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Abstract

This paper examines the choice of pricing policy (posted pricing or negotiation) toward end
customers in a supply chain. Many retailers actively decide whether or not to encourage negoti-
ation on the shop floor. Of course, the retailer’s pricing policy influences not only the retailer’s
profit, but also the profits of the manufacturers who sell through the retailer. However, little is
known on the forces that shape the pricing policy when two self-interested parties interact in a
supply chain. We consider two alternative models depending on who has the power to decide the
pricing policy: the manufacturer or the retailer. We find that an increase in the wholesale price
weakens the retailer’s ability to price discriminate through negotiation. Therefore, the retailer
prefers negotiation at lower wholesale prices, and posted pricing at higher wholesale prices. We
also find that whenever the retailer prefers negotiation, the manufacturer does too. Therefore,
the retailer’s discretion over the pricing policy causes friction only when the retailer wants to
use posted pricing, while the manufacturer wishes the retailer to use negotiation. We show that
such friction arises only when product availability or the cost of negotiation is moderate. In this
case, we show that the manufacturer may offer a substantial discount to persuade the retailer to
negotiate. Surprisingly, in this region of friction, a decrease in the supply chain’s capacity or an
increase in negotiation costs (both of which are typically considered as worsening the retailer’s
business environment) translates into higher profit for the retailer.

Keywords: supply chain management; pricing; negotiation; retailing.
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1. Introduction

When it comes to deciding whether or not to allow negotiation on the shop floor, retailers do

not necessarily default to the more commonly adopted format in their category. For example, in

the automotive industry, where haggling is more or less the norm, Fiat and Scion dealers have

nonetheless committed to selling at posted prices. Similarly, Crystal-Pierz, a chain of dealers

selling power boats, advertises its “no haggle, no hassle” policy as a distinguishing feature. Some

jewelers such as Tourneau (which operates both retail and online stores) and, an online jewelry

store, Melrose Jeweler (www.melrose.com), sell their luxury watches (e.g., Rolex) at posted prices

even though negotiation is so common in jewelry that even some online stores allow their sales

people to negotiate with customers over the phone. Furthermore, these decisions are hardly ever

cast in stone and retailers revise their policies over time. For example, it was reported that a Home

Depot store adopted an “entrepreneurial spirit” campaign, which empowered their sales people to

make deals with haggle-prone customers (Richtel, 2008). Similarly, customers have been able to

negotiate successfully at other primarily take-it-or-leave-it pricing stores such as Best Buy, Polo

Ralph Lauren, and Nordstrom (Richtel, 2008; The Economist, 2009). Conversely, Lithia Motors,

the eighth-largest auto dealer chain in the U.S., selling vehicles from all major manufacturers and

brands (ranging from Porsche to General Motors to Toyota), announced in September 2007 that it

would convert all of its 108 stores to haggle-free pricing within the next three years (Welch, 2007).

Of course, a retailer’s pricing policy for a product – negotiation versus posted pricing – influences

the manufacturer’s bottom line as well. Therefore, it is not surprising that manufacturers attempt

to influence the retailer’s pricing policy. For example, no-haggle policies adopted by Scion and

Fiat dealers have been practically imposed by Toyota (the owner of the Scion brand) and Chrysler

(the US partner of Fiat). In fact, according to Laura Soave, the head of Fiat’s American branch,

dealers are asked not to offer deals below the manufacturer-suggested sticker price to eliminate

the chance to haggle (LaBarre, 2011). Likewise, it appears that the boat dealer Crystal-Pierz’s no

haggle policy is driven by the manufacturer of Tracker boats, who insists that their products be

sold at catalog prices.1

These examples establish that many retailers make a non-trivial choice between negotiation and

posted pricing, and manufacturers have a stake in that choice. Motivated by these observations,

we analyze which pricing policy emerges when there are two self-interested parties in the supply

chain – the retailer and the manufacturer. To that end, we use a model that accommodates several

features critical to the retailer’s choice between negotiation and posted pricing, for example, the

1Sources: http://www.trackerboats.com/about/no-hassle-pricing.cfm, http://www.crystalpierz.com/no-haggle-
no-hassle.htm
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price discrimination opportunities afforded to the retailer by the use of negotiation, the costs of

negotiation incurred by the retailer and consumers, the supply chain capacity of the product, and

the manufacturer’s ability to set the stage through its wholesale price. In the context of this model,

we answer the following questions. What circumstances induce the retailer to favor posted pricing

over negotiation and vice versa? Which pricing policy does the manufacturer prefer the retailer to

use? When are the manufacturer and the retailer in conflict with regard to the choice of pricing

policy? When a conflict exits, can the manufacturer utilize the terms of trade, for example, a simple

and practical lever like the wholesale price, to induce the retailer to implement the manufacturer’s

desired pricing policy?

With regard to the retailer’s preference, we find that an increase in wholesale price weakens the

retailer’s ability to price discriminate among customers through negotiation. Therefore, everything

else being equal, negotiation dominates posted pricing at lower wholesale prices, and the opposite

is true at higher wholesale prices. In addition, as intuition would suggest, the retailer prefers

negotiation when the supply chain capacity is sufficiently high (i.e., when there is plenty of the

product to go around) or the cost of negotiation is sufficiently low.

As for the manufacturer, we find that whenever the retailer gains more from using negotiation,

the manufacturer also earns more from negotiation. Therefore, when the manufacturer and the

retailer are in conflict, it is because the retailer wants to use posted pricing, but the manufacturer

prefers the retailer to use negotiation. In this circumstance, the manufacturer will have to choose

between two alternatives: either substantially discount the wholesale price so that the retailer opts

for negotiation (an outcome which we refer to as reconciliatory negotiation), or force the retailer to

switch to posted pricing with a higher wholesale price.

The cost of negotiation and supply chain capacity critically affect whether the retailer and the

manufacturer will find themselves in conflict over pricing policy applied to end consumers. Specif-

ically, when supply chain capacity is high or the cost of negotiation is low, both the manufacturer

and the retailer want negotiation to be the pricing policy toward end customers. Hence, the supply

chain settles into negotiation. Likewise, when the supply chain capacity is low or the cost of nego-

tiation is high, the supply chain naturally settles into posted pricing. However, when the supply

chain capacity or the cost of negotiation is moderate, the incentives of the manufacturer and the

retailer are no longer aligned. This region is where the reconciliatory negotiation arises and the

manufacturer sacrifices some of its margin to ensure that the retailer uses negotiation. It is in

this region that counter-intuitive phenomena occur. For example, an increase in negotiation costs

or a decrease in capacity could translate into higher profits for the retailer, because the retailer’s

discretion over the pricing policy forces the manufacturer to offer a substantially lower wholesale

price.
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The rest of the paper is organized as follows. We position our paper with respect to the earlier

literature in Section 2. In Section 3 we describe the model and present the preliminary results.

Section 4 provides the analysis and results for the discretionary retailer model, in which the retailer

is the party that chooses the pricing policy. For a brief comparison, in Section 5 we present the

results for the manufacturer leadership model, in which the manufacturer is able to dictate the

retailer’s pricing policy toward end consumers. Section 6 concludes the paper. All proofs appear

in the Appendix.

2. Literature Review

There are several papers that examine the trade-off between posted pricing and negotiation from

the perspective of a single retailer. Riley and Zeckhauser (1983) show that, when the seller incurs

costs to bring new customers, posted pricing is better than negotiation. Wang (1995) and Arnold

and Lippman (1998) compare the profits of posted pricing and negotiation when the retailer sells

one object, and find that bargaining is always preferable to posted pricing if the retailer’s cost

of negotiation or the expected bargaining power of buyers is sufficiently low. Roth, Woratschek

and Pastowski (2006) find that the retailer is more likely to adopt negotiation if the product is

customizable. A number of papers consider the same question – posted pricing versus negotiation

– but in the presence of competing retailers. Bester (1993) considers competing retailers, all of

whom collectively use either posted pricing or negotiation and characterizes the equilibrium under

each pricing policy. Adachi (1999) considers the pricing policies of two competing retailers and

finds that both retailers will use the same pricing policy in equilibrium. On the other hand, by

allowing the market to consist of both bargainers and non-bargainers, Desai and Purohit (2004)

show that both posted pricing and negotiation can coexist in equilibrium. In addition, they show

that two types of prisoners’ dilemma can occur: Even though both retailers would be better off by

committing to posted pricing, both may use negotiation in equilibrium, and vice versa. In contrast

to previous work, our paper examines the retailer’s choice of pricing policy in a supply chain where

the self-interested manufacturer can influence the retailer’s choice.

In our model, when the retailer adopts negotiation, a customer will buy at a transaction price

according to the Generalized Nash Bargaining Solution (GNBS), which has been widely used in

modeling the outcome of negotiation between the retailer and customer. For example, among the

aforementioned papers that study the choice between posted pricing and negotiation, Bester (1993),

Wang (1995), Arnold and Lippman (1998), Desai and Purohit (2006), and Roth, Woratschek and

Pastowski (2006) all use GNBS to model the negotiation outcome. When using negotiation, the

retailer in our model must choose a cut-off price, below which the product will not be sold. The
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transaction price is then determined by the cut-off price, the individual customer’s valuation, each

party’s relative bargaining power, and the costs of negotiation incurred by both parties.

Our work is also related to the stream of research on trade promotions, i.e., wholesale price

discounts that the manufacturer offers to induce the retailer to lower its selling price. For example,

Lal, Little and Villas-Boas (1996) consider a model where two identical manufacturers sell through

a single retailer. Their customer population consists of three customers: one switcher and two

loyals. In this model, trade promotions exist because the manufacturers compete for the switcher.

Dreze and Bell (2001) consider a single-retailer, single-manufacturer setting. They compare the

effects of two different contractual arrangements for trade promotions: wholesale price discounts

versus rebates paid to the retailer on units sold to the end consumer. Both in our work and the

work on trade promotions, the manufacturer uses the wholesale price as a lever to influence the

retailer’s decision making. However, in the trade promotion literature, the retailer is assumed to use

a posted pricing policy, while in our work the wholesale price affects the retailer’s choice between

posted pricing and negotiation.

There are several recent papers that analyze negotiation in the context of supply chain manage-

ment. These include Dukes and Gal-Or (2003), Iyer and Villas-Boas (2003), Wu (2004), Gurnani

and Shi (2006), Lovejoy (2007), and Nagarajan and Bassok (2008). For a review on cooperative

bargaining in supply chains, see Nagarajan and Sosic (2008). Most of this work models negotiation

between a supplier(s) and a buyer(s) who then meets the end customer demand by selling at a

posted price. In contrast, we examine the sales format choice of the retailer, who may use posted

pricing or negotiation when selling to the end customers, and we analyze how this choice can be

influenced by the manufacturer whose profit also depends on the retailer’s pricing policy.

3. Model Description and Preliminaries

We consider a supply chain comprised of one manufacturer and one retailer where the manufacturer

produces a product at a unit cost c and sells at a unit wholesale price, w ≥ c. After the manufacturer

determines the wholesale price, the supply chain commits to using one of two pricing policies toward

end customers: posted pricing or negotiation. Under posted pricing, all customers who purchase

will pay the same take-it-or-leave-it price. On the other hand, under negotiation, customers will

pay individually negotiated prices. We consider two alternative models: one in which the retailer

has discretion over the pricing policy and the other in which the manufacturer has the power to

dictate the retailer’s pricing policy.

After the pricing policy is determined, the retailer purchases from the manufacturer. However,

the retailer’s purchase quantity cannot exceed Q, which we refer to as the (supply chain) capacity.
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The capacity, Q, determines the product’s availability and admits multiple interpretations. For

example, it could arise from the manufacturer’s production capacity, or the retailer’s storage space

or working capital constraints, or a rationing policy imposed by the manufacturer.

We consider an infinitesimally divisible consumer population in which the consumers are het-

erogeneous in their valuation of the item. Let a be the size of the consumer population and

F (x) := 1 − F (x) represent the fraction of the consumers that value the product at x or more.

Then, aF (x) can be interpreted as the portion of the consumers with valuation x or higher. We

refer to F (x) as the valuation distribution and denote its density by f(x). All of the results hold

under the following assumption on the valuation distribution, F (·).

(A) F (·) has an increasing failure rate (i.e., f(x)

F (x)
is increasing in x), and its density f(·) is twice

differentiable and satisfies the following condition:

f ′(x)
(
2f ′(x)F (x) + f2(x)

)
− f ′′(x)f(x)F (x) ≥ 0. (1)

As we discuss in more detail below, Assumption (A) allows a wide range of valuation distribu-

tions. The assumption ensures that both the retailer’s and manufacturer’s profit functions are

well-behaved.2

Before we present our model where the choice of pricing policy is endogenous, we first examine

the supply chain under posted pricing (in Section 3.1) and under negotiation (in Section 3.2).

3.1 Supply chain under posted pricing

Suppose the retailer uses posted pricing and picks the posted price p. Then only customers with

valuations p or higher will buy the product. Thus, the aggregate demand at price p is given by

D(p) = aF (p). Assumption (A) allows a wide range of valuation distributions that induce many

commonly used demand functions, including linear, log-linear, and logit. Table 1 lists several

specific examples of the valuation distributions and their corresponding demand functions, covered

by Assumption (A).

