1. Let X consists of two points a and b, put $\mu(\{a\}) = \mu(\{b\}) = \frac{1}{2}$, and let $L^p(\mu)$ be the resulting real L^p space. Identify each real function f on X with the point $(f(a), f(b))$ in the plane, and sketch the unit balls of $L^p(\mu)$, for $0 < p \leq \infty$. Note that they are convex if and only if $1 \leq p \leq \infty$. For which p is this unit ball a square? A circle? If $\mu(\{a\}) \neq \mu(\{b\})$, how does this situation differ from the preceding one?

Proof. Let $U = \{f : ||f||_p \leq 1\}$. In the equal mass case, the figure is a square if and only if $p = 1$ or ∞ and is a circle if and only if $p = 2$. The convexity part is also standard. For non-equal mass case, it is not a square nor a circle for any p (by comparing the side length or examining the candidate for "center of circle"). However, for $p = \infty$, U is a square.

2. Triangle inequality.

3. If $1 < p < \infty$, prove that the unit ball in $L^p(\mu)$ is strictly convex. Show that this fails in every $L^1(\mu)$, in every $L^\infty(\mu)$, and in every $C(X)$. (Ignore trivialities, such as spaces consisting of only one point.)

Remark 1. Actually, one can prove L^p is uniformly convex by Clarkson’s inequality. See [4] Problem 1.6] and [1] Section 4.3]. Moreover, Milman-Pettis Theorem states every uniformly convex space is reflexive. See [1] Section 3.7].

Proof. For $1 < p < \infty$. Given $f, g \in L^p(\mu)$ with $\|f\|_p = \|g\|_p = 1$, $f \neq g$. Minkowski inequality implies $h = \frac{1}{2}(f + g)$ has L^p norm less than or equal to 1. Moreover, the equality holds if and

*Department of Math., National Taiwan University. Email: d04221001@ntu.edu.tw
only if there is \(\lambda \geq 0 \) such that \(f = \lambda g \), which is equivalent to \(f = g \) since both functions have the same \(L^p \) norm. So \(\| h \|_p < 1 \).

For \(L^1(\mu) \) and \(L^\infty(\mu) \). Suppose \(0 < \mu(A) < \infty \) and \(0 < \mu(B) < \infty \), and \(A \cap B = \emptyset \). Let \(f(x) = 1/\mu(A) \) when \(x \in A \) and \(f(x) = 0 \) when \(x \notin A \). Let \(g(x) = 1/\mu(B) \) when \(x \in B \) and \(g(x) = 0 \) when \(x \notin B \). Then \(f, g \) are linearly independent, and \(\| f + g \|_1 = \| f \|_1 = \| g \|_1 = 1 \).

Similarly, let \(F(x) = 1 \) when \(x \in A \) and \(F(x) = 0 \) when \(x \notin A \). Let \(g(x) = 1 \) when \(x \in A \cup B \) and \(g(x) = 0 \) when \(x \notin A \cup B \). Then \(f, g \) are linearly independent and \(\| F + g \|_\infty = \| F \|_\infty = \| g \|_\infty = 1 \).

For \(C(X) \), suppose \(X \) is a compact metric space with more than one point. (Note that if \(X \) is not compact, it’s not clear that \(\| \cdot \|_\infty \) is a norm on \(C(X) \).) Consider \(f(x) = 1/(1 + d(x, a)) \), \(g(x) = 1/(1 + d(x, a))^2 \). Then \(\| f + g \|_\infty = \| f \|_\infty = \| g \|_\infty = 1 \).

4. Let \(C \) be the space of all continuous functions on \([0, 1]\) with the supreme norm. Let \(M \) consists of all \(f \in C \) for which
\[
\int_0^{\frac{1}{2}} f(t) \, dt - \int_{\frac{1}{2}}^1 f(t) \, dt = 1.
\]

Prove that \(M \) is a closed convex subset of \(C \) which contains no elements of minimal norm.

Remark 2. This is related to Theorem 4.10 and Exercise 4.11 and 5.5.

