Abstract

I finish this solution file when I am a teaching assistant of the course “Analysis II” in NTU 2018 Spring. Some exercises are discussed with Jing-Wen Chen and Wei-Ning Deng.

The following students contribute the Problem section:
Problem 2,3: Chin-Bin Hsu, Zi-Li Lim.

Exercises

1. Let f be a function on the circle. For each $N \geq 1$ the discrete Fourier coefficients of f are defined by

$$a_N(n) = \frac{1}{N} \sum_{k=1}^{N} f(e^{2\pi ik/N})e^{-2\pi i kn/N}, \text{ for } n \in \mathbb{Z}.$$

We also let

$$a(n) = \int_{0}^{1} f(e^{2\pi ix})e^{-2\pi i nx} \, dx$$

denote the ordinary Fourier coefficients of f.

Then it’s easy to show that $a_N(n) = a_N(n + N)$. Furthermore, if f is continuous, then one can deduce $a_N(n) \to a(n)$ as $N \to \infty$ from the Riemann sum approximation. Does $a_N \to a$ uniformly in n? (Note that this is true if $f \in C^1$ by the next exercise.)

2. If f is a C^1 function on the circle, prove that $|a_N(n)| \leq c/|n|$ whenever $0 < |n| \leq N/2$.

Department of Math., National Taiwan University. Email: d04221001@ntu.edu.tw
Proof. The hint is easy to prove. So \(|a_N(n)| |1 - e^{2\pi i/n}| \leq M_f |1 - e^{2\pi i/N}|\) where \(M_f\) is the Lipschitz constant of \(f\). Choose the integer \(l\) such that \(|l - \frac{N}{2n}| \leq \frac{1}{2}\). Then \(|\frac{ln - \frac{1}{2}}{2N} - \frac{|n|}{2N}| \leq \frac{1}{4}\) and so \(\frac{1}{4} \leq \frac{|n|}{N} \leq \frac{3}{4}\). Therefore,
\[
|a_N(n)| \leq \frac{M_f |1 - e^{2\pi i/n}|}{|1 - e^{2\pi i/N}|} \leq CM_f \frac{l}{N} \leq CM_f \left(\frac{1}{2|n|} + \frac{1}{2N} \right) \leq CM_f \frac{1}{|n|}.
\]

\(\square\)

3. By a similar method, show that if \(f\) is a \(C^2\) function on the circle, then \(|a_N(n)| \leq c/|n|^2\), whenever \(0 < |n| \leq N/2\). As a result, prove the inversion formula for \(f \in C^2\),
\[
f(e^{2\pi i x}) = \sum_{n=-\infty}^{\infty} a(n) e^{2\pi in x}
\]
from its finite version.

Proof. Use the hint for Exercise 2 twice (for \(\pm l\)), we have
\[
|a_N||2 - e^{2\pi i n/N} - e^{-2\pi i n/N}| \leq M_f |e^{2\pi i l/N} - 1|^2.
\]
The quadratic decay rate can be proved similarly as Exercise 2 with a constant independent of \(N\). Note that \(a(n)\) also decays quadratically.

For the second part, let \(N\) be odd, one write the inversion formula as
\[
\sum_{|n| < \frac{N}{2}} a_N(n) e^{2\pi i n/N} = \frac{1}{N} \sum_{j=0}^{N-1} f(e^{2\pi i j/N}) \sum_{|n| < \frac{N}{2}} e^{-2\pi i j n/N} e^{2\pi i k n/N} = f(e^{2\pi i j/N})
\]
Given \(\epsilon > 0\), let \(\delta > 0\) be the uniform modulus of \(f\) associated with \(\epsilon\). Let \(N_0(\epsilon) > \delta^{-1}\). Then for each \(J > N_0(\epsilon)\) and \(x \in [0, 1]\), one can pick \(k(x, J) \in \mathbb{Z}\) such that \(|x - \frac{k(x, J)}{J}| < \frac{1}{J} < \frac{1}{N_0(\epsilon)} < \delta\).