Given posted price p, wholesale price w, and supply chain capacity Q, the retailer’s and manu-

facturer’s profits are:

ΠRP(p, w,Q) = (p− w) min{D(p), Q} = (p− w) min{aF (p), Q}, and (2)

ΠMP(w, p,Q) = (w − c) min{D(p), Q} = (w − c) min{aF (p), Q}. (3)

Define pu(w) as the posted price that optimizes the retailer’s profit when the supply chain

capacity is not restricted, i.e., pu(w) = arg maxp ΠRP(p, w,Q) with Q ≥ a. For given capacity Q,

2In particular, equation (1) guarantees that the retailer’s best responses are increasing and convex with respect
to the wholesale price under both pricing policies.
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Valuation Distribution F (p) Aggregate Demand D(p)

Uniform[0, ab ]: F (p) = pb
a a− bp (linear demand)

Exponential(λ): F (p) = 1− e−λp ae−λp (log-linear demand)

Weibull(α,β): F (p) = 1− e−( p
β

)α
ae
−( p

β
)α

Difference of two Gumbel r.v.’s (utilities of buying and not buying)

with scale parameter 1 and means α and 0: F (p) = 1
1+eα−p

aeα−p

1+eα−p (logit demand)

Table 1: Examples of valuation distributions and corresponding aggregate demand functions.

let p(Q) be the market-clearing price at which demand equals capacity: D(p̄(Q)) = Q. Notice that

p̄(Q) does not exist when capacity Q is sufficiently high.3 Note also that the retailer will not set the

price below p(Q). Had the retailer set a price below p̄(Q), the retailer could increase the per-unit

profit margin without changing the quantity sold. A standard argument shows that the retailer

chooses either pu(w) or p(Q), whichever is larger. Hence, given a wholesale price w and capacity

Q, the retailer’s optimal posted price, denoted by p∗(w,Q), is max{pu(w), p(Q)}.

Define the market-clearing wholesale price, denoted by wP(Q), as the wholesale price at which

the retailer is indifferent between pu(w) and p(Q), that is:4

pu(wP(Q)) = p(Q). (4)

Notice the significance of wP(Q). For any w ≤ wP(Q), the retailer’s optimal posted price, p∗(w,Q),

is exactly the market-clearing price, p(Q) (since lowering the posted price any further will not

increase the sales quantity). On the other hand, if the wholesale price w exceeds the market-clearing

wholesale price, wP(Q), then it is not optimal for the retailer to sell out the capacity Q. In this case,

the retailer’s optimal posted price, p∗(w,Q), is pu(w), the optimal price in a supply chain without

a capacity constraint. In summary, wP(Q) is the highest wholesale price at which the retailer finds

it optimal to clear the market. Thus, given wholesale price w, the retailer’s induced profit function,

that is, the retailer’s profit function following the best response p∗(w,Q) = max{pu(w), p̄(Q)}, is:

ΠRP(p∗(w,Q), w,Q)=

{
ΠRP(p̄(Q), w,Q) = (p̄(Q)− w)Q for c ≤ w ≤ wP(Q),

ΠRP(pu(w), w,Q) = a(pu(w)− w)F (pu(w)) for w ≥ max{c, wP(Q)}.
(5)

Consider now the manufacturer’s wholesale price decision: Anticipating the retailer’s response,

the manufacturer’s profit under posted pricing is:

ΠMP(w, p∗(w,Q), Q) =

{
(w − c)Q for c ≤ w ≤ wP(Q),

a(w − c)F (pu(w)) for w ≥ max{c, wP(Q)}.
(6)

3When the supply chain capacity, Q is so large that p̄(Q) does not exist, we use the convention that p(Q) = −∞.
4If Q is sufficiently large, it may not be possible for the manufacturer to profitably induce the retailer to sell Q

units. In other words, there may not exist wP(Q) > c for sufficiently large Q, in which case we follow the convention
of setting wP(Q) = −∞.
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The manufacturer chooses the wholesale price w to maximize ΠMP(w, p∗(w,Q), Q). To this

end, let wu
P

denote the manufacturer’s optimal wholesale price in a supply chain without capacity

restrictions, i.e., wu
P

= arg maxw ΠMP(w, p∗(w,Q), Q) when Q ≥ a. Without a capacity constraint,

Q, the manufacturer will choose wu
P
. If the wholesale price wu

P
induces the retailer to sell less than

the capacity Q, then wu
P

must be the optimal wholesale price for the manufacturer (as if there is

no constraint on capacity). On the other hand, if the wholesale price wu
P

induces the retailer to

sell out Q units, then it is best for the manufacturer to set the wholesale price to wP(Q) since it

is the largest wholesale price that induces the retailer to sell out the capacity. These observations

are formalized in Proposition 1.

Proposition 1. Consider the supply chain under posted pricing. The manufacturer’s optimal

wholesale price is w∗
P
(Q) = max{wP(Q), wu

P
}.

3.2 Supply chain under negotiation

Suppose the retailer in the supply chain uses negotiation. Our negotiation outcome follows gener-

alized Nash bargaining solution (GNBS), which has been used to model the outcome of negotiation

between a customer and the retailer (e.g., Bester, 1993; Desai and Purohit, 2004). Under GNBS,

the total surplus is split between the two parties and its allocation to each depends on several

factors: cost of negotiation, relative bargaining power, and disagreement payoffs (that is, the payoff

to each party when they fail to reach an agreement).

Negotiation takes time and effort on the part of both the retailer and the customer as each

party learns about the price at which the other party is willing to buy or sell. For example, Welch

(2007) reports that negotiation increases the need for additional sales managers at a car dealership,

each of whom makes as much as $150,000 per year in salary and compensation. The same article

also reports that, compared to dealers using haggle-free pricing, dealers using negotiation incur

an additional $300 in per-car advertisement costs. Customers also incur costs of negotiation. On

average, customers spend about four and a half hours to close a deal when purchasing a car (Welch,

2007). The time spent and effort exerted by the customer and the retailer are captured in the form

of negotiation costs in our model. Let cr and cb denote the cost of negotiation incurred by the

retailer and customer, respectively.

Allocation of the surplus to each party also depends on their relative bargaining power. Fol-

lowing GNBS, we model the relative bargaining power by parameter β ∈ (0, 1). Let β be the

customer’s relative bargaining power (thus, 1 − β is the retailer’s bargaining power) so that as β

approaches 1, customers have all the bargaining power. Here we assume β to be the same across all

customers. If we assumed an individual customer’s β to be drawn from a probability distribution
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(i.e., allowing consumers to have different bargaining power), all our results would continue to hold

after replacing β with its expected value.

An important construct in GNBS is each party’s disagreement payoff as, at equilibrium, each

party receives a disagreement payoff plus a portion of the remaining surplus according to their

bargaining power. The customer’s disagreement payoff is equal to the individual’s utility of not

purchasing, which is normalized to zero in our model. As for the retailer, let pmin be the disagree-

ment payoff. Only customers whose valuations are high enough to cover the retailer’s disagreement

payoff will buy under GNBS, that is the customers with valuation r such that r− cb ≥ pmin. As the

disagreement payoff increases, the retailer will sell to fewer customers, but at higher prices. In our

model, we allow the retailer to choose its disagreement payoff, pmin, which is equivalent to choosing

the range of customers to be served. Similar assumptions have been made by Wang (1995) and

Arnold and Lippman (1998). A special case of our model is pmin = w+cr, in which case the retailer

must sell to all customers who will pay at least the retailer’s cost.

Once the retailer chooses its disagreement payoff, pmin, GNBS stipulates that only the customers

with valuation pmin + cb and above will buy the item. If the final price is pN, a customer with

valuation r will obtain a surplus of r−pN−cb; the retailer’s (extra) surplus beyond its disagreement

payoff pmin is pN − pmin. Following the GNBS (Muthoo, 1999), a consumer with valuation r ≥

pmin + cb and a retailer with the cut-off price pmin ≥ w + cr will agree on a transaction price

p∗
N

(pmin, r) that maximizes the following objective function:

max
pN∈[pmin,r]

(r − pN − cb)β (pN − pmin)1−β. (7)

Note the significance of β, which represents the relative bargaining power of the consumer. If β

approaches 1, any consumer with valuation pmin + cb and above has all the bargaining power and

extracts the entire surplus by paying the final price p∗
N

(pmin, r) = pmin. On the other hand, if β

approaches 0, the retailer extracts the entire surplus by charging p∗
N

(pmin, r) = r− cb to a consumer

with valuation r. For any β ∈ (0, 1), the final price, p∗
N

(pmin, r), splits the surplus as follows:

p∗
N

(pmin, r) = arg max
pN

{
(r − pN − cb)β(pN − pmin)1−β

}
= (1− β)(r − cb) + βpmin. (8)

Equation (8) can be rewritten as p∗
N

(pmin, r) = pmin + (1 − β)(r − cb − pmin). The second term,

(1 − β)(r − cb − pmin), represents the price premium that a customer pays on top of the retailer’s

disagreement payoff and captures the price discrimination benefits enabled by negotiation: The

higher the customer’s valuation, r, the higher the price premium. By choosing a higher pmin, the

retailer can increase the price paid by all customers who purchase, but the price discrimination

benefits and the sales volume will decrease.
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Given the retailer’s disagreement payoff pmin, the lowest valuation among the customers who

buy is pmin + cb, which we denote by qmin and refer to as the cut-off valuation,

qmin := pmin + cb. (9)

Thus, choosing pmin is equivalent to choosing qmin, and (8) can be rewritten as a function of qmin:

p∗
N

(qmin − cb, r) = (1− β)r + βqmin − cb. (10)

Given a cut-off valuation qmin, all customers with valuation qmin and above buy, yielding a total

demand of aF (qmin). Notice that the seller will never choose qmin below the market clearing price

p(Q). If qmin were below p(Q), the retailer could always increase the cut-off valuation slightly,

which would increase the transaction price p∗
N

(qmin − cb, r) without changing the quantity sold,

thereby improving the retailer’s total profit. In addition, the retailer must choose the disagreement

payoff, pmin, so that it covers at least the wholesale price plus the retailer’s cost of negotiation:

pmin ≥ w + cr. Consequently, the cut-off valuation qmin must be at least as large as w + cr + cb.

For any qmin ≥ max[w + cr + cb, p̄(Q)], the retailer’s and manufacturer’s profits are given by:5

ΠRN(qmin, w,Q) = a

∫ ∞
qmin

[(p∗
N

(qmin − cb, x)− w − cr)] f(x)dx

= a

∫ ∞
qmin

[(1− β)x+ βqmin − w − cr − cb] f(x)dx, and (11)

ΠMN(w, qmin, Q) = (w − c)aF (qmin). (12)

Define qumin(w) as the cut-off valuation that optimizes the retailer’s profit when the supply

chain capacity is not restricted, i.e., qumin(w) = arg maxqmin ΠRN(qmin, w,Q) for Q ≥ a. The retailer

sets the cut-off valuation equal to either qumin(w) or p(Q), whichever is larger. Hence, given a

wholesale price w and capacity Q, the retailer’s optimal cut-off valuation, denoted by q∗min(w,Q),

is max{qumin(w), p(Q)}. As in the case of posted pricing, define the market-clearing wholesale price,

denoted by wN(Q), as the wholesale price at which the retailer is indifferent between qumin(w) and

p(Q), that is:

qumin(wN(Q)) = p(Q). (13)

The interpretation of the wholesale price wN(Q) is similar to that of its posted pricing counterpart

wP(Q): Under negotiation, wN(Q) is the highest wholesale price at which the retailer finds it optimal

5We include the capacity Q in the list of arguments for the functions ΠRN and ΠMN because the optimal values of
these functions will depend on Q. The dependence arises because the retailer’s optimal cut-off valuation qmin must
be at least as large as the market clearing price p(Q), which is of course a function of the capacity Q.
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to clear the market.6 Thus, given wholesale price w, the retailer’s induced profit function, that is,

the retailer’s profit function following the best response q∗min(w,Q) = max{qumin(w), p̄(Q)}, is:

ΠRN(q∗min(w,Q), w,Q) =

{
ΠRN(p̄(Q), w,Q) for c ≤ w ≤ wN(Q),

ΠRN(qumin(w), w,Q) for w ≥ max{c, wN(Q)}.
(14)

Consequently, the manufacturer’s profit under negotiation is:

ΠMN(w, q∗min(w,Q), Q) =

{
(w − c)Q for c ≤ w ≤ wN(Q),

(w − c)aF (qumin(w)) for w ≥ max{c, wN(Q)}.
(15)

Anticipating the retailer’s response, the manufacturer chooses the wholesale price w to maximize

ΠMN(w, q∗min(w,Q), Q). Let wu
N

denote the manufacturer’s optimal wholesale price in a supply chain

without any capacity restrictions, i.e., wu
N

= arg maxw ΠMN(w, q∗min(w,Q), Q) for Q ≥ a. Similar to

the case of posted pricing, the manufacturer chooses either the market-clearing wholesale price or

the wholesale price that will be chosen in the absence of a capacity constraint, as summarized in

Proposition 2:

Proposition 2. Consider the supply chain under negotiation. The manufacturer’s optimal whole-

sale price is w∗
N

(Q) = max{wN(Q), wu
N
}.

The next proposition illuminates how the manufacturer’s wholesale price and the ensuing cut-off

valuation of the retailer depend on the costs of negotiation borne by both parties. To that end,

define cT = cr + cb to be the total cost of negotiation.

Proposition 3. Consider the supply chain under negotiation. The manufacturer’s optimal whole-

sale price and the retailer’s cut-off valuation depend only on the total cost of negotiation, cT. That

is, for all (cr, cb) such that cr + cb = cT for some constant cT ≥ 0, w∗
N

(Q) and q∗min(w∗
N

(Q), Q)

remain the same.

To see the intuition behind Proposition 3, consider a negotiation between the retailer with the

cut-off valuation qmin and a customer with valuation r, resulting in a transaction price p∗
N

(qmin −

cb, r). The retailer’s margin is the transaction price, p∗
N

(qmin − cb, r), minus the wholesale price, w,

and the retailer’s cost of negotiation, cr. In addition, notice from equation (10) that the transaction

price, p∗
N

(qmin, r), is net of the customer’s cost of negotiation, cb, which implies that the retailer

absorbs the customer’s cost of negotiation as well. Thus, the retailer’s margin depends only on the

total cost of negotiation, not on how that cost is allocated between cb and cr.