Proof. Convexity of \(M \) is trivial. Closedness of \(M \) is through theorem on uniform convergence and integration. Next, we try to calculate the infimum. By triangle inequality, we see

\[
1 \leq \inf \{ \| f \|_\infty : f \in M \}.
\]

On the other hand, for \(n \geq 2 \), define \(f_n : [0, 1] \to \mathbb{R} \) by

\[
f_n(x) = \begin{cases}
1 & \text{if } x \in [0, \frac{1}{2}], \\
\frac{1+n}{1-n} & \text{if } x \in [\frac{1}{2} + \frac{1}{2n}, 1], \\
\text{linear} & \text{if } x \in [\frac{1}{2}, \frac{1}{2} + \frac{1}{n}].
\end{cases}
\]

Then \(f_n \in M \) and \(\| f_n \|_\infty = \frac{n+1}{n-1} \to 1 \) as \(n \to \infty \). So

\[
1 = \inf \{ \| f \|_\infty : f \in M \}.
\]

If there is \(f \in C \) such that \(\| f \|_\infty = 1 = \int_0^{\frac{1}{2}} f(t) \, dt - \int_{\frac{1}{2}}^1 f(s) \, ds \), then \(f(t) = 1 \) on \([0, 1/2]\) and \(f(t) = -1 \) on \((1/2, 1]\). But this contradicts to the continuity of \(f \). \(\square \)
5. Let \(M \) be the set of all \(f \in L^1([0,1]) \), relative to Lebesgue measure, such that
\[
\int_0^1 f(t) \, dt = 1.
\]
Show that \(M \) is a closed convex subset of \(L^1([0,1]) \) which contains infinitely many elements of minimal norm. (Compare this and Exercise 4 with Theorem 4.10.)

\begin{proof}
Convexity of \(M \) is trivial. Closedness of \(M \) is through triangle inequality. Note that \(\inf\{\|f\|_1 : f \in M\} \geq 1 \) and for each \(n \in \mathbb{N} \), \(f_n = n\chi_{(0,\frac{1}{n})} \in M \), distinct from other \(f_m \) and has norm 1.
\end{proof}

6. Proof. Using the continuity of \(f \), we can extend it to \(\overline{M} \) and preserve its norm.

Since \(H = \overline{M} \bigoplus M^\perp \), we extend \(f \) to \(H \) by define \(F(x) = F(x^M + x^M^\perp) := f(x^M) \). Then it’s easy to check all the assertions on \(F \) are satisfied. The uniqueness is easy to prove.

7. Construct a bounded linear functional on some subspace of some \(L^1(\mu) \) which has two (hence infinitely many) distinct norm-preserving linear extensions to \(L^1(\mu) \).

\begin{remark}
In contrast to Exercise 6, this exercise shows that such unique extension result is not true for every Banach space. Hence, no uniqueness assertion in Hahn-Banach Theorem.
\end{remark}

\begin{proof}
Consider \(L^1 = L^1([-1,1],m) \) and \(M := \{ f \in L^1 : f \equiv 0 \text{ on } [-1,0] \} \subset L^1 \). Consider the functional \(T(f) = \int_{-1}^1 f \, dx \) on \(M \) which is linear, bounded with norm 1. Such \(T \) has two distinct norm-preserving extensions, one is \(T_1(f) = \int_{-1}^1 f \, dx \), another one is \(T_2(f) = \int_{-1}^1 f\chi_{(-\frac{1}{2},1)} \, dx \).
\end{proof}

8. Proof. (a) Standard result. It’s true even for the range \(\mathbb{R} \) or \(\mathbb{C} \) is replaced by a Banach space.

(b) It’s easy to see the norm \(\leq \|x\| \). To see it’s actually an equality, we use Hahn-Banach Theorem (more precisely, Theorem 5.20).

(c) By (a)(b) and Banach-Steinhaus Theorem.

9. Proof. (a) It’s easy to see \(\|\Lambda y\| \leq \|y\|_1 \). To get the reverse inequality, we let \(x_n = (\xi_i)_{i=1}^n \), where \(\xi_i = \frac{\eta_i}{|\eta_i|} \) if \(\eta_i \neq 0 \) and \(\xi_i = 0 \) if \(\eta_i = 0 \). Then \(x_n \in c_0, \|x_n\|_\infty \leq 1 \) and \(\|\Lambda y\| \geq |\Lambda y x_n| = \sum_{i=1}^n |\eta_i| \) for every \(n \). Therefore, \(\|y\|_1 \leq \|\Lambda y\| \).