Note that
\[
|f(e^{2\pi i x}) - \sum_{|n| \leq J/2} a(n) e^{2\pi in x}| \leq |f(e^{2\pi i x}) - f(e^{2\pi i k(x, J) / J})| + |f(e^{2\pi i k(x, J) / J}) - \sum_{|n| \leq J/2} a_f(n) e^{2\pi i k(x, J) / J}| + \sum_{|n| \leq J/2} |a_f(n) - a(n)| e^{2\pi in x} \frac{1}{|J|} + |a(n) e^{2\pi i k(x, J) / J} - e^{2\pi i x}|)
\]
(1)

Note that the first term < \(\epsilon\) by uniform continuity of \(f\). The last term is less than a generic multiple of \(
\sum_{|n| \leq J/2} |a_f(n) - a(n)| e^{2\pi in x} \frac{1}{|J|} = \frac{\log J}{J}
\)
and then turns to be less than \(\epsilon\) if \(J > N_1(\epsilon)\) for some \(N_1(\epsilon) > 0\).

For the third term, one use the quadratic decay as follows: there is \(N_2(\epsilon)\) such that \(\sum_{|n| > N_2(\epsilon)} \frac{1}{n^2} < \epsilon\). So for \(J > 2N_2(\epsilon)\), we decompose this sum into two parts, \(|n| < N_2(\epsilon)\) and \(J/2 \geq |n| > N_2(\epsilon)\).
For the second part, it’s bounded by a multiple of $\sum_{|n|>N_2(e)} \frac{1}{n^2} < \epsilon$. For the first part, we use Exercise 1 to conclude that this part is less than a multiple of $2N_2(e) \cdot \frac{\epsilon}{N_2(e)}$ whenever $J > N_3(e)$ for some $N_3(e) \in \mathbb{N}$.

If J is odd, then the second term vanishes. If J is even, then we modify $[1]$ as follows:

$$|f(x) - \sum_{|n| \leq \frac{J}{2}} a(n) e^{2\pi i nx}| = |f(x) - \sum_{|n| \leq \frac{J}{2}} a(n) e^{2\pi inx}|$$

$$\leq |f(x) - f\left(e^{2\pi i \frac{k(x,J+1)}{J+1}}\right)| + |f\left(e^{2\pi i \frac{k(x,J+1)}{J+1}}\right) - \sum_{|n| \leq \frac{J}{2}} a_{J+1}(n) e^{2\pi in \frac{k(x,J+1)}{J+1}}|$$

$$+ \sum_{|n| \leq \frac{J}{2}} |a_{J+1}(n) - a(n)| e^{2\pi in \frac{k(x,J+1)}{J+1}}| + \sum_{|n| \leq \frac{J}{2}} a(n) [e^{2\pi in \frac{k(x,J+1)}{J+1}} - e^{2\pi inx}].$$

Consequently, one see that if $J > N(e) := \max\{N_0(e), N_1(e), N_2(e), N_3(e)\}$, then

$$\sup_x |f(x) - \sum_{|n| \leq \frac{J}{2}} a(n) e^{2\pi inx}|$$

is less than a generic multiple of ϵ.

4. Let e be a character on $G = \mathbb{Z}(N)$, the additive group of integers modulo N. Show that there exists a unique $0 \leq \ell \leq N - 1$ so that $e(k) = e_{\ell}(k) = e^{2\pi ik/N}$ for all $k \in \mathbb{Z}(N)$. Conversely, every function of this type is a character on $\mathbb{Z}(N)$. Deduce that $e^\ell \mapsto \ell$ defines an isomorphism from \hat{G} to G.

Proof. By definition, $e(1) = e^{2\pi i \ell}$ for some $\ell \in [0, 1)$. Let $l = N\ell \in [0, N)$. By multiplicative property of e. One has $1 = e(N) = e(1)^N = e^{2\pi i N\ell}$. So $N\ell \in \mathbb{Z}$ and hence $0 \leq l \leq N - 1$. The uniqueness and converse part are easy to prove. This implies the map $\phi : e^\ell \mapsto \ell$ is bijective. It’s also trivial that ϕ is a homomorphism.