6There may not exist wN(Q) > c for sufficiently large Q, in which case we follow the convention of setting
wN(Q) = −∞.
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Remark 1. Our discussion so far assumes that the customer’s negotiation cost does not depend

on his/her reservation price. However, one could envision a situation where a customer with a

higher valuation incurs a higher negotiation cost. All of our analyses and results go through

even in this setting. Suppose that the negotiation cost borne by the customer with valuation r

is cb(r) = cb0 + αr, 0 < α < 1. Then, the GNBS (as defined in equation (8)) now becomes

p∗
N

(pmin, r) = (1 − β)[(1 − α)r − cb0] + βpmin. After redefining qmin := pmin + cb0, all subsequent

results hold with cT now given by cr + cb0.

Remark 2. All our results and insights extend to the case where negotiation attracts customers

whose valuation for the product is lower than the valuation of those attracted by posted pricing.

For example, suppose that when negotiation is used, a customer’s valuation for the product, r, is

scaled down to ηr, where 0 < η < 1. All our results will hold after modifying the transaction price

so that p∗
N

(pmin, r) = (1− β)(ηr − cb) + βpmin.

Remark 3. Our negotiation model does not explicitly allow a list price from which the customers

can negotiate down. However, adding such a feature to our model will not change the qualitative

results and derived insights. If there exists an exogenously set list price, pe, (capturing perhaps

a quoted price from a competing retailer or a MSRP), this price will impose an upper bound on

the final transaction price. In particular, the final transaction price for a customer with valuation

r will be min{p∗
N

(pmin, r), pe}. Notice that, for customers whose valuation is below pe−βpmin
1−β +

cb, the transaction price will be p∗
N

(pmin, r) and these customers will not be affected by the list

price. On the other hand, customers with valuations exceeding pe−βpmin
1−β + cb will now pay pe.

Thus, negotiation still price discriminates based on customer valuation, but the revenue from high-

valuation customers is now curbed by the list price, pe. The list price will reduce the retailer’s

benefit from the negotiation, but we expect that our subsequent results will not change. In fact,

if the list price is chosen by the negotiating retailer, the retailer will set the list price as high as

possible so that it does not bind the benefit from negotiation, thus rendering the list price irrelevant.

However, if one were to embellish our model so that the size of the consumer population (denoted

by a) decreases in the announced list price, the retailer will face a new trade-off: a high list price

will be a less oppressive bound for a final transaction price, but will also reduce the size of the

market that the retailer serves. Such a role for the list price is beyond the scope of this paper.

3.3 Supply chain with endogenous pricing policy

Sections 3.1 and 3.2 examine the supply chain when the pricing policy is fixed. Those preliminaries

serve as building blocks for the model where the chain’s pricing policy is a strategic decision, which

we describe next. We consider two alternative models depending on who chooses the pricing policy.

In the discretionary retailer model, the manufacturer sets the wholesale price, followed by the
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retailer choosing the pricing policy and the associated price (posted price or cut-off valuation). In

the manufacturer leadership model, the manufacturer sets both the wholesale price and the pricing

policy. In response to the manufacturer’s decision, the retailer sets the associated price (posted

price or cut-off valuation).

Discretionary retailer model: Given the manufacturer’s wholesale price, w, the retailer’s

best response consists of the pricing policy and associated pricing decision: p∗(w,Q) for posted

pricing and q∗min(w,Q) for negotiation. Let IR be a binary variable that represents the retailer’s

decision on the pricing policy: IR = 1 if the retailer chooses posted pricing and IR = 0 if the

retailer chooses negotiation. Then, the retailer’s best response is either (IR = 1, p∗(w,Q)) or

(IR = 0, q∗min(w,Q)). For a given wholesale price w, the retailer solves the following problem:7

max
IR∈{0,1}

[IRΠRP(p∗(w,Q), w,Q) + (1− IR)ΠRN(q∗min(w,Q), w,Q)] . (16)

The manufacturer chooses its wholesale price anticipating the retailer’s best response. Let

I∗
R
(w,Q) denote the retailer’s optimal pricing policy for given w and Q. The manufacturer’s

problem is then:

max
w≥c

[I∗
R
(w,Q)ΠMP(w, p∗(w,Q), Q) + (1− I∗

R
(w,Q))ΠMN(w, q∗min(w,Q), Q)] . (17)

Manufacturer leadership model: Given the wholesale price, w, and the pricing policy cho-

sen by the manufacturer, the retailer responds by choosing the price: p∗(w,Q) if the manufacturer

chooses posted pricing and q∗min(w,Q) if the manufacturer chooses negotiation. Let IM be a binary

variable that represents the manufacturer’s decision on the pricing policy: IM = 1 if the manu-

facturer chooses posted pricing and IM = 0 if the manufacturer chooses negotiation. Then, the

manufacturer’s problem is:

max
w≥c,IM∈{0,1}

[IMΠMP(w, p∗(w,Q), Q) + (1− IM)ΠMN(w, q∗min(w,Q), Q)] . (18)

We first present the results and discussion on the discretionary retailer model, followed by the

manufacturer leadership model.

4. Discretionary Retailer Model

We first characterize the retailer’s best response, represented by the pricing policy and the associated

price, as a function of the manufacturer’s wholesale price w.

7One could consider a variation of the discretionary retailer model, where the retailer’s pricing policy choice
precedes the manufacturer’s wholesale price decision. We exclude this possibility as it is not a very credible sequence
of events: The retailer would have little reason to commit to a pricing policy before observing the wholesale price.
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Proposition 4. [Retailer’s best response] There exists a threshold wholesale price ŵR(Q) below

which the retailer prefers negotiation, and above which the retailer prefers posted pricing.8

Proposition 4 implies that once the retailer prefers posted pricing at a given wholesale price,

then it continues to prefer posted pricing at all higher wholesale prices. To understand why, we

first rewrite the retailer’s profit function when the retailer uses negotiation, represented by equation

(11), with the optimal cut-off valuation q∗min(w,Q):

ΠRN(q∗min(w,Q), w,Q) = a

∫ ∞
q∗min(w,Q)

[q∗min(w,Q)− w − cT + (1− β)(x− q∗min(w,Q))] f(x)dx

= aF (q∗min(w,Q))(q∗min(w,Q)−w −cT) + a(1− β)

∫ ∞
q∗min(w,Q)

(x− q∗min(w,Q))f(x)dx.

(19)

The first term in the equation above is equivalent to the expected profit under posted pricing when

the posted price is q∗min and the wholesale price is w + cT, leaving the retailer a unit margin of

q∗min − w − cT. This term is always less than the profit that the retailer could obtain if it used

posted pricing at the wholesale price w. Under negotiation, however, only the marginal customer

(with valuation q∗min) yields a margin precisely equal to q∗min − w − cT, and customers with higher

valuations yield higher margins. In fact, a customer with valuation x > q∗min pays an additional

(1− β)(x− q∗min) on top of what the marginal customer pays. This price premium collected under

negotiation is what the second term of equation (19) captures. If the price premium collected

under negotiation is sufficiently large, then the retailer would be better off under negotiation. Now

note that, as the wholesale price w increases, the cut-off valuation q∗min increases as well.9 Hence,

the price premium collected by the retailer diminishes at higher wholesale prices. This makes

negotiation less attractive at higher wholesale prices, as suggested by Proposition 4.

From equation (19), we observe that the benefits from negotiation depend on the valuation

distribution; in particular, the dispersion of the distribution. Observe that, if all customers have

the same willingness to pay, negotiation offers no value to the retailer. Hence, negotiation is more

common in big-ticket items such as vehicles and diamond rings not simply because customers have

high valuations for these products, but because customers have high degree of dispersion in their

valuations.

Taking the retailer’s best response into account, we now examine the manufacturer’s problem

of choosing the wholesale price. Proposition 5 examines the retailer’s and the manufacturer’s

preferences toward the pricing policy.

8Note that Proposition 4 includes two special cases: (i) The retailer prefers posted pricing for all feasible wholesale
prices w ≥ c and (ii) the retailer prefers negotiation for all feasible wholesale prices w ≥ c.

9This intuitive result is established by Lemma A.2(b) in the Appendix, which states that qumin(w) is increasing in
w and q∗min(w,Q) = max{qumin(w), p(Q)}.
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Proposition 5. For any wholesale price at which the retailer prefers negotiation (i.e., w ≤ ŵR(Q)),

the manufacturer also prefers negotiation.

One direct implication of Proposition 5 is that at the threshold wholesale price, ŵR(Q), which

makes the retailer indifferent, the manufacturer is better off if the retailer uses negotiation. Hence,

negotiation is the Pareto-optimal pricing policy when the wholesale price is ŵR(Q). Therefore, ap-

plying the Pareto-dominance criterion, the retailer chooses negotiation whenever w = ŵR(Q). Such

tie-breaking behavior on the part of the retailer can be easily enforced by choosing the wholesale

price ŵR − ε for arbitrarily small ε > 0 so that the retailer strictly prefers negotiation over posted

pricing.

Recall that the manufacturer’s profit is the margin (w − c) times the sales quantity. Hence,

Proposition 5 implies that, at the wholesale price where the retailer is indifferent between the two

pricing policies, the manufacturer wishes the retailer to use negotiation as it leads to a larger sales

quantity. When the wholesale price is slightly above ŵR(Q), the manufacturer will continue to

prefer that the retailer negotiates, but the retailer now prefers to use posted pricing. This implies

that there is a range of wholesale prices above ŵR(Q) where the manufacturer’s and the retailer’s

preferences conflict. As we will see, this conflict of interest will have a critical effect on the pricing

policy the supply chain eventually adopts.

Based on the structure of the best response established in Propositions 4 and 5, the manufac-

turer’s problem of selecting the wholesale price, stated in equation (17), can now be expressed as

follows:

Manufacturer’s Problem:

max

[
max

c≤w≤ŵR(Q)
ΠMN(w, q∗min(w,Q), Q) , sup

w>ŵR(Q)
ΠMP(w, p∗(w,Q), Q)

]
. (20)

With the retailer’s discretion in mind, the manufacturer determines a wholesale price to induce

either negotiation (i.e., w between c and ŵR(Q)) or posted pricing (i.e., w greater than ŵR(Q)).

Notice that the manufacturer’s wholesale price is driven by the trade-off between the unit profit

margin, w − c, and the sales volume: aF (p∗(w,Q)) under posted pricing or aF (q∗min(w,Q)) under

negotiation.

Because lower wholesale prices are needed to induce negotiation, it becomes clear that the

manufacturer will choose to induce negotiation by lowering the wholesale price only if negotiation

leads to a sufficiently high sales volume compared to posted pricing. Proposition 6 describes the

candidates for the manufacturer’s optimal wholesale price and the resulting equilibria.

Proposition 6. The manufacturer’s optimal wholesale price and the resultant equilibrium fall in

one of the following three regimes:
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(a) [Ordinary Negotiation] The manufacturer chooses the wholesale price w∗
N

(Q) and the retailer

uses negotiation with cut-off valuation q∗min(w∗
N

(Q), Q).

(b) [Reconciliatory Negotiation] The manufacturer chooses the wholesale price ŵR(Q) < w∗
N

(Q)

and the retailer uses negotiation with cut-off valuation q∗min(ŵR(Q), Q)

(c) [Posted Pricing] The manufacturer chooses the wholesale price w∗
P
(Q) and the retailer uses

posted pricing with price p∗(w∗
P
(Q), Q).

In the ordinary negotiation regime, the wholesale price and the cut-off valuation are the same

as those that would arise if the supply chain’s pricing policy toward consumers were exogenously

restricted to negotiation (analyzed in Section 3.2). Likewise, in the posted pricing regime, the

wholesale price and the posted price are the same as those when the supply chain’s pricing policy

toward consumers is exogenously restricted to posted pricing (analyzed in Section 3.1). Proposition

6(b), on the other hand, shows that there is a different type of negotiation equilibrium, which we

refer to as reconciliatory negotiation. This equilibrium is a consequence of the retailer’s discretion

over pricing policy. It arises when the manufacturer prefers the retailer to negotiate, but cannot

induce the retailer to do so at the wholesale price w∗
N

(Q), which is the wholesale price the manu-

facturer would pick if it could mandate that negotiation be used. Facing a discretionary retailer,

the manufacturer has to lower the wholesale price to ŵR(Q) to induce negotiation. In other words,

the manufacturer sacrifices some of the unit profit margin, in exchange for the higher sales volume

enabled by negotiation.

Which of these regimes will arise in equilibrium depends critically on the cost of negotiation.

Proposition 7 characterizes how the equilibrium changes with respect to the total cost of negotiation,

cT, when keeping everything else constant.

Proposition 7. There exist two thresholds, cT and cT, cT ≤ cT, such that the equilibrium pricing

policy is ordinary negotiation for cT < cT, reconciliatory negotiation for cT ∈ [cT, cT), and posted

pricing for cT ≥ cT.

The behavior described in Proposition 7 is illustrated in Figure 1. In this example, the supply

chain capacity Q equals 500, so that capacity never binds the sales quantity. When the total cost

of negotiation is sufficiently low (i.e., cT < cT, with cT ≈ 1.3 in Figure 1), negotiation is preferred

by both the retailer and the manufacturer. In such cases, the manufacturer can induce negotiation

without sacrificing its profit margin. In contrast, as cT increases, it becomes more costly for the

retailer to use negotiation. However, as long as cT is only moderately high, the manufacturer

still prefers a negotiating retailer because it leads to a high sales volume. This is exactly what

we observe in the middle region (cT ≤ cT < cT, from approximately 1.3 to 1.575 in Figure 1),
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where the manufacturer voluntarily reduces the wholesale price to induce negotiation, resulting in

a reconciliatory negotiation equilibrium. Finally, when cT becomes sufficiently large (i.e., cT ≥ cT,

beyond 1.575 in Figure 1), the manufacturer no longer wishes to induce negotiation, either because

the increase in sales volume does not make up for the necessary reduction in margin or because

negotiation simply leads to lower sales volume due to the high negotiation costs. Of course, the

specific values of the thresholds, cT and cT, depend on the valuation distribution of the product: The

more dispersed the distribution, the more attractive negotiation becomes. Hence, these threshold

values would increase.

One implication of Proposition 7 is that the manufacturer may want to offer different wholesale

prices to different retailers depending on the negotiation cost. The manufacturer can benefit from

offering discounted wholesale prices to retailers with moderate negotiation costs, but not to those

with high or low negotiation cost. Thus, heterogeneity in the negotiation costs of retailers may be

yet another reason why manufacturers want to price discriminate among retailers.
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Figure 1: The figure illustrates the sales quantity (left), the wholesale price and posted price or
cut-off valuation (center), and the manufacturer’s and retailer’s profits (right) in equilibrium. Here,
a = 500, β = 0.3, and c = 4, and we use logit demand with valuation distribution, F (x) = 1

1+e20−x .

Figure 1 demonstrates a surprising phenomenon: Under the reconciliatory negotiation regime,

the retailer’s profit and sales volume increase in the total cost of negotiation. In the regions where

negotiation is used, the wholesale price decreases as cT increases, implying that the manufacturer

is absorbing some of the increased cost of negotiation. This reduction in wholesale price becomes

more pronounced in the reconciliatory negotiation region. In fact, our analysis shows that, in the

reconciliatory negotiation regime, a unit increase in the total cost of negotiation triggers a wholesale

price reduction of more than one unit (see Lemma A.4(b) in Appendix A). In other words, the

manufacturer more than compensates the retailer for the increase in the total negotiation cost,

cT, so that negotiation remains as the chain’s pricing policy toward consumers. This generous
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reduction in wholesale price explains why the retailer’s profit and quantity sold increase in cT

under this regime.

Recall that the manufacturer’s preference between negotiation and posted pricing is linked to

the wholesale price and resultant sales volume. In particular, because negotiation is induced only at

lower wholesale prices, the manufacturer prefers that the retailer use negotiation only when it leads

to a significant increase in sales volume. If there is a limit on the supply chain’s capacity (hence,

the availability of the product), it can reduce the attractiveness of negotiation, thus posted pricing

is more likely to emerge as the pricing policy toward consumers. To illustrate this, consider Figures

2 and 3, which illustrate the same example shown in Figure 1, but with more restrictive capacities,

namely Q = 406 for Figure 2 and Q = 350 for Figure 3. As Proposition 7 predicts, even with

tighter capacity, equilibrium still moves from ordinary negotiation to reconciliatory negotiation to

posted pricing as the cost of negotiation increases. Nonetheless, the tight capacity manifests itself

in both figures. In Figure 2, the capacity binds the equilibrium sales volume in two disjoint regions

(cT between both 0.5 to 0.72 and 1.31 to 1.42); in Figure 3, the capacity binds the sales volume at

all levels of negotiation cost. Comparing Figures 1, 2, and 3, we notice that the range of negotiation

cost in which posted pricing is the supply chain’s pricing policy, expands as the capacity Q becomes

more restrictive: cT above 1.575 in Figure 1, above 1.42 in Figure 2, and above 1.215 in Figure

3.10 Proposition 8 formally characterizes the evolution of the supply chain’s pricing policy toward

consumers as a function of its capacity, keeping everything else constant.

Proposition 8. There exist two thresholds, Q and Q, 0 ≤ Q ≤ Q ≤ ∞, such that the equilibrium

pricing policy is posted pricing for Q < Q, reconciliatory negotiation for Q ∈ [Q,Q), and ordinary

negotiation for Q ≥ Q.

To explain the behavior described in Proposition 8, suppose that the equilibrium pricing policy

is ordinary negotiation. As this supply chain’s capacity decreases, the retailer will focus increasingly

on selling to customers with higher valuations, resulting in a high cut-off valuation, which reduces

the retailer’s additional revenue enabled by price discrimination. Hence, as capacity decreases,

posted pricing will become increasingly more attractive to the retailer. Given this preference of

the retailer, the manufacturer will want to keep negotiation alive by offering a deeply discounted

wholesale price, as long as the sales volume under negotiation is sufficiently higher than that under

posted pricing. However, once the capacity becomes even tighter and more likely to bind the sales

10In Figure 3, no matter what the equilibrium pricing policy is, the sales quantity is bounded by the supply chain
capacity. We should note, however, that at cT values where negotiation is the equilibrium, if the manufacturer
switched to posted pricing, the sales quantity would be lower than that obtained under negotiation. This is because
the manufacturer would have to charge a much higher wholesale price to induce posted pricing, thereby reducing the
sales quantity below capacity.
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Figure 2: The figure illustrates the sales quantity (left), the wholesale price and posted price or cut-
off valuation (center), and the manufacturer’s and retailer’s profits (right) in equilibrium. Here,
a = 500, β = 0.3, c = 4, Q = 406, and we assume logit demand with valuation distribution
F (x) = 1

1+e20−x .
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Figure 3: The figure illustrates the sales quantity (left), the wholesale price and posted price
or cut-off valuation (center), and the manufacturer’s and retailer’s profits (right) in equilibrium.
Here, a = 500, β = 0.3, c = 4, Q = 350 and we assume logit demand with valuation distribution
F (x) = 1

1+e20−x .

quantity, the manufacturer’s benefit from negotiation begins to lose steam. Hence, the manufacturer

charges a wholesale price that induces posted pricing.

The effect of supply chain capacity may explain why Lexus dealers are willing to negotiate the

LS series, but not willing to budge from the MSRP on the comparably priced SC series. In 2008,

Toyota sold 20,255 units of the LS series, but only 1,986 units of the SC series.11 To the extent that

the sales volume is a proxy for the supply chain capacity, these numbers indicate that the availability

of the SC series is more limited than that of the LS series. According to our results, the limited

availability could explain why Lexus dealers hardly negotiate on the price of the SC series. Prices of

11Source: http://pressroom.toyota.com/pr/tms/08-december-sales.aspx?ncid=12036.
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Toyota’s Prius around 2006 provide further anecdotal evidence. According to a CNN.com article,12

the availability of the Prius in the spring of 2006 was so tight that customers were paying more than

MSRP for used Priuses with low-mileage. Toyota’s effort to increase production capacity, along

with a lower vehicle demand during the recent economic crisis, made the Prius more available in

2009. Hence, the average transaction price of a Prius is now well below the MSRP,13 which indicates

that dealers are now giving more room to negotiate.

Conventional wisdom suggests that the retailer’s equilibrium profit will decrease as the capac-

ity decreases. This is true whether the equilibrium pricing policy is ordinary negotiation or posted

pricing. Surprisingly, this is not necessarily true under the reconciliatory negotiation equilibrium.

Observe from the right-most panel of Figure 4 that the retailer’s profit increases as capacity de-

creases in the reconciliatory negotiation regime. This is perplexing since, in this example, the

capacity is always exhausted in the equilibrium so the sales quantity will decrease as capacity de-

creases, but the retailer’s profit increases anyway. This seemingly counter-intuitive behavior can

be understood by recalling that the manufacturer offers discounted wholesale prices in this regime.

As capacity gets tighter, the retailer becomes more reluctant to use negotiation. The manufacturer

counters by offering progressively lower wholesale prices, which is why the retailer’s profit increases

as capacity decreases.
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Figure 4: The figure illustrates the sales quantity (left), the wholesale price (center), and the
retailer’s profit (right) in equilibrium. Here, a = 500, β = 0.6, c = 4, cT = 0.6, and we assume logit
demand with valuation distribution F (x) = 1

1+e20−x .

The monotonic behavior of the equilibrium pricing policy with respect to capacity Q and total

cost of negotiation cT gives rise to the following result, which characterizes switching curves that

separate different types of equilibria. Figure 5 illustrates three equilibrium regimes separated by

12Source: http://money.cnn.com/2006/11/06/autos/prius/ – “Wait time for Prius buyers diminishing. Shortage
of popular gas-electric cars eases while demand cools, report says.”

13Source: http://www.carsdirect.com.
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two switching curves, which are formally stated in Proposition 9.

Proposition 9. There exist two increasing switching curves, Q(cT) and Q(cT), Q(cT) ≤ Q(cT), such

that the equilibrium is posted pricing if Q < Q(cT), reconciliatory negotiation if Q(cT) ≤ Q < Q(cT),

and ordinary negotiation if Q ≥ Q(cT).
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Figure 5: The figure illustrates three types of equilibria: ordinary negotiation, reconciliatory ne-
gotiation and posted pricing. Here, a = 500, β = 0.6, c = 4, and we assume logit demand with
valuation distribution F (x) = 1

1+e20−x .

We now examine the effect of disparity in bargaining powers between the retailer and the cus-

tomer. Figure 6 shows how the equilibrium outcome changes as the customer’s relative bargaining

power, β, increases. The behavior of equilibrium is similar to the behavior with respect to the total

cost of negotiation, cT: As the customer’s bargaining power (β) increases, the supply chain’s pricing

policy toward consumers changes from ordinary negotiation to reconciliatory negotiation to posted

pricing. At sufficiently low values of β, the retailer is able to extract much of the customer surplus,

and the supply chain settles in ordinary negotiation. As β increases, the retailer’s ability to extract

customer surplus is hampered, making the retailer more reluctant to negotiate. The manufacturer,

on the other hand, is willing to reduce the wholesale price to keep negotiation alive, and the dis-

count is especially sharp at moderate values of β, resulting in reconciliatory negotiation. Once the

depth of the discount needed to induce negotiation becomes too large, the manufacturer gives up

on negotiation. The wholesale price then increases and posted pricing becomes the retailer’s pricing

policy toward consumers. Although we observed this behavior in all of our numerical examples,

the highly non-linear dependence of the transaction price (and profit functions) on β makes an

analytical proof difficult.

The ease with which customers can find out the invoice prices and MSRPs for vehicles is

making them more powerful bargainers. This may explain why some dealers like Lithia Motors are
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turning to posted pricing. It is rather ironic that as informed customers are becoming more eager

to negotiate, some dealers shun away from negotiation, which was the gold standard until recent

years.
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Figure 6: The figure illustrates the wholesale price and posted price or cut-off valuation (left) and
the manufacturer’s and the retailer’s profits (right) in equilibrium. Here, a = 500, c = 4, cT = 0.75,
Q = 400 and we assume logit demand with valuation distribution F (x) = 1

1+e20−x .

5. Manufacturer Leadership Model

In Section 4, we studied a supply chain where the retailer had discretion over pricing policy. We

now examine an alternative model in which the manufacturer dictates the supply chain’s pricing

policy toward consumers along with the wholesale price. The retailer then determines the optimal

price associated with the manufacturer-imposed pricing policy: p∗(w,Q) under posted pricing and

q∗min(w,Q) under negotiation. Examples of this type of relationship are the “no-haggle” pricing

policies imposed on Saturn and Scion dealers by GM and Toyota. The manufacturer’s problem in

this model, stated in equation (18), can be written as

Manufacturer’s Problem:

max

[
max
w≥c

ΠMN(w, q∗min(w,Q), Q) , max
w≥c

ΠMP(w, p∗(w,Q), Q)

]
. (21)

In this case, the choice of the wholesale price is simple. If the manufacturer imposes posted

pricing, it will choose w∗
P
(Q), which maximizes its profit under posted pricing. Likewise, the

manufacturer will choose w∗
N

(Q) when negotiation is imposed. The former leads to the ordinary

negotiation regime and the latter leads to the posted pricing regime. In the manufacturer leadership

model, the wholesale price that leads to the reconciliatory negotiation regime, ŵR(Q), will never

be deployed. Recall that under the reconciliatory negotiation regime, the manufacturer offers a
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discounted wholesale price due to the retailer’s discretion. In the absence of retailer’s discretion,

the manufacturer need not offer such a discount. Proposition 10 compares the equilibrium pricing

policy under two alternative leadership models.

Proposition 10. Given the cost of negotiation, cT, and supply chain capacity, Q:

(a) If posted pricing is the equilibrium in the manufacturer leadership model, it is also the equilibrium

in the discretionary retailer model.

(b) If ordinary negotiation is the equilibrium in the manufacturer leadership model, it is possible that

reconciliatory negotiation or posted pricing is the equilibrium in the discretionary retailer model.

Proposition 10(a) shows that a manufacturer who wishes to impose posted pricing can get its

wish even if the retailer has discretion over the pricing policy. On the other hand, a manufac-

turer who wishes to impose ordinary negotiation may end up with reconciliatory negotiation or

posted pricing when faced with a discretionary retailer. As shown in Propositions 7 and 8, when

the negotiation cost is low or the capacity is high, even the discretionary retailer chooses ordinary

negotiation and retailer discretion causes no friction. However, as the negotiation cost increases

and/or the capacity of the supply chain becomes tighter, the retailer’s discretion distorts the equi-

librium toward reconciliatory negotiation or posted pricing regime. At such levels of negotiation

cost and capacity, the manufacturer who wishes to impose ordinary negotiation has to settle for

reconciliatory negotiation or posted pricing in the presence of a discretionary retailer.

Our results suggest that a manufacturer who wishes to impose posted pricing need not imple-

ment any monitoring practices beyond setting an appropriate wholesale price. A practical implica-

tion is that manufacturers such as GM and Toyota may not have to exert extra effort to sustain the

no-haggle policies imposed on Saturn and Scion as long as the wholesale price is set high enough

to make the price premium obtained through the negotiation relatively small.

6. Conclusion

This paper studies the retailer’s pricing policy in a supply chain – posted pricing or negotiation. We

consider two alternative models of leadership: Either the retailer or the manufacturer determines

the pricing policy. Our analysis addresses a number of research questions surrounding the pricing

policy choice in a supply chain.

First, we analyze how the manufacturer’s wholesale price influences the retailer’s preference

between posted pricing and negotiation. We find that an increase in the wholesale price weakens

the retailer’s ability to price discriminate through negotiation. Therefore, everything else being

equal, negotiation dominates posted pricing at lower wholesale prices, and the opposite is true at
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higher wholesale prices. This suggests that, in the automotive industry, an increase in the wholesale

price of a given vehicle, when keeping everything else constant, is likely to popularize “haggle-free”

prices.