Now we prove the linear map \(y \mapsto \Lambda y \) is surjective. Given \(\Lambda \in (c_0)^* \), we let \(\eta_i = \Lambda e_i \) for each \(i \).
Let \(x_n = (\xi_i)_{i=1}^n \), where \(\xi_i = \frac{\eta_i}{|\eta_i|} \) if \(\eta_i \neq 0 \) and \(\xi_i = 0 \) if \(\eta_i = 0 \). Then \(x_n \in c_0, \|x_n\|_\infty \leq 1 \) and
\[\|\Lambda\| \geq |\Lambda x_n| = \sum_{i=1}^{n} |\eta_i| \text{ for every } n. \] Therefore, \[\sum_{i=1}^{\infty} |\eta_i| \leq \|\Lambda\|, \] that is, \(y = (\eta_i) \in l^1 \). Given \(x = (\xi_i)_{i=1}^{\infty} \in c_0 \), we see \(x_n = (\xi_i)_{i=1}^{n} \to x \) in \(l^\infty \). By the continuity of \(\Lambda \),

\[
\Lambda x = \lim_{n \to \infty} \Lambda x_n = \lim_{n \to \infty} \sum_{i=1}^{n} \xi_i \Lambda e_i = \lim_{n \to \infty} \sum_{i=1}^{n} \xi_i \eta_i = \Lambda y x.
\]

(b) It’s easy to see \(\|\Lambda y\| \leq \|y\|_{\infty} \). To get the reverse inequality, we may assume \(\|y\|_{\infty} > 0 \), then for each small \(\epsilon > 0 \), there is some \(|\xi_i| > \|y\|_{\infty} - \epsilon \). Take \(x = e_i \), then \(\|x\|_1 = 1 \) and hence \(\|\Lambda\| \geq |\Lambda x| = |\xi_i| > \|y\|_{\infty} - \epsilon \). Letting \(\epsilon \to 0 \), we see \(\|\Lambda\| \geq \|y\|_{\infty} \).

Now we prove the linear map \(y \mapsto \Lambda y \) is surjective. Given \(\Lambda \in (l^1)^* \), let \(\eta_i = \Lambda e_i \) and hence \(|\eta_i| \leq \|\Lambda\| \) for each \(i \), that is, \(y = (\eta_i) \in l^1 \). Given \(x = (\xi_i)_{i=1}^{\infty} \in l^1 \), we see \(x_n = (\xi_i)_{i=1}^{n} \to x \) in \(l^1 \). By the continuity of \(\Lambda \),

\[
\Lambda x = \lim_{n \to \infty} \Lambda x_n = \lim_{n \to \infty} \sum_{i=1}^{n} \xi_i \Lambda e_i = \lim_{n \to \infty} \sum_{i=1}^{n} \xi_i \eta_i = \Lambda y x.
\]

(c) By Hahn-Banach Theorem (Theorem 5.20) and (a).

(d) Consider the collection \(S \) of all elements \((x_i)_{i=1}^{\infty}, x_i = 1 \) or 0 for each \(i \) which is an uncountable subset of \(l^\infty \) and for each \(x, y \in S, x \neq y, \|x - y\|_{\infty} = 1 \). So every dense subset of \(l^\infty \) is uncountable.

Let \(S \) be the collection of all elements \((x_i)_{i=1}^{\infty}, x_i \in \mathbb{Q} \) for each \(i \) and \(x_i = 0 \) for all \(i \geq N \) for some \(N \). By understanding the collection \(S \) is countable and dense in \(l^1 \) and \(c_0 \), we see \(l^1 \) and \(c_0 \) are separable.

10. If \(\sum \alpha_i \xi_i \) converges for every sequence \(\{\xi_i\} \) such that \(\xi_i \to 0 \) as \(i \to \infty \), prove that \(\sum |\alpha_i| < \infty \).

Remark 4. The assumption is weaker than Exercise 6.4 and Folland [2, Theorem 6.14].

Proof. For each \(n \in \mathbb{N} \), define \(\Lambda_n : c_0 \subset l^\infty \to \mathbb{C} \) by

\[
\Lambda_n(\xi) = \sum_{i=1}^{n} \alpha_i \xi_i.
\]

It’s easy to check \(c_0 \) with sup-norm is a Banach space, each \(\Lambda_n \) is linear, bounded with norm \(\|\Lambda_n\| = \sum_{i=1}^{n} |\alpha_i| \) and \(\{\Lambda_n\} \) is pointwisely bounded. By Banach-Steinhaus Theorem, we see there is \(M > 0 \) such that \(M \geq \|\Lambda_n\| = \sum_{i=1}^{n} |\alpha_i| \) for all \(n \). Therefore, \(\sum_{i=1}^{\infty} |\alpha_i| \) exists (due to monotonicity and boundedness) and \(M \geq \sum_{i=1}^{\infty} |\alpha_i| \).

11. Let \(\beta \in (0, 1) \). Prove that \(C^{0,\beta}([a, b]; \mathbb{C}) \) are Banach spaces with norms \(\|f\|_1 = |f(a)| + [f]_{0,\beta} \) and \(\|f\|_2 = \|f\|_{\infty} + [f]_{0,\beta} \), where \([f]_{0,\beta} = \sup_{x \neq y} \frac{|f(x) - f(y)|}{|x - y|^\beta} \).
Proof. Let $U = [a, b]$. For simplification, we only consider the completeness with respect to $\| \cdot \|_2$. Given a Cauchy sequence $\{f_n\} \subset C^{0,\beta}(\overline{U})$, then there is a $f \in C(\overline{U})$ such that $f_n \to f$ uniformly and a constant $M > 0$ such that for each $n \in \mathbb{N}$ and $s \neq t$,

$$\frac{|f_n(s) - f_n(t)|}{|s - t|^{\beta}} \leq M.$$

Then for each $s \neq t$, there is some $N = N(s, t) \in \mathbb{N}$ such that

$$|f(s) - f(t)| \leq |f(s) - f_N(s)| + |f_N(s) - f_N(t)| + |f_N(t) - f(t)|$$

$$\leq 2|s - t|^\beta + M|s - t|^\beta.$$

Therefore, $f \in C^{0,\beta}(\overline{U})$. It remains to show $f_n \to f$ in $C^{0,\beta}(\overline{U})$. For each $s, t \in U$ and $\epsilon > 0$, by Cauchy’s criteria, we can find a $N = N(\epsilon)$ such that for $k, n \geq N$

$$|f_k(s) - f_n(s) - f_k(t) + f_n(t)| \leq \epsilon|s - t|^\beta.$$

For each $\eta > 0$, we can find a $K = K(\eta, s, t) > N$, such that $|f(x) - f_K(x)| \leq \eta$ for $x = s$, or $x = t$. Therefore, for every $n \geq N$

$$|f(s) - f_n(s) - f(t) + f_n(t)| \leq |f(s) - f_K(s)| + |f_K(s) - f_n(s) - f_k(t) + f_n(t)| + |f(t) - f_K(t)| \leq 2\eta + \epsilon|s - t|^\beta.$$

Letting $\eta \to 0$, we obtain that $|f(s) - f_n(s) - f(t) + f_n(t)| \leq \epsilon|s - t|^\beta$ for all $n \geq N(\epsilon)$.

Remark 5. It is true for the general case $C^{k,\beta}(U)$, U is connected in \mathbb{R}^d, with an almost identical proof as the above case $k = 0$, except we need the standard convergence theorem between $\{f_n\}$ and $\{Df_n\}$.

12. **Remark** 6. See Notes and Comments for Section 5.22.

Proof.

13. **Proof.** (a) By the pointwise convergence assumption,

$$X = \bigcup_M E_M := \bigcup_M \cap_n \{x : |f_n(x)| \leq M\}.$$

Note that $E_M \subset E_{M+1}$ is nonempty for large M, and each E_M is closed since it’s intersection of closed sets. Therefore, by Baire Category Theorem, there is some M such that E_M contains an open set $V \neq \emptyset$. (b)’s proof is similar to (a) (see Hint.)

14. **Proof.**
15. **Proof.**

16. **Remark 7.** See Rudin [3, Theorem 2.11, 2.14-15 and Theorem 1.24].

Theorem 8 (Closed Graph Theorem). Let L be a linear map between two F-spaces (complete translation-invariant metric vector spaces), then the graph of L is closed iff L is continuous.

The corresponding open mapping theorem has a setting in F-spaces.

17. **Proof.** (a) It’s easy to see $\|f\|_\infty$ dominates the norm of multiplication operator $M_f(\cdot) = f$.

(b)

18. **Proof.** Given $x \in X$, for each $\epsilon > 0$, there exists $y = y(x, \epsilon) \in E$ such that $\|y - x\|_X < \frac{\epsilon}{M}$, then

$$\|\Lambda_n x - \Lambda_m x\|_Y \leq \|\Lambda_n x - \Lambda_n y\|_Y + \|\Lambda_n y - \Lambda_m y\|_Y + \|\Lambda_m y - \Lambda m y\|_Y \leq 2M \frac{\epsilon}{M} + \|\Lambda_n y - \Lambda_m y\|_Y$$

The last term is less than ϵ if $n, m > N$ for some $N = N(y) = N(x, \epsilon)$. So $\{\Lambda_n x\}$ is Cauchy in the Banach space Y.