5. Show that all characters on $S^1 = [0, 1]$ are given by

$$e_n(x) = e^{2\pi inx} \quad \text{with} \quad n \in \mathbb{Z},$$

and check that $e_n \mapsto n$ defines an isomorphism from $\hat{S^1}$ to \mathbb{Z}.

Proof. Given $e \in \hat{S^1}$. We verify e is differentiable at first. The multiplicative property of e implies e is continuous. The continuity of e and the fact $e(0) = 1$ imply $e := \int_0^\delta e(y) dy \neq 0$ for some small $\delta > 0$. So $ce(x) = \int_x^{x+\delta} e(y) dy$, which implies e is differentiable.

Then $e(x+h) = e(x)e(h)$ for all $x \in [0, 1)$ and $h \in [0, 1-x)$, then $\frac{e(x+h)-e(x)}{h} = \frac{e(h)-e(0)}{h}e(x) \to e(0)e(x)$ as $h \to 0^+$ for all $x \in (0, 1)$. On the other hand, $\frac{e(x-h)-e(x)}{-h} = \frac{e(0)-e(h)}{-h}e(x-h) \to e(0)e(x)$ as $h \to 0^+$ for all $x \in (0, 1)$. So e satisfies $\dot{e}(x) = e(x)\dot{e}(0)$. So $e(x) = e^{\epsilon x(n)}$. In particular $1 = e(0) = e(1) = e^{\epsilon(0)}$ implies that $\dot{e}(0) = 2\pi in$ for some n.

\[\square\]
Remark 1. This technique is standard in the theory of semigroups. See [2, Chapter 1] for some settings in Banach spaces. (There is some difficulty for \(x - h\) part to be overcame by uniform boundedness principle). \(\dot{e}(0)\) is called the infinitesimal generator.

6. Prove that all characters on \(\mathbb{R}\) take the form

\[e_\xi(x) = e^{2\pi i \xi x} \quad \text{with} \quad \xi \in \mathbb{R}, \]

and that \(e_\xi \mapsto \xi\) defines an isomorphism from \(\hat{\mathbb{R}}\) to \(\mathbb{R}\). The argument in Exercise 5 applies here as well.

Proof. Same argument as the previous argument implies \(e(x) = e^{(a + ib)x}\) for some \(a, b \in \mathbb{R}\). Note that the boundary conditions \(|e(x)| \equiv 1\) on \(x = \pm \infty\) imply \(a = 0\). \(\square\)

7. Let \(\zeta = e^{2\pi i/N}\). Define the \(N \times N\) matrix \(M = (a_{jk})_{1 \leq j,k \leq N}\) by \(a_{jk} = N^{-1/2}\zeta^{jk}\).

(a) Show that \(M\) is unitary. (b) Interpret the identity \((Mu, Mv) = (u, v)\) and the fact that \(M^* = M^{-1}\) in terms of Fourier series on \(\mathbb{Z}(N)\).

Proof. (a) One notes that \((M^*M)_{ij} = \sum_{k=1}^{N}(M^*)_{ik}M_{kj} = N^{-1}\sum_{k=1}^{N}\zeta^{-ki}\zeta^{kj} = \delta_{ij}\), the Kronecker delta. Argument for showing \((MM^*)_{ij} = \delta_{ij}\) is almost the same.

(b) Given \(u, v \in \mathbb{C}^N\), we define the function \(U\) on \(\mathbb{Z}(N)\) by \(U(j) = u_j\), the \(j\)-th component of \(u\). By Parseval’s identity,

\[(Mu, Mv) = \sum_{j=1}^{N} \hat{U}(-j)\hat{V}(j) = \sum_{j=1}^{N} \overline{U}(j)\overline{V}(j) = \sum_{j=1}^{N} \overline{U}(j)V(j) = (u, v). \]

Similarly, by Fourier inversion formula on \(\mathbb{Z}(N)\), \(U(n) = \sum_{j} \hat{U}(j)\zeta^{jn} = N^{1/2}(M\hat{U})(n) = (MM^*)U(n)\). So \(M^* = M^{-1}\). \(\square\)

8. Suppose that \(P(x) = \sum_{n=1}^{N} a_ne^{2\pi inx}\).

(a) Show by using the Parseval identities for the circle and \(\mathbb{Z}(N)\), that

\[\int_0^1 |P(x)|^2 dx = \frac{1}{N} \sum_{j=1}^{N} |P(j/N)|^2. \]