Second, we analyze which pricing policy the manufacturer prefers the retailer to use. We find

that whenever the manufacturer prefers posted pricing, the retailer also prefers posted pricing. One

implication is that, in a supply chain relationship like the one between Toyota and Scion dealers,

where Toyota requires that dealers use posted pricing, the manufacturer need not engage in costly

monitoring activities to enforce posted pricing as long as the wholesale price is high enough to make

the negotiation benefit small.

Third, we ask whether the manufacturer can achieve its desired pricing policy simply by setting

an appropriate wholesale price. More precisely, does the manufacturer give up any profits when

the retailer chooses the pricing policy? Our answer is yes, but only when the manufacturer prefers

negotiation, but the retailer does not. In this case, when the manufacturer cannot mandate the

retailer’s pricing policy toward consumers, the manufacturer either induces the retailer to use

negotiation by offering a substantially discounted wholesale price (reconciliatory negotiation) or

gives up negotiation and charges a high wholesale price to induce posted pricing. These are the

only instances that the manufacturer suffers a loss when it does not have power over pricing policy.

For all other cases, the supply chain profit and its allocations do not depend on who determines

the pricing policy. Specifically, when the cost of negotiation is low or the supply chain capacity

is large (both of which enhance the benefit from price discrimination), the manufacturer’s and

retailer’s interests are aligned to use negotiation. Likewise, when the cost of negotiation is high or

the capacity is low, both parties’ interests are aligned to use posted pricing. For a given product,

the capacity and the associated negotiation cost play an important role in determining the chain’s

pricing policy toward consumers. In light of this, our results support Best Buy’s and Home Depot’s

strategy that allows salespeople to negotiate the prices of select products. On a related note, based

on our findings, it is questionable whether Lithia Motors (who sells multiple brands of vehicles

ranging from KIA to Porsche) made the right move by switching all of its 108 stores to haggle-

free pricing. The rationale for Lithia’s decision must go beyond the scope of our model such as

competitive pressure (AutoNation advertising its haggle-free prices) and reputation.

Lastly, we analyze how the cost of negotiation and the supply chain capacity influence the type

of equilibrium. In particular, what are the settings for negotiation cost and capacity that will lead

to reconciliatory negotiation as an equilibrium outcome? We find that reconciliatory negotiation

arises when the capacity or the cost of negotiation is moderate. Thus, only when the capacity or

the cost of negotiation is moderate does the the manufacturer suffer a loss for not being able to

mandate the retailer’s pricing policy toward consumers. Surprisingly, in this region, an increase in
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negotiation costs or a decrease in capacity could translate to higher profits for the retailer who has

power to decide the pricing policy. This counter-intuitive phenomenon arises because the retailer’s

discretion over the pricing policy forces the manufacturer to lower the wholesale price so much that

the retailer’s profit margin (net of negotiation costs) increases.

We assumed in our analysis that the size of potential consumer population, denoted by a, does

not depend on the choice of the pricing policy at the retailer level. One could speculate that the size

of the population will be smaller under negotiation, maybe because customers who dislike hassles of

negotiation will switch to other sellers. Some of this effect is already captured in our model through

the cost of negotiation incurred by the customer. In any event, the size of the population simply

scales the profit functions without changing their fundamental properties. Therefore, regardless of

whether the consumer population is larger or smaller under negotiation, the equilibrium will likely

switch from negotiation to reconciliatory negotiation to posted pricing as the cost of negotiation

increases or the supply chain capacity decreases.

We use the generalized Nash bargaining solution to model the outcome of the negotiation. One

limitation of this model is that it ignores the presence of an announced price (e.g., sticker price),

which puts a limit on the final transaction price a customer pays. With an announced price, the

benefits from negotiation will be smaller, but we expect that our results regarding the three types

of equilibrium continue to hold as well as the transition of the equilibrium with respect to the

negotiation cost and supply chain capacity.

Another limitation of GNBS is its implicit assumption that the retailer’s and consumers’ valu-

ations are common knowledge. In the presence of information asymmetry, there may be instances

where the negotiation breaks down even when a consumer values the product more than the seller.

GNBS does not capture such situations. Nonetheless, GNBS appears to provide a good compro-

mise between fidelity and tractability. The reasons for this assessment are two-fold. First, while

information asymmetry can lead to cases where a deal breaks down, the transaction price that

arises under GNBS could still be a good proxy for the equilibrium price that would arise whenever

a deal is struck under information asymmetry: For example, Cramton (1992) considers a bargain-

ing game where parties make sequential offers after a strategically-chosen delay and constructs an

equilibrium such that the trade occurs at the price that would prevail if there were no information

asymmetry. Second, and perhaps more importantly, the equilibrium outcomes predicted by GNBS

received considerable support from behavioral research. If one wants to step away from GNBS to

look for alternative means that can capture information asymmetry, the remaining natural choice

would be a non-cooperative game-theoretic model of bargaining. However, there is sufficient ex-

perimental evidence to suggest that such non-cooperative solutions are no better than GNBS in
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predicting the outcomes of actual bargaining situations (see Chapter 4 in Kagel and Roth, 1995,

and Chapter 5 in Davis and Holt, 1992).

Our model assumes that no negotiation cost is incurred in those cases where the customer’s

reservation price is so low that the retailer and the customer do not trade. This is in keeping with

the Nash bargaining solution, which posits that the parties would never initiate negotiation if it

is bound to fail. Nonetheless, relaxing this assumption does not change our insights at all. To

examine this, we consider two modified versions of this model. In the first version of the model,

all customers negotiate with the retailer, no matter what their reservation price is, and the retailer

incurs its cost of negotiation, cr, for all customers. In the second version of the model, we assume

that the retailer negotiates only with customers whose reservation price r exceeds their negotiation

cost cb. Some of these customers will still end up not purchasing (those whose reservation price r

falls below qmin), but the retailer will incur the negotiation cost cr even for those customers. Under

both of these two models, our analytical and numerical results suggest that our insights regarding

the equilibrium behavior continue to hold.

Our model assumes that the supply chain commits to one pricing policy for a given product.

In some cases, two pricing policies could co-exist: selling at the posted price to some customers

while negotiating with other customers. This hybrid pricing policy is more pronounced when

there are multiple types of customers differentiated by their bargaining power. The supply chain’s

pricing policy choice (posted pricing, mixed, or negotiation) in the presence of the multi-segmented

consumer population merits further research.

We focused on a simple wholesale price contract in this paper. While it is difficult to incorporate

further contract terms into our analysis, our results and insights enable us to conjecture about how

the equilibrium might change as we change the contractual terms. We note that the retailer prefers

negotiation when the wholesale price is low enough that the retailer’s margin leaves enough room

to price discriminate among customers. Given this observation, we expect that any contractual

arrangement that lowers the retailer’s unit cost for the product will provide the retailer further

incentive to adopt negotiation. Consequently, we expect that enriching the contractual arrangement

to include quantity discounts or channel rebates will increase the likelihood of negotiation emerging

in equilibrium. On the other hand, we expect that any contractual change that increases the

retailer’s unit cost will induce the retailer to deploy posted pricing.

There are certain strategic considerations that we left out of our model. For example, some

retailers may opt for negotiation to accommodate bargain-hunting customer segments that emerge

in a tough economic climate. Other retailers may opt for posted pricing to carve a niche in a market

primarily dominated by retailers that haggle. Furthermore, if a manufacturer is selling through
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many dealers, the manufacturer may try to enforce posted pricing to maintain pricing consistency

across its dealer network. Our model does not explicitly consider the effect of these factors on the

choice between posted pricing and negotiation. However, we show that, even when none of these

more strategic concerns is present, supply chain conflict may arise in the choice of the pricing policy.

How that conflict is further shaped by the presence of strategic considerations such as competition,

bargain-hunting consumers or multiple sales channels is open to further research.
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Online Appendix

Pricing Policy in a Supply Chain: Negotiation or Posted Pricing

In the appendix, we present the proofs under the assumption that the valuation distribution

satisfies Assumption (A). We should note that when the valuation distribution is uniform, all of our

results can be reproduced with much shorter proofs by taking advantage of closed form expressions

that the uniform distribution enables.

In Section A of this appendix, we first prove Propositions 1 through 7 assuming that the supply

chain capacity is sufficiently large: Q ≥ a. The proofs for the case with tight capacity (Q < a)

are more involved since the sales volume can be bounded by the supply chain capacity at lower

wholesale prices. Section B of this appendix extends the results established in Section A to the

case with tight capacity case. The remaining results (Propositions 8–10) are also proved in Section

B.

Note that, if the supply chain capacity exceeds the size of consumer population a, any additional

capacity beyond a plays no role. For ease of exposition, we describe the case with Q ≥ a by

omitting Q and adding a superscript u to represent the unlimited capacity case. For instance,

define Πu
RP

(p, w) and Πu
MP

(w, p) to be the retailer’s and the manufacturer’s profits under posted

pricing when Q ≥ a, respectively:

Πu
RP

(p, w) := ΠRP(p, w,Q), and Πu
MP

(w, p) := ΠMP(w, p,Q) for Q ≥ a. (A-1)

Then, pu(w) and wu
P

(defined in Section 2.1) are given by:

pu(w) = arg max
p

Πu
RP

(p, w) = arg max
p

ΠRP(p, w,Q) for Q ≥ a and

wu
P

= arg max
w

Πu
MP

(w, pu(w)) = arg max
w

ΠMP(w, p∗(w,Q), Q) for Q ≥ a.

Assumption (A) guarantees that Πu
RP

(p, w) and Πu
MP

(w, pu(w)) are well behaved. In particular, as

shown in Lemma A.1, Πu
RP

(p, w) is unimodal in p and Πu
MP

(w, pu(w)) is unimodal in w.

Likewise, define Πu
RN

(qmin, w) and Πu
MN

(w, qmin) to be the retailer’s and manufacturer’s profits

under negotiation when Q ≥ a, respectively:

Πu
RN

(qmin, w) := ΠRN(qmin, w,Q), and Πu
MN

(w, qmin) := ΠMN(w, qmin, Q) for Q ≥ a. (A-2)

Then, qumin(w) and wu
N

(defined in Section 2.2) satisfy

qumin(w) = arg max
qmin

Πu
RN

(qmin, w) = arg max
qmin

ΠRN(qmin, w,Q) for Q ≥ a and

wu
N

= arg max
w

Πu
MN

(w, qumin(w)) = arg max
w

ΠMN(w, q∗min(w,Q), Q) for Q ≥ a.
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Again, Assumption (A) guarantees that Πu
RN

(qmin, w) and Πu
MN

(w, qumin(w)) are well behaved. In

particular, as shown in Lemma A.2, Πu
RN

(qmin, w) is unimodal in qmin and Πu
MN

(w, qumin(w)) is

unimodal in w.

A. Proofs of Propositions 1-7 with sufficient supply chain capac-
ity: Q ≥ a

In this appendix, we present the proofs of Propositions 1–7 assuming that the supply chain capacity

is sufficiently large. The proofs utilize technical lemmas (A.1 – A.4), which are stated and proved

at the end of Appendix A.

Proofs of Propositions 1 and 2

The proof follows from the definition of wu
P

and wu
N

. Notice that if Q ≥ a, ΠMP(w, p∗(w,Q), Q) =

Πu
MP

(w, pu(w)), which is maximized at wu
P
. A similar argument proves Proposition 2.

Proof of Proposition 3

Notice from equation (11) that the retailer’s profit is a function of the total cost of negotiation,

cT = cr + cb. Therefore, as long as cT remains the same, the retailer’s optimal cut-off valuation,

q∗min, remains unchanged, and the result follows from equations (11) and (12).

Proof of Proposition 4

Define ∆u
R
(w) to be the difference in the retailer’s profits under posted pricing and negotiation

for a given wholesale price w:

∆u
R
(w) = Πu

RP
(pu(w), w)−Πu

RN
(qumin(w), w) (A-3)

The proof utilizes Lemma A.3, which shows that ∆u
R
(w) changes sign at most once, which is proved

in parts (a) and (b) of Lemma A.3. Notice that, when part (a) of Lemma A.3 holds, ∆u
R
(w) > 0

for all w ≥ c and the retailer prefers posted pricing for any w ≥ c. When part(b)-(i) of Lemma A.3

holds, ∆u
R
(w) < 0 for all w ≥ c and the retailer prefers negotiation for any w ≥ c. The result holds

trivially for these two cases. Now suppose that ∆u
R
(w) changes sign at some w > c. Then, from

part (b)-(ii) of Lemma A.3, there must exist a threshold wholesale price ŵu
R

such that ∆u
R
(ŵu

R
) = 0,

∆u
R
(w) < 0 for w < ŵu

R
(the retailer prefers negotiation), and ∆u

R
(w) > 0 for w > ŵu

R
(the retailer

prefers posted pricing).

Proof of Proposition 5
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Recall that ∆u
R
(w) = Πu

RP
(pu(w), w) − Πu

RN
(qumin(w), w). Also, recall that the definition of ŵu

R

implies that ∆u
R
(w) < 0 for w < ŵu

R
and ∆u

R
(w) > 0 for w > ŵu

R
. In other words, ∆u

R
(w) changes

sign at w = ŵu
R
.

Define ∆u
M

(w) to be the difference in the manufacturer’s profit under posted pricing and nego-

tiation for a given wholesale price w:

∆u
M

(w) = Πu
MP

(w, pu(w))−Πu
MN

(w, qumin(w)). (A-4)

Then, from Lemma A.3(c), there must exist a ŵu
M
≥ ŵu

R
such that ∆u

M
(w) ≤ 0 for w ≤ ŵu

M

and ∆u
M

(w) ≥ 0 for w ≥ ŵu
M

. That is, Πu
MN

(w, qumin(w)) ≥ Πu
MP

(w, pu(w)) for w ≤ ŵu
M

and

Πu
MN

(w, qumin(w)) ≤ Πu
MP

(w, pu(w)) for w ≥ ŵu
M

. Thus, the result directly follows from ŵu
M
≥ ŵu

R
.

