Abstract

Milk may contain aflatoxin M_1 (AFM₁) if cows ingest aflatoxin B_1 (AFB₁), which is a usual contaminant in animal feed. AFM₁ is toxic and carcinogenic to liver, and can survive after pasteurization. The European Union has reduced the regulated level down to 0.05 µg/L and has challenged the existing analytical methods.

To confirm the existence of aflatoxin M_1 , the most used measurement is by high-performance liquid chromatography (HPLC)/fluorescence detection. Usually derivatization is needed to enhance the fluorescence of aflatoxin M_1 , which needs toxic reagent and additional time. In terms of sample preparation, the sample size is limited to 20–50 mL because a traditional solid-phase adsorbent only allows slow flow, which confines the sensitivity.

This study improved the sensitivity by using a disk type of solid-phase adsorbent and detection by high-performance liquid chromatography/tandem mass spectrometry. We successfully increased the sample volume up to 200 mL without significant breakthrough. The recoveries and detection limits are as follows: (1) recoveries using immunoaffinity-column (IAC) cleanup in milk powder, whole milk, and low-fat milk were $67.9 \pm 9.3\% \cdot 78.2 \pm 7.3\%$ and $86.6 \pm 4.1\%$ (mean \pm SD), respectively; the method detection limits(MDL) in whole milk and low-fat milk were 0.59 ± 0.19 ng/L (1.02 ng/L) and 0.66 ± 0.12 ng/L

(0.94 ng/L) (mean ± SD (MDL at 99% confidence level, MDL _{99%})), individually. (2) Recoveries using multifunctional cleanup columns (MFC) in whole milk and low-fat milk were $6.51 \pm 0.28\%$ and $15.8 \pm 4.6\%$ (mean ± SD), respectively; their method detection limits were $14.1 \pm 2.6 \text{ ng/L}$ (24.6 ng/L) and $9.22 \pm 3.34 \text{ ng/L}$ (16.8 ng/L) (mean ± SD (MDL _{99%})), individually. The method detection limits of certified reference material BCR 282 milk powder for IAC and MFC were $0.0085 \pm 0.00050 \,\mu\text{g/kg}$ ($0.0096 \,\mu\text{g/kg}$) and $0.0082 \pm 0.0022 \,\mu\text{g/kg}$ ($0.013 \,\mu\text{g/kg}$) (mean \pm SD (MDL 99%)), respectively. Recoveries between the two clean-up methods were significantly different.

This research tried to synthesize stable isotope-labelled aflatoxin M_1 as the internal standard. We successfully exchanged ¹⁶O on the AFM₁ for ¹⁸O; however, the reaction got equilibrium and the nonreacted ¹⁶O-AFM₁ will cause false positive. Furthermore, the syntheses of deuterium-labelled AFM₁ were a basic solution and high reaction temperature, which resulted in decomposition of the compound. Consequently, these two approaches were both failed. On the other hand, we tested the suitability of AFB₁ as a recovery standard, but the linearity of the calibration curve was worse than the one built up based on external standard. Thus, AFB₁ is not a good recovery standard in our investigation.

Our procedure improved the detection limit that is 3- to 500- fold lower than existing methods, which provides an extremely sensitivity to milk analysis of AFM₁.

Keywords: solid-phase extraction, immunoaffinity column, multifunctional cleanup column, certified reference material, high-performance liquid chromatography / tandem mass spectrometry