A4 Ak

]

Rz = dkp

Q| W[IN|F-
AW NI |O
N |, P |O|O