Proof of Proposition 6

First, when the retailer chooses negotiation at all wholesale prices w ≥ c, it follows from

Proposition 2 that the optimal wholesale price is simply wu
N

. Likewise, when the retailer chooses

posted pricing at all wholesale prices w ≥ c, then, from Proposition 1, the optimal wholesale price

is simply wu
P
.

We now focus on the case where there exists ŵu
R

such that the retailer chooses negotiation when

w ≤ ŵu
R

and posted pricing when w > ŵu
R
. For the purposes of this proof, temporarily define

GN := max
c≤w≤ŵuR

Πu
MN

(w, qumin(w)) and wo
N

= arg max
c≤w≤ŵuR

Πu
MN

(w, qumin(w))

GP := sup
w>ŵuR,w≥c

Πu
MP

(w, pu(w)) and wo
P

= arg sup
w>ŵuR,w≥c

Πu
MP

(w, pu(w))

With these definitions, observe that the manufacturer’s problem of choosing the wholesale price,

given by (20), reduces to picking the wholesale price wo
N

if GN ≥ GP or the wholesale price wo
P

if

GN < GP. Consider two cases: (1) GN ≥ GP and (2) GN < GP.

(1) GN ≥ GP

Since Πu
MN

(w, qumin(w)) is unimodal in w, the manufacturer’s optimal wholesale price is wo
N

=

min{ŵu
R
, wu

N
} and negotiation is the supply chain’s pricing policy toward consumers. The case

with wo
N

= wu
N

corresponds to part (a) of the proposition (ordinary negotiation) and the case with

wo
N

= ŵu
R

corresponds to part (b) of the proposition (reconciliatory negotiation).

(2) GN < GP

We will first prove that, if GN < GP, wu
P
> ŵu

R
. The proof is by contradiction. Suppose GN <

GP, but wu
P
≤ ŵu

R
. Since Πu

MP
(w, pu(w)) is unimodal in w, wo

P
must be ŵu

R
, and hence, GP =

Πu
MP

(ŵu
R
, pu(ŵu

R
)). However, Proposition 5 implies that

GP = Πu
MP

(ŵu
R
, pu(ŵu

R
)) ≤ Πu

MN
(ŵu

R
, qumin(ŵu

R
)) ≤ GN,
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which is a contradiction to the assumption that GN < GP.

Now that we have shown wu
P
> ŵu

R
, it follows from the fact that wu

P
maximizes Πu

MP
(w, pu(w))

that wo
P

= wu
P
. At the wholesale price wu

P
≥ ŵu

R
, the retailer chooses posted pricing. This corre-

sponds to part (c) of the proposition.

Proof of Proposition 7

Existence of cT: We first prove that if posted pricing is the equilibrium at a given cT, then

posted pricing remains to be the equilibrium at higher cT. If this result holds, once the equilibrium

falls in the posted pricing regime, it will never switch back to negotiation as cT increases. We will

then conclude that there exists a unique cT such that the equilibrium pricing policy is negotiation

for cT ∈ [0, cT) and posted pricing for cT ≥ cT.

Suppose posted pricing is an equilibrium at a given cT = co
T
. It must be that the equilibrium

wholesale price is wu
P

(from Proposition 6). We will divide the proof into two cases, depending on

whether a threshold wholesale price ŵu
R

exists at co
T
. The two cases are: (1) there does not exist

ŵu
R
> c and the retailer chooses posted pricing for any w ≥ c, and (2) there exists ŵu

R
> c,.

(1) ŵu
R
> c does not exist

In this case, at co
T
, the retailer is choosing posted pricing for any w ≥ c, that is, Πu

RP
(pu(w), w) ≥

Πu
RN

(qumin(w), w) for w ≥ c. We observe that the retailer’s profit under negotiation, Πu
RN

(qumin(w), w)

decreases in cT while the retailer’s profit under posted pricing Πu
RP

(pu(w), w), is unaffected by cT.

Hence, at cT > co
T
, we continue to have Πu

RP
(pu(w), w) ≥ Πu

RN
(qumin(w), w) for w ≥ c, and the retailer

will choose posted pricing no matter what the wholesale price is.

(2) ŵu
R
> c

For the purposes of this proof, we temporarily make the dependence on cT explicit. For this,

temporarily define, for a given cT:

GN(cT) = max
c≤w≤ŵuR

Πu
MN

(w, qumin(w)) and wo
N

(cT) = arg max
c≤w≤ŵuR

Πu
MN

(w, qumin(w))

GP(cT) = sup
w>ŵuR,w≥c

Πu
MP

(w, pu(w)) and wo
P
(cT) = arg sup

w>ŵuR,w≥c
Πu

MP
(w, pu(w))

Since posted pricing is the equilibrium pricing policy at co
T
, it must be that GN(co

T
) < GP(co

T
).

Suppose we increase cT to co
T

+ δ for some δ > 0.

Observe from Lemma A.4(b) that ŵu
R

decreases in cT, and this implies the feasible region of the

optimization problem that determines GN contracts when cT increases. Hence, GN(co
T

+δ) ≤ GN(co
T
)

(formally proved in Lemma A.4(e)). On the other hand, the feasible region of the optimization

problem that determinesGP becomes larger when cT increases. As a result, wu
P
, which maximizes the

function Πu
MP

(w, pu(w)), remains feasible at co
T
+δ. Thus, we conclude that wo

P
(co

T
+δ) = wo

P
(co

T
) = wu

P
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and GP(co
T

+ δ) = GP(co
T
). Consequently,

GN(co
T

+ δ) ≤ GN(co
T
) < GP(co

T
) = GP(co

T
+ δ),

and the manufacturer will choose to induce posted pricing at co
T

+ δ.

Combining cases (1) and (2), we conclude that if posted pricing is the equilibrium at a given

cT, then it remains to be the equilibrium at higher cT. Hence, there exists a unique cT such the

equilibrium is negotiation for cT ∈ [0, cT) and posted pricing for cT ≥ cT.

Existence of cT: It remains to show that cT exists and separates the regions where the

equilibrium wholesale price is wu
N

versus ŵu
R
. Focus now on the region cT ∈ [0, cT). For any cT in

this region, we know from Proposition 6 that the equilibrium wholesale price must be either ŵu
R

or

wu
N

. Consider two cases:

(1) There does not exist cT ∈ [0, cT) such that the equilibrium wholesale price is ŵu
R

In this case, it must be that the equilibrium wholesale price is wu
N

for any cT ∈ [0, cT), in which case

we have cT = cT.

(2) There exists c̃T ∈ [0, cT) such that the equilibrium wholesale price is ŵu
R

at c̃T

From Lemma A.4(d), for any cT ∈ [c̃T, cT), the manufacturer would choose ŵu
R
. Hence, there exists

cT, given by the lowest such c̃T, and the equilibrium wholesale price is ŵu
R

for any cT ∈ [cT, cT).

Technical Lemmas used in Appendix A

Lemma A.1. [Profit functions under posted pricing]

(a) The retailer’s profit, Πu
RP

(p, w), is strictly unimodal in the posted price, p.

(b) Let pu(w) denote the optimal posted price, that is, the maximizer of Πu
RP

(p, w). Then, pu(w) is

convex and strictly increasing in the wholesale price, w.

(c) Given that the retailer responds to the wholesale price w with the posted price pu(w), the man-

ufacturer’s profit, Πu
MP

(w, pu(w)), is strictly unimodal in w.

Lemma A.2. [Profit functions under negotiation]

(a) The retailer’s profit, Πu
RN

(qmin, w), is strictly unimodal in the retailer’s cut-off valuation, qmin.

(b) Let qumin(w) denote the optimal cut-off valuation, that is, the maximizer of Πu
RN

(qmin, w). Then

qumin(w) is convex and strictly increasing in w.

(c) Given that the retailer responds to the wholesale price w with the cut-off valuation qumin(w), the

manufacturer’s profit, Πu
MN

(w, qumin(w)), is strictly unimodal in w.
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Proofs of Lemmas A.1 and A.2

We present the proof of Lemma A.2 in detail and omit the proof of Lemma A.1 since the proof

of Lemma A.1 follows a similar (but algebraically simpler) sequence of arguments.

Proof of (a): We prove that Πu
RN

(qmin, w) = a
∫∞
qmin

[(1 − β)x + βqmin − w − cr − cb]f(x)dx is

unimodal in qmin by showing: (i) ∂ΠuRN(qmin,w)
∂qmin

∣∣∣
qmin=w+cr+cb

≥ 0, (ii) ∂2ΠuRN(qmin,w)
∂q2

min
< 0 whenever

∂ΠuRN(qmin,w)
∂qmin

= 0, and (iii) Πu
RN

(qmin, w)→ 0 as qmin →∞.

The first and second partial derivatives of Πu
RN

(qmin, w) with respect to qmin are

∂Πu
RN

(qmin, w)

∂qmin
= a(−qmin + w + cr + cb)f(qmin) + aβF (qmin) and (A-5)

∂2Πu
RN

(qmin, w)

∂q2
min

= −a(1 + β)f(qmin) + a(−qmin + w + cr + cb)f
′(qmin). (A-6)

Claim (i) follows from (A-5) while claim (iii) follows from F (qmin) → 0 as qmin → ∞. To show

claim (ii), note from (A-5) and (A-6)

∂2Πu
RN

(qmin, w)

∂q2
min

∣∣∣∣ ∂Πu
RN

(qmin,w)

∂qmin
=0

= −a(1 + β)f2(qmin) + βf ′(qmin)F (qmin)

f(qmin)
. (A-7)

Since F is IFR, f ′(·)F (·) + f2(·) ≥ 0. Hence claim (ii) follows from (A-7), concluding the proof of

unimodality of Πu
RN

(qmin, w) in qmin.

Proof of (b): From part (a), qumin(w) satisfies (−qumin(w)+w+cr+cb)f(qumin(w))+βF (qumin(w)) = 0.

Implicit differentiation of this equality with respect to w yields

[
(1 + β)f(qumin(w))− (−qumin(w) + w + cr + cb) f

′(qumin(w))
]dqumin(w)

dw
− f(qumin(w)) = 0. (A-8)

Substituting −qumin(w) + w + cr + cb =
−βF (qumin(w))
f(qumin(w)) from (A-5) in (A-8), we obtain

dqumin(w)

dw
=

f2(qumin(w))

(1 + β)f2(qumin(w)) + βf ′(qumin(w))F (qumin(w))
, (A-9)

Since F is IFR, we have f ′(·)F (·) + f2(·) ≥ 0, which implies
dqumin(w)

dw > 0. Thus, qumin(w) strictly

increases in w.

To prove qumin(w) is convex in w, we show
d2qumin(w)

dw2 ≥ 0. Taking the second derivative of (A-9)

with respect to w, we obtain

d2qumin(w)

dw2
=

βf(qumin(w))
dqumin(w)

dw

[(1 + β)f2(qumin(w)) + βf ′(qumin(w))F (qumin(w))]2

×
{
f ′(qumin(w))

(
2f ′(qumin(w))F (qumin(w)) + f2(qumin(w))

)
− f ′′(qumin(w))f(qumin(w))F (qumin(w))

}
.
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Since the term in the braces is positive under Assumption (A), we have
d2qumin(w)

dw2 ≥ 0.

Proof of (c): We prove the unimodality of Πu
MN

(w, qumin(w)) = a(w − c)F (qumin(w)) in w by

showing: (i)
dΠuMN(w,qumin(w))

dw

∣∣∣
w=c
≥ 0, (ii)

d2ΠuMN(w,qumin(w))

dw2 < 0 whenever
dΠuMN(w,qumin(w))

dw = 0, and

(iii) Πu
MN

(w, qumin(w))→ 0 as w →∞.

The first and second partial derivatives of Πu
MN

(w, qumin(w)) with respect to w are

dΠu
MN

(w, qumin(w))

dw
= aF (qumin(w))− a(w − c)f(qumin(w))

dqumin(w)

dw
and (A-10)

d2Πu
MN

(w, qumin(w))

dw2
= −2af(qumin(w))

dqumin(w)

dw

−a(w − c)

[
f(qumin(w))

d2qumin(w)

dw2
+ f ′(qumin(w))

(
dqumin(w)

dw

)2
]
.(A-11)

Claim (i) follows from (A-10) while claim (iii) follows from F (qumin(w))→ 0 as w, and hence qumin(w)

approaches to infinity. To show claim (ii), note from (A-10) and (A-11)

d2Πu
MN

(w, qumin(w))

dw2

∣∣∣∣ dΠu
MN

(w,qu
min

(w))

dw
=0

= −2af(qumin(w))
dqumin(w)

dw

−a F (qumin(w))

f(qumin(w))
dqumin(w)

dw

[
f(qumin(w))

d2qumin(w)

dw2
+ f ′(qumin(w))

(
dqumin(w)

dw

)2
]

= −adq
u
min(w)

dw

[
f(qumin(w)) +

f ′(qumin(w))F (qumin(w))

f(qumin(w))

]
−af(qumin(w))

dqumin(w)

dw
− aF (qumin(w))

dqumin(w)
dw

d2qumin(w)

dw2
. (A-12)

Since F is IFR, we have f ′(·)F (·) + f2(·) ≥ 0, and the term in brackets is positive. Since qumin(w)

strictly increases in w and
d2qumin(w)

dw2 ≥ 0 from part (b), all three terms are negative with the sec-

ond term being strictly negative. Thus, claim (ii) follows, concluding the proof of unimodality of

Πu
MN

(w, qumin(w)) in w.

Lemma A.3. Given the wholesale price w, let ∆u
R
(w) be the difference between the retailer’s optimal

profits under posted pricing and negotiation, that is, ∆u
R
(w) = Πu

RP
(pu(w), w)−Πu

RN
(qumin(w), w), and

∆u
M

(w) be the difference between the manufacturer’s profits under posted pricing and negotiation,

that is, ∆u
M

(w) = Πu
MP

(w, pu(w))−Πu
MN

(w, qumin(w)). Then:

(a) If ∆u
R
(c) ≥ 0, then ∆u

R
(w) > 0 for all w > c.