(b) Prove the reconstruction formula

\[P(x) = \sum_{j=1}^{N} P(j/N)K(x - (j/N)) \]
where
\[K(x) = \frac{e^{2\pi ix} - e^{2\pi iNx}}{1 - e^{2\pi ix}} = \frac{1}{N}(e^{2\pi ix} + e^{2\pi i2x} + \ldots + e^{2\pi iNx}). \]

Observe that \(P \) is completely determined by the values \(P(j/N) \) for \(1 \leq j \leq N \). Note also that \(K(0) = 1 \), and \(K(j/N) = 0 \) whenever \(j \) is not congruent to 0 modulo \(N \).

Remark 2. Compare with Exercise 5.20.

Proof. (a) Using the Parseval identities, one has
\[
\int_{0}^{1} |P(x)|^2 \, dx = \sum_{j=1}^{N} |a_j|^2 = \frac{1}{N} \sum_{j=1}^{N} |P(j/N)|^2.
\]

(b) Let \(Q(z) = \sum_{n=1}^{N} a_n z^{n-1} \) and \(\{z_j\}_{j=1}^{N} := \{e^{2\pi i j/N}\}_{j=1}^{N} \) be the \(N \)-th root of unity.

Using the Lagrange interpolation polynomials, one can derive that
\[
Q(z) = \sum_{j=1}^{N} \frac{Q(z_j) (z^{N-1} - z^{N-1})}{z - z_j}
\]

Then
\[
P(x) = e^{2\pi ix} Q(e^{2\pi ix}) = e^{2\pi ix} \sum_{j=1}^{N} \frac{P(j/N) e^{-2\pi i j/N}}{e^{2\pi i(x-j/N)} - 1} = \sum_{j=1}^{N} P(j/N) K(x - j/N).
\]

9. One can prove the following assertions by modifying the argument given in the text.

(a) Show that one can compute the Fourier coefficients of a function on \(\mathbb{Z}(N) \) when \(N = 3^n \) with at most \(6N \log_3 N \) operations.

(b) Generalize this to \(N = \alpha^n \) where \(\alpha \) is an integer > 1.

10. A group \(G \) is cyclic if there exists \(g \in G \) that generates all of \(G \), that is, if any element in \(G \) can be written as \(g^n \) for some \(n \in \mathbb{Z} \). Prove that a finite abelian group is cyclic if and only if it is isomorphic to \(\mathbb{Z}(N) \) for some \(N \).

Remark 3. (1) Cyclic \(\iff \) Abelian. (2) See Problem 2 for a more precise formulation for structure theorem for finite abelian groups.

Proof. If \(G \cong \phi \mathbb{Z}(N) \), then \(G \) is cyclic with \(g = \phi(0) \). Conversely, if \(G \) has a generator \(g \), then we define \(\phi : G \to \mathbb{Z}(|G|) \) by \(\phi(g^n) = n \) for every \(0 \leq n \leq |G| - 1 \). Now it’s easy to check \(\phi \) is an isomorphism.

11. Write down the multiplicative tables for the groups \(\mathbb{Z}^*(3), \mathbb{Z}^*(4), \mathbb{Z}^*(5), \mathbb{Z}^*(6), \mathbb{Z}^*(8), \) and \(\mathbb{Z}^*(9) \). Which of these groups are cyclic?
Proof. It’s standard to see that $\mathbb{Z}^*(3), \mathbb{Z}^*(4), \mathbb{Z}^*(6)$ are all isomorphic to $\mathbb{Z}(2)$, and hence cyclic; $\mathbb{Z}^*(5) \cong \mathbb{Z}(4)$ is also cyclic; $\mathbb{Z}^*(8) \cong \mathbb{Z}(2) \times \mathbb{Z}(2)$ is not cyclic; $\mathbb{Z}^*(9) \cong \mathbb{Z}(6)$ is cyclic.

12. Suppose that G is a finite abelian group and $e : G \to \mathbb{C}$ is a function that satisfies $e(x \cdot y) = e(x)e(y)$ for all $x, y \in G$. Prove that either e is identically 0, or e never vanishes. In the second case, show that for each x, $e(x) = e^{2\pi i r}$ for some $r \in \mathbb{Q}$ of the form $r = p/q$, where $q = |G|$.

Proof. Let 0_G be the identity of G. The multiplicative property implies $e(0_G) = 1$ or 0. If $e(0_G) = 0$, then the multiplicative property implies $e \equiv 0$. On the other hand, $e(a)e(a^{-1}) = e(0_G) = 1$ implies $e(a) \neq 0$ for all $a \in G$.

Note that for each x, $|G|x = x + x + \cdots + x = 0_G$ (Lagrange’s theorem in group theory). So $e(x)^{|G|} = 1$, which implies $e(x) = e^{2\pi i r_x}$ for some $r_x \in \mathbb{Z}$.

13. In analogy with ordinary Fourier series, one may interpret finite Fourier expansions using convolutions as follows. Suppose G is a finite abelian group, 1_G its unit, and V the vector space of complex-valued functions on G.

(a) The convolution of two functions f and g in V is defined for each $a \in G$ by

$$(f \ast g)(a) = \frac{1}{|G|} \sum_{b \in G} f(b)g(a \cdot b^{-1}).$$

Show that for all $e \in \hat{G}$ one has $(f \ast g)(e) = \hat{f}(e)\hat{g}(e)$.

(b) Use Theorem 2.5 to show that

$$\sum_{e \in \hat{G}} e(c) = 0$$

whenever $c \in G$ and $c \neq 1_G$.

(c) As a result of (b), show that the Fourier series $Sf(a) = \sum_{e \in \hat{G}} \hat{f}(e)e(a)$ of a function $f \in V$ takes the form

$$Sf = f \ast D,$$

where D is defined by

$$D(c) = \sum_{e \in \hat{G}} e(c) = \begin{cases} |G| & \text{if } c = 1_G, \\ 0 & \text{otherwise.} \end{cases} \tag{2}$$

Since $f \ast D = f$, we recover the fact that $Sf = f$. Loosely speaking, D corresponds to a ”Dirac delta function”; it has unit mass

$$\frac{1}{|G|} \sum_{c \in G} D(c) = 1,$$
and (2) says that this mass is concentrated at the unit element in G. Thus D has the same interpretation as the "limit" of a family of good kernels. (See Section 4, Chapter 2.)

Note. The function D reappears in the next chapter as $\delta_1(n)$.

Proof. (a) Note that $G \cdot b^{-1} = G$ for all $b \in G$. So

$$
\overline{(f \ast g)}(e) = \frac{1}{|G|} \sum_{a \in G} (f \ast g)(a)e(a) = \frac{1}{|G|^2} \sum_{a,b \in G} f(b)g(a \cdot b^{-1})e(a \cdot b^{-1})e(b) = \frac{1}{|G|^2} \sum_{b \in G} f(b)e(b) \sum_{a \in G} g(a \cdot b^{-1})e(a \cdot b^{-1}) = \frac{1}{|G|} \sum_{b \in G} f(b)e(b)\hat{g}(e) = \hat{f}(e)\hat{g}(e)
$$

(b) Note that $f\hat{G} = \hat{G}$ for each $f \in \hat{G}$. If there is $e' \in \hat{G}$ such that $e'(c) \neq 1$, then we see that

$$
\sum_{e \in \hat{G}} e(c) = 0 \text{ since } e'(c) \sum_{e \in \hat{G}} e(c) = \sum_{e \in \hat{G}} (e'\tilde{e})(c) = \sum_{f \in \hat{G}} f(c).
$$

The existence of e' (which looks like the group version of Hahn-Banach theorem) can be proved as follows:

Let H be the cyclic group generated by c. Then $|H| > 1$ and hence $|G/H| < |G|$, where $G/H = \{bH : b \in G\}$ is the quotient group. Suppose $e(c) = 1$ for all $e \in \hat{G}$. Then each character e induces a character e_H on G/H defined by $e_H(bH) = e(b)$ (we verify this is well-defined by the hypothesis $e \equiv 1$ on H). So $e_H \neq f_H$ provided $e \neq f$ and hence we have a contradiction that $|G/H| < |G| = |\hat{G}| = |G/H| = |G/H|.$