19. **Proof.** (a) We try to apply Exercise 18 with $X = Y = C(T), \Lambda_n f = \frac{s_n(f)}{\log n}$. Then we see Λ_n converges to 0 pointwisely on the dense set $E = P(T)$, the set of all trigonometric polynomials.

It remains to show that Λ_n is uniformly bounded which is due to

$$(\log n)\|\Lambda_n\| = \int_0^\pi \frac{\sin((n + \frac{1}{2})x)}{\sin x/2} dx \leq \frac{2}{1 - \frac{\pi^2}{12}} \int_0^\pi \frac{\sin((n + \frac{1}{2})x)}{x} dx \leq C \sum_{k=1}^n \frac{1}{k \pi}.$$

(b) Use the Banach-Steinhaus Theorem in exactly the same way as Section 5.11 with the change of the linear functionals to $\Lambda_n f = \frac{1}{\lambda_n} s_n(f; 0)$. Note that $\|\Lambda_n\| = \|D_n\|_1/\lambda_n$. Note that

$$\frac{\|D_n\|_1}{\lambda_n} \geq \frac{4}{\pi^2|\lambda_n|} \sum_{k=1}^n \frac{1}{k} \geq \frac{4}{\pi^2|\lambda_n|} (\ln(n) + \gamma) = \frac{4}{\pi^2} \frac{\ln(n)}{|\lambda_n|} + \frac{\gamma}{|\lambda_n|} \to \infty,$$

since you are given $\frac{\lambda_n}{\log(n)} \to 0$. Here γ is the Euler Mascheroni constant.

So actually, it’s unbounded for all f in some dense G_δ set in $C(T)$.

20. **Proof.** (a) No, since \mathbb{Q} is not a G_δ set, but the set of points A at which a sequence of positive continuous functions is unbounded is $\cap_m \cup_n \{x : f_n(x) > m\}$ which is a G_δ set. (If $\mathbb{Q} = \cap_n V_n$, V_n open, then $\mathbb{R} = \{r_m\} \cup (\cup_n V_n^c)$ which is of first category. A contradiction!)

(b) Let $\mathbb{Q} = \{q_k\}$, we consider

$$f_n(x) = \min_{1 \leq k \leq n} \{k + n|x - q_k|\} \geq 1.$$
Then for each $q_m \in \mathbb{Q}$, we see for $n \geq m$, $f_n(q_m) \leq m + n|q_m - q_m| = m$, so $\{f_n(q_m)\}$ is bounded. On the other hand, if $x \in \mathbb{Q}^c$, then given $M > 0$, there is some $N = N(M) > M$ such that $n|x - q_i| > M$ for all $1 \leq i \leq M$ provided $n > N$. Therefore,

$$f_n(x) = \min_{1 \leq k \leq n} \{k + n|x - q_k|\} > M,$$

that is, $f_n(x) \to \infty$.

(c) Irrational part is answered in (b). The answer is affirmative for rational part:

Let $A_n = \cup_{i=1}^n (q_i - \epsilon_n, q_i + \epsilon_n)$, where $0 < \epsilon_n = \frac{1}{4} \min\{|q_i - q_j|: 1 \leq i < j \leq n + 1\} \setminus 0$.

Take f_n to be the zig-zag continuous function that equals to n at q_1, \ldots, q_n and 0 outside A_n. Then for every $x \in \mathbb{Q}$, $f_n(x) = n \to \infty$. On the other hand, given $x \in \mathbb{Q}^c$, suppose for some $n_0 \in \mathbb{N}$, $x \in A_n$ for all $n \geq n_0$. Then for some fixed $1 \leq i \leq n_0$, $x \in (q_i - \epsilon_{n_0}, q_i + \epsilon_{n_0})$. Since $x \in A_{n_0+1}$, by construction of ϵ_n, $x \in (q_i - \epsilon_{n_0+1}, q_i + \epsilon_{n_0+1})$. Inductively, we know $x \in (q_i - \epsilon_n, q_i + \epsilon_n)$ for all $n \geq n_0$, and hence $x = q_i$ since $\epsilon_n \to 0$. This contradicts to $x \in \mathbb{Q}^c$.

So for every $M \in \mathbb{N}$, there is some $m > M$ such that $x \not\in A_m$, that is, $f_m(x) = 0$, and therefore $f_n(x) \not\to \infty$.

22. Proof.

References