(b) If ∆u
R
(c) < 0, then either:

7



(i) ∆u
R
(w) < 0 for all w > c and ∆u

R
(w) is strictly increasing in w, or

(ii) ∆u
R
(w) is strictly unimodal and changes sign once. If ∆u

R
(w) changes sign, it crosses zero at

a unique ŵu
R
> c such that ∆u

R
(ŵu

R
) = 0, ∆u

R
(w) < 0 for w < ŵu

R
, and ∆u

R
(w) > 0 for w > ŵu

R
.

(c) If ∆u
R
(w) changes sign at w = ŵu

R
, there must exist a unique ŵu

M
≥ ŵu

R
such that ∆u

M
(w) ≤ 0

for w ≤ ŵu
M

, and ∆u
M

(w) ≥ 0 for w ≥ ŵu
M

.

(d) Πu
RP

(pu(w), w) and Πu
RN

(qumin(w), w) are convex decreasing in w.

Proof of Lemma A.3

Proofs of (a) and (b): We prove the result by showing (1) ∆u
R
(w) → 0 as w → ∞, and (ii)

d2∆u
R(w)

dw2 < 0 whenever d∆u
R(w)
dw = 0. Claim (2) implies that if a stationary point exists, it must be

a maximum. Claim (2) thus implies that there exists at most one maximizer. (Otherwise, there

must be a minimizer between two local maxima, which contradicts the claim that all stationary

points are local maxima.) If claims (1) and (2) hold, the behavior of the function ∆u
R
(w) must

follow either part (a) or part (b) of this lemma, which is depicted in Figure 7. Any other behavior

would contradict (1) and/or (2), therefore cannot exist.

)(wu
R∆

wc

c

c

(a) (b) - (i)

c

(b) - (ii)

)(wu
R∆ )(wu

R∆ )(wu
R∆

w

w

w

Figure 7: The figure illustrates the possibilities discussed in parts (a) and (b) of Lemma A.3.

We now prove claims (1) and (2) hold. From the facts that pu(w) → ∞ and qumin(w) → ∞ as

w →∞, it can be shown that Πu
RP

(pu(w), w) and Πu
RN

(qumin(w), w) both approach zero as w →∞.

Hence, as w →∞, ∆u
R
(w) approaches zero, which proves (1).

To show (2), recall that pu(w) is a solution to ∂ΠuRP(p,w)
∂p = 0 and qumin(w) is a solution to

∂ΠuRN(qmin,w)
∂qmin

= 0, respectively. Applying the envelope theorem, we have

dΠu
RP

(pu(w), w)

dw
=
∂Πu

RP
(p, w)

∂w

∣∣∣∣
p=pu(w)

= −aF (pu(w)), and (A-13)

dΠu
RN

(qumin(w), w)

dw
=
∂Πu

RN
(qmin, w)

∂w

∣∣∣∣
qmin=qumin(w)

= −aF (qumin(w)) (A-14)
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Therefore:

d∆u
R
(w)

dw
= −aF (pu(w)) + aF (qumin(w)). (A-15)

Let w̃ be a wholesale price such that d∆u
R(w̃)
dw = 0. Thus, at w̃, we have F (pu(w̃)) = F (qumin(w̃)) and,

hence, pu(w̃) = qumin(w̃). Using the expression for
dqumin(w̃)

dw given by equation (A-9) and obtaining a

similar expression for dpu(w̃)
dw , we can write:

dqumin(w̃)

dw
=

f2(qumin(w̃))

(1 + β)f2(qumin(w̃)) + βf ′(qumin(w̃))F (qumin(w̃))

>
f2(pu(w̃))

2f2(pu(w̃)) + f ′(pu(w̃))F (pu(w̃))
=
dpu(w̃)

dw
, (A-16)

where the inequality follows from the facts that pu(w̃) = qumin(w̃), F is IFR, and 0 < β < 1.

Now, we can use (A-15) to write:

d2∆u
R
(w)

dw2

∣∣∣∣
w=w̃

=
d

dw

[
−aF (pu(w)) + aF (qumin(w))

]∣∣∣∣
w=w̃

= a

(
f(pu(w̃))

dpu(w̃)

dw
− f(qumin(w̃))

dqumin(w̃)

dw

)
< 0,

where the inequality is from pu(w̃) = qumin(w̃) and (A-16). Hence, (2) is proven, which concludes

the proof of part (a) and (b).

Proof of (c): Our first goal is to prove that if ∆u
R
(w) changes sign, then ∆u

M
(w) changes sign

exactly once by crossing zero from below. First, note that

∆u
M

(w) = Πu
MP

(w, pu(w))−Πu
MN

(w, qumin(w)) = a(w − c)F (pu(w))− a(w − c)F (qumin(w)).

Hence, from (A-15), it follows that ∆u
M

(w) = −(w− c)d∆u
R(w)
dw . Therefore, it suffices to show that if

∆u
R
(w) changes sign, then d∆u

R(w)
dw also changes sign exactly once from positive to negative. Suppose

now ∆u
R
(w) changes sign. From the discussion in parts (a) and (b), we know that we must be in

case (b)(ii): ∆u
R
(w) crosses zero from below and is strictly unimodal with a peak at w = w̃ such

that d∆u
R(w̃)
dw = 0. Hence, d∆u

R(w)
dw is positive for w ≤ w̃ and negative for w ≥ w̃. It now follows that

∆u
M

(w) changes sign exactly once, and the point where it changes sign, ŵu
M

, is given by w̃ such that
d∆u

R(w̃)
dw = 0. Furthermore, observe from Figure 7 that, in case (b)(ii), the point at which ∆u

R
(w)

changes sign, ŵu
R
, must come before ŵu

M
= w̃.

Proof of (d): It immediately follows from (A-13) and (A-14) that both Πu
RP

(pu(w), w) and

Πu
RN

(qumin(w), w) are decreasing in w. Furthermore, from (A-13) and (A-14), we obtain:

d2Πu
RP

(pu(w), w)

dw2
= af(pu(w))

dpu(w)

dw
, and

d2Πu
RN

(qumin(w), w)

dw2
= af(qumin(w))

dqumin(w)

dw

9



Since both pu(w) and qumin(w) increase in w (by Lemma A.1 and A.2, respectively), both Πu
RP

(pu(w), w)

and Πu
RN

(qumin(w), w) are convex in w.

Lemma A.4. Let ∆u
R
(w) be the difference between the retailer’s profits under posted pricing and

negotiation, that is, ∆u
R
(w) = Πu

RP
(pu(w), w) − Πu

RN
(qumin(w), w). Suppose there exists a ŵu

R
such

that ∆u
R
(ŵu

R
) = 0, ∆u

R
(w) < 0 for w < ŵu

R
, and ∆u

R
(w) > 0 for w > ŵu

R
. Consider the following

optimization problem:

max
c≤w≤ŵuR

Πu
MN

(w, qumin(w)) (A-17)

Let wo
N

(cT) denote the optimal solution to (A-17) and GN(cT) be the optimal value of the objective

function for a given cT. Then:

(a) wo
N

(cT) = min{ŵu
R
, wu

N
}.

(b) ŵu
R

decreases in cT. Furthermore, dŵuR(cT)
dcT

< −1.

(c) wu
N

decreases in cT. Furthermore, −1 ≤ dwuN(cT)
dcT

≤ 0.

(d) If wo
N

(cT) = ŵu
R

for some cT = co
T

, then wo
N

(cT) = ŵu
R

for cT > co
T

.

(e) GN(cT) decreases in cT.

Proof of Lemma A.4

Proof of (a): Recall that wu
N

is the unconstrained maximizer of Πu
MN

(w, qumin(w)). Since w must

be chosen in [c, ŵu
R
] and Πu

MN
(w, qumin(w)) is unimodal in w (by Lemma A.2), the optimal solution

to (A-17) is the minimum of wu
N

and ŵu
R
.

Proof of (b): To express explicit dependence, we write qumin(w), ŵu
R
, and Πu

RN
(qmin, w) as qumin(w, cT),

ŵu
R
(cT), and Πu

RN
(qmin, w, cT), respectively. Recall that, by definition of ŵu

R
(cT):

Πu
RN

(qumin(ŵu
R
(cT), cT), ŵu

R
(cT), cT)−Πu

RP
(pu(ŵu

R
(cT)), ŵu

R
(cT)) = 0. (A-18)

Implicit differentiation of (A-18) with respect to cT yields:

0 =
dΠu

RN
(qumin(ŵu

R
(cT), cT), ŵu

R
(cT), cT)

dcT
− dΠu

RP
(pu(ŵu

R
(cT)), ŵu

R
(cT))

dcT

=
dqumin(ŵuR(cT),cT)

dcT

∂ΠuRN(qmin,w,cT)
∂qmin

∣∣∣
qmin=qumin(ŵuR(cT),cT),w=ŵuR(cT)

+dŵuR(cT)
dcT

∂ΠuRN(qmin,w,cT)
∂w

∣∣∣
qmin=qumin(ŵuR(cT),cT),w=ŵuR(cT)

+ ∂ΠuRN(qmin,w,cT)
∂cT

∣∣∣
qmin=qumin(ŵuR(cT),cT),w=ŵuR(cT)

−dpu(ŵuR(cT),cT)
dcT

∂ΠuRP(p,w)
∂p

∣∣∣
p=pu(ŵuR(cT)),w=ŵuR(cT)

− dŵuR(cT)
dcT

∂ΠuRP(p,w)
∂w

∣∣∣
p=pu(ŵuR(cT)),w=ŵuR(cT)

(A-19)
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Note that the first and fourth terms of (A-19) are zero since qumin and pu satisfy the first-order

conditions of Πu
RN

(qmin, w, cT) and Πu
RP

(p, w), respectively. Also, recall that

Πu
RN

(qmin, w, cT) = a

∫ ∞
qmin

[(1− β)x+ βqmin − w − cT] f(x)dx,

Πu
RP

(p, w) = a(p− w)F (p).

Taking the partial derivatives of these profit functions, we obtain:

∂Πu
RN

(qmin, w, cT)

∂w
= −aF (qmin),

∂Πu
RN

(qmin, w, cT)

∂cT
= −aF (qmin), and

∂Πu
RP

(p, w)

∂w
= −aF (p).

Substituting the above partial derivatives in (A-19) and rearranging the terms, we obtain:

dŵu
R
(cT)

dcT

[
F (qumin(ŵu

R
(cT), cT))− F (pu(ŵu

R
(cT)))

]
+ F (qumin(ŵu

R
(cT), cT)) = 0.

Hence:

dŵu
R
(cT)

dcT
= − F (qumin(ŵu

R
(cT), cT))

F (qumin(ŵu
R
(cT), cT))− F (pu(ŵu

R
(cT)))

.

To show that dŵuR(cT)
dcT

< −1, it suffices to show that F (qumin(ŵu
R
(cT), cT)) > F (pu(ŵu

R
(cT))). Since

∆u
R
(w) is crossing from negative to positive at w = ŵu

R
(cT) (by Lemma A.3(b)(ii), it follows that

∆u
R
(w) must be strictly increasing in w at w = ŵu

R
(cT). (See b(ii) of Figure 7.) Using this fact, we

obtain from (A-15) that F (qumin(ŵu
R
(cT), cT)) > F (pu(ŵu

R
(cT))), which concludes the proof of (b).

Proof of (c): In preparation for the proof, we will first derive a few useful expressions. First,

substituting the expression for
dqumin(w)

dw , given by (A-9), into the manufacturer’s first-order condition,

(A-10), and recalling that wu
N

is the solution to the manufacturer’s first-order condition, we get the

following identity:

F (qumin(wu
N

))

f(qumin(wu
N

))
− (wu

N
− c) f2(qumin(wu

N
))

(1 + β)f2(qumin(wu
N

)) + βf ′(qumin(wu
N

))F (qumin(wu
N

))
= 0. (A-20)

Let φ(x) := f2(x)

(1+β)f2(x)+βf ′(x)F (x)
. As an aside, note that

dφ(x)

dx
=
βf(x)[f ′(x)(2f ′(x)F (x) + f2(x))− f ′′(x)f(x)F (x)]

[(1 + β)f2(x) + βf ′(x)F (x)]2
. (A-21)

We observe from (A-21) that φ(x) increases in x (since the numerator is non-negative by Assumption

A). Using our definition of φ(x), we can rewrite (A-20) as

F (qumin(wu
N

))

f(qumin(wu
N

))
− (wu

N
− c)φ(qumin(wu

N
)) = 0. (A-22)
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Here, to make explicit the dependence on cT, we write wu
N

(cT) instead of wu
N

. In addition, for

notational convenience, we write qumin(cT) to denote qumin(wu
N

(cT)). With these notational changes,

(A-22) can be written as:

F (qumin(cT))

f(qumin(cT))
− (wu

N
(cT)− c)φ(qumin(cT)) = 0. (A-23)

Now we are ready to prove the result. We first show that
dqumin(cT)

dcT
× dwuN(cT)

dcT
≤ 0, that is, when cT

increases, qumin(cT) and wu
N

(cT) cannot both strictly increase or strictly decrease. We prove this by

contradiction.

Suppose both qumin(cT) and wu
N

(cT) strictly increase in cT. Then,
F (qumin(cT))
f(qumin(cT)) decreases in cT (be-

cause F is IFR) and φ(qumin(cT)) increases in cT (because φ(x) is increasing in x, as observed earlier).

Hence, the left-hand side of (A-23) must be strictly decreasing in cT, which is a contradiction since

(A-23) must hold as an identity at any given cT.