(c)

$$
S f(a) = \sum_{e \in \hat{G}} \hat{f}(e)e(a) = \sum_{e \in \hat{G}} \frac{1}{|G|} \sum_{b \in G} f(b)e(b)e(a) = \sum_{e \in \hat{G}} \frac{1}{|G|} \sum_{b \in G} f(b)e(b^{-1})e(a) = \frac{1}{|G|} \sum_{b \in G} f(b)D(b^{-1}a).
$$

Problems

1. Prove that if n and m are two positive integers that are relatively prime, then

$$
\mathbb{Z}(nm) \cong \mathbb{Z}(n) \times \mathbb{Z}(m).
$$
Proof. As hint, we consider the map \(\phi : k \mapsto (k \mod n, k \mod m) =: (\phi_1(k), \phi_2(k)) \).

Given \((a, b) \in \mathbb{Z}(n) \times \mathbb{Z}(m)\). Since \(m, n\) are relatively prime, there is \(x, y \in \mathbb{Z}\) such that \(mx + ny = 1\) (see Corollary 1.3 of Chapter 8). Then \(k = amx + bny\) is \(a\) modulo \(n\) and is \(b\) modulo \(m\), that is, \(\phi(k) = (a, b)\).

If \(\phi(k_1) = \phi(k_2)\), then \(k_1 - k_2 = (p_1 - p_2)n\) for some \(p_1, p_2 \in \mathbb{Z}\). Since \(m, n\) are relatively prime, \(k_1 - k_2 = (q_1 - q_2)mn\). So \(k_1 = k_2\) in \(\mathbb{Z}(nm)\).

Finally, since \(AB = (p_A n + \phi_1(A))(p_B n + \phi_1(B)) = (p_A p_B + p_A \phi_1(B) + p_B \phi_1(A))n + \phi_1(A) \phi_1(B)\), \(\phi_1(AB) = \phi_1(A) \phi_1(B)\) for any \(A, B \in \mathbb{Z}(nm)\). Similar for \(\phi_2(AB) = \phi_2(A) \phi_2(B)\).

2. Every finite abelian group \(G\) is isomorphic to a direct product of cyclic groups.

Here are two more precise formulations of this theorem.

- If \(p_1, \ldots, p_s\) are the distinct primes appearing in the factorization of the order of \(G\), then
 \[G \cong G(p_1) \times \cdots \times G(p_s),\]
 where each \(G(p)\) is of the form \(G(p) = \mathbb{Z}(p^{r_1}) \times \cdots \times \mathbb{Z}(p^{r_l})\), with \(0 \leq r_1 \leq \cdots \leq r_l\) (this sequence of integers depends on \(p\) of course). This decomposition is unique.

- There exist unique integers \(d_1, \ldots, d_k\) such that
 \[d_1|d_2|d_3|\cdots|d_{k-1}|d_k\]
 and
 \[G \cong \mathbb{Z}(d_1) \times \cdots \times \mathbb{Z}(d_k)\]

Deduce the second formulation from the first.

Proof.

3. Let \(\hat{G}\) denote the collection of distinct characters of the finite abelian group \(G\).

- (a) Note that if \(G = \mathbb{Z}(N)\), then \(\hat{G}\) is isomorphic to \(G\).

- (b) Prove that \(\hat{G_1 \times G_2} = \hat{G_1} \times \hat{G_2}\).

- (c) Prove using Problem 2 that if \(G\) is a finite abelian group, then \(\hat{G}\) is isomorphic to \(G\).

Remark 4. The results in this problem give another proof to Theorem 2.5.

Proof.
4. **When** \(p \) **is prime**, the group \(\mathbb{Z}^*(p) \) **is cyclic** and \(\mathbb{Z}^*(p) \cong \mathbb{Z}(p - 1) \).

Proof. One way to prove this is through Euclidean algorithm (Corollary 1.3 of Chapter 8, also see page 244). The authors also refer this problem to [1, Chapter 7].

References