Next, suppose that both qumin(cT) and wu
N

(cT) strictly decrease in cT. Then
F (qumin(cT))
f(qumin(cT)) increases

in cT (because F is IFR) and φ(qumin(cT)) decreases in cT. Hence, the left-hand side of (A-23) must

be strictly increasing in cT, which again yields a contradiction. It is now proved that
dqumin(cT)

dcT
×

dwuN(cT)
dcT

≤ 0.

Next, we show that −1 ≤ dwuN(cT)
dcT

≤ 0. Implicit differentiation of the retailer’s first-order

condition, given by (A-5), with respect to cT yields

dwu
N

(cT)

dcT
=

[
1 +

β
(
f ′(qumin(cT))F (qumin(cT)) + f2(qumin(cT))

)
f2(qumin(cT))

]
dqumin(cT)

dcT
− 1, (A-24)

If
dqumin(cT)

dcT
< 0, then it follows from (A-24) that dwuN(cT)

dcT
< 0. (To see why, note that the term

in the brackets is positive, because F is IFR.) However, we would then obtain a contradiction to
dqumin(cT)

dcT
× dwuN(cT)

dcT
≤ 0. Thus, it must be that

dqumin(cT)
dcT

≥ 0, and it follows that dwuN(cT)
dcT

≤ 0.

Furthermore, since
dqumin(cT)

dcT
≥ 0, we observe from (A-24) that dwuN(cT)

dcT
≥ −1. This concludes the

proof of part (c).

Proof of (d): From part (a), we have wo
N

(cT) = min{ŵu
R
, wu

N
}. Hence, if wo

N
(co

T
) = ŵu

R
, it must

be that ŵu
R
≤ wu

N
at co

T
. From parts (b) and (c), we know that dŵuR(cT)

dcT
< dwuN(cT)

dcT
. Hence, if cT in-

creases, ŵu
R

continues to be less than or equal to wu
N

, and wo
N

(cT) = ŵu
R

continues to hold for cT > co
T
.

Proof of (e): We will show that for co
T
< c′

T
, GN(co

T
) ≥ GN(c′

T
). In this proof, we will write

qumin(w, cT), ŵu
R
(cT) and Πu

MN
(w, qmin, cT) instead of, respectively, qumin(w), ŵu

R
and Πu

MN
(w, qmin),

to make the dependence on cT explicit. It is not difficult to check that Πu
MN

(w, qumin(w, cT), cT) is

12



decreasing in cT. Hence:

GN(c′
T
) = Πu

MN
(wo

N
(c′

T
), qumin(wo

N
(c′

T
), c′

T
), c′

T
) ≤ Πu

MN
(wo

N
(c′

T
), qumin(wo

N
(c′

T
), co

T
), co

T
). (A-25)

Furthermore, note that when cT = co
T
, w = wo

N
(c′

T
) is a feasible solution for the optimization problem

in (A-17). To see why, note that ŵu
R
(cT) decreases in cT. Hence, ŵu

R
(co

T
) ≥ ŵu

R
(c′

T
). It then follows

that wo
N

(c′
T
), which is feasible for the problem in (A-17) when cT = c′

T
, is also feasible when cT = co

T
.

Therefore:

GN(co
T
) = Πu

MN
(wo

N
(co

T
), qumin(wo

N
(co

T
), co

T
), co

T
) ≥ Πu

MN
(wo

N
(c′

T
), qumin(wo

N
(c′

T
), co

T
), co

T
). (A-26)

Combining (A-25) and (A-26), we obtain GN(co
T
) ≥ GN(c′

T
).

13



B. Proofs for the Capacitated Supply Chain

In this appendix, we prove the results for the case where the sales volume could be bounded by

the supply chain capacity Q. We utilize Lemmas B.1 through B.3, stated and proved at the end of

Appendix B.

Proofs of Propositions 1 and 2

Notice from the manufacturer’s profit function under posted pricing given by (6) that w∗
P
(Q), the

maximizer of ΠMP(w, p∗(w,Q), Q), cannot be strictly less than wP(Q) (since ΠMP(w, p∗(w,Q), Q)

is linearly increasing in w for w ∈ [c, wP(Q)]). Now, for w ≥ wP(Q), the supply chain capacity

does not play a role: ΠMP(w, p∗(w,Q), Q) is equal to Πu
MP

(w, pu(w)), which itself is unimodal by

Lemma A.1 and peaks at wu
P
. Therefore, w∗

P
(Q) is wu

P
or wP(Q), whichever is larger. The same line

of arguments proves Proposition 2 as well.

Proof of Proposition 3

The proof is identical to the case with sufficient capacity, thus omitted.

Proof of Proposition 4

Define ∆R(w,Q) = ΠRP(p∗(w,Q), w,Q) − ΠRN(q∗min(w,Q), w,Q) to be the difference between

the retailer’s optimal profits under the two pricing policies at a given wholesale price, w. Parts (a)

and (b) of Lemma B.1 together prove that either (1) ∆R(w,Q) ≥ 0 for all w ≥ c (in which case

the retailer prefers posted pricing for all w ≥ c), or (2) ∆R(w,Q) < 0 for all w ≥ c (in which case

the retailer prefers negotiation for all w ≥ c), or (3) if ∆R(w,Q) crosses zero for some w, it does

so only once and from below (in which case there exists a wholesale price below which the retailer

prefers negotiation and above which the retailer prefers posted pricing).

Proof of Proposition 5

As in the proof of Proposition 4, define ∆R(w,Q) = ΠRP(p∗(w,Q), w,Q)−ΠRN(q∗min(w,Q), w,Q)

to be the difference between the retailer’s optimal profits under the two pricing policies at a given

wholesale price, w. In addition, define ∆M(w,Q) = ΠMP(w, p∗(w,Q), Q) − ΠMN(w, q∗min(w,Q), Q)

to be the difference between the manufacturer’s optimal profits under the two pricing policies at

a given wholesale price, w. Lemma B.1(e) shows that if there exists a threshold wholesale price

ŵR(Q) > c, there must exist a ŵM(Q) ≥ ŵR(Q) such that ∆M(w,Q) ≤ 0 for w ≤ ŵM(Q) and

∆M(w,Q) ≥ 0 for w ≥ ŵM(Q). Hence, in the range of wholesale prices where the retailer prefers

14



negotiation (i.e., w ≤ ŵR(Q)), we have ∆M(w,Q) ≤ 0; the manufacturer also prefers negotiation.

Proof of Proposition 6

The proof is almost identical to that for the case with sufficient supply chain capacity (proved

in Section A of this appendix), once we replace qumin(w), pu(w), wu
N

and wu
P

in the earlier proof with

q∗min(w,Q) = max{qumin(w), p̄(Q)}, p∗(w,Q) = max{pu(w), p̄(Q)}, w∗
N

(Q) = max{wN(Q), wu
N
} and

w∗
P
(Q) = max{wP(Q), wu

P
} here. Thus, we omit the proof.

Proof of Proposition 7

Again, the proof is almost identical to that for the case with supply chain capacity (proved in

Section A of this appendix), once we replace qumin(w), pu(w), wu
N

and wu
P

in the earlier proof with

q∗min(w,Q), p∗(w,Q), w∗
N

(Q) and w∗
P
(Q) here. The proof utilizes Lemma B.2 which is a counterpart

for Lemma A.4 used in the case with sufficient supply chain capacity.

Proof of Proposition 8

The proof proceeds in two parts, the first part showing the existence of Q and the second part

showing the existence of Q.

Part 1: The existence of Q

We first show that if negotiation is the equilibrium pricing policy at a given Q (be it ordinary or

reconciliatory negotiation) then the equilibrium pricing policy is still negotiation for a larger Q.

Hence, the smallest Q at which the supply chain settles in negotiation yields Q. This includes a

special case where posted pricing is the equilibrium for all Q <∞, in which case we set Q =∞.

Suppose that the supply chain uses negotiation as a pricing policy toward consumers at Qo.

From Proposition 6, the equilibrium wholesale price (which is the solution to problem (20)) must

be min{ŵR(Q), w∗
N

(Q)}. There are two cases to consider: Either ŵR(Q) = ∞ in which case the

retailer prefers to use negotiation for all w ≥ c, or there exists a finite ŵR(Q) ≥ c such that the

retailer prefers to use negotiation for w ∈ [c, ŵR(Q)) and posted pricing when w > ŵR(Q). We

consider these two cases separately.

Case (1): ŵR(Q) =∞ at capacity Qo: In this case the retailer prefers negotiation for all w ≥ c

when the supply chain capacity is Qo. In other words,

∆R(w,Qo) = ΠRP(p∗(w,Qo), w,Qo)−ΠRN(q∗min(w,Qo), w,Qo) ≤ 0 for all w ≥ c.

We now show that the retailer continues to prefer negotiation for all w ≥ c at any Q > Qo

(i.e., ∆R(w,Q) ≤ 0 for all w ≥ c), which then implies that negotiation is used at Q > Qo.
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The proof is by contradiction. Pick a Q′ > Qo and suppose that there exists a w′ ≥ c such

that ∆R(w′, Q′) > 0. Notice, from Proposition 4, that if the retailer prefers posted pricing

at some wholesale price w′, it continues to prefer posted pricing at a higher wholesale price.

Also, notice that the sales quantities under both pricing policies decrease and converge to

zero as w increases. Hence, there must exist a w′′ ≥ w′ at which ∆R(w′′, Q′) > 0, and the

sales volumes under both policies are strictly less than Qo. Notice also that at this wholesale

price w′′, reducing capacity from Q′ to Qo will not change the retailer’s profits since the sales

quantities do not exceed Qo. Therefore, ∆R(w′′, Q′) = ∆R(w′′, Qo) > 0. This contradicts the

fact that ∆R(w,Qo) ≤ 0 for all w ≥ c. Hence, there does not exist w′ at which ∆R(w′, Q′) > 0.

In other words, for any Q′ > Qo, ∆R(w,Q) ≤ 0 for all w ≥ c, concluding the proof of Case

(1).

Case (2): ŵR(Q) <∞ at capacity Qo: For the sake of exposition, we temporarily define the

following functions, which correspond to the optimal solutions to the sub-problems in problem

(20).

GN(Q) = max
c≤w≤ŵR(Q)

ΠMN(w, q∗min(w,Q), Q) and wo
N

(Q) = arg max
c≤w≤ŵR(Q)

ΠMN(w, q∗min(w,Q), Q)

GP(Q) = sup
w>ŵR(Q),w≥c

ΠMP(w, p∗(w,Q), Q) and wo
P
(Q) = arg sup

w>ŵR(Q),w≥c
ΠMP(w, p∗(w,Q), Q)

Since negotiation is the equilibrium at Qo, it must be that GN(Qo) ≥ GP(Qo) and ŵR(Q) ≥ c.

We now show that, for any Q′ > Qo, GN(Q′) ≥ GP(Q′), which implies that the equilibrium

remains to be negotiation at capacity Q′. We next state and prove a claim that will help us

complete the proof:

• Claim: GP(Qo) ≥ GP(Q′).

Consider two cases, depending on whether there exists a wP(Qo) ≥ c (i.e., whether there

exists a feasible wholesale price at which posted pricing is constrained by the capacity

Qo).

(2.a) There does not exist a wP(Qo) ≥ c (i.e., there does not exist a feasible wholesale

price at which posted pricing is constrained by the capacity Qo). In this case, at

the higher capacity Q′, there does not exist a wP(Q′) ≥ c either. Therefore, both

ΠMP(w, p∗(w,Qo), Qo) and ΠMP(w, p∗(w,Q′), Q′) are equal to the profit in the uncapaci-

tated supply chain, Πu
MP

(w, pu(w)), which does not depend on the supply chain capacity.

It follows that, for both Q = Qo and Q = Q′:

GP(Q) = sup
w>ŵR(Q),w≥c

Πu
MP

(w, pu(w)).
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Hence, GP(Qo) differs from GP(Q′) only because ŵR(Qo) differs from ŵR(Q′). Now,

according to Lemma B.3(b), ŵR(Q) is increasing in Q. Therefore, ŵR(Q′) ≥ ŵR(Qo),

which allows us to conclude that GP(Qo) ≥ GP(Q′).

(2.b) There exists a wP(Qo) ≥ c (i.e., there exists a feasible wholesale price at which

posted pricing is constrained by the capacity Qo). Then, ŵR(Qo) > wP(Qo) by Lemma

B.1(d). Therefore, for any w > ŵR(Qo), we have ΠMP(w, p∗(w,Qo), Qo) = Πu
MP

(w, pu(w)).

Recall that wP(Q) decreases in Q, and then disappears when Q becomes sufficiently

large. On the other hand, ŵR(Q) increases in Q from Lemma B.3(b). Thus, at any

Q′ > Qo, either there does not exist wP(Q′) ≥ c or ŵR(Q′) > wP(Q′). Therefore,

ΠMP(w, p∗(w,Q′), Q′) = Πu
MP

(w, pu(w)) for any w > ŵR(Q′). Consequently, we observe

once again that GP(Qo) differs from GP(Q′) only because ŵR(Qo) differs from ŵR(Q′),

and the result follows as in the previous case.

Based on the above claim and the fact that GN(Q) increases in Q (by Lemma B.3(d)), we

obtain:

GN(Q′) ≥ GN(Qo) ≥ GP(Qo) ≥ GP(Q′).

We thus proved that GN(Q′) ≥ GP(Q′) for any Q′ > Qo, which concludes Part 1.

Part 2: The existence of Q

It suffices to show that if the ordinary negotiation is the equilibrium at some capacity level

Qo ≥ Q (i.e., the equilibrium wholesale price is w∗
N

(Qo)), then the ordinary negotiation remains to

be the equilibrium at all Q > Qo with the equilibrium wholesale price, w∗
N

(Q). This result directly

follows from Lemma B.3(c).

Proof of Proposition 9

The proof follows as a direct corollary of Propositions 7 and 8.

Proof of Proposition 10

We first prove part (a) of the proposition. For ease of exposition, we suppress the dependence

on the supply chain capacity Q throughout this proof. Suppose that the manufacturer chooses

posted pricing in the manufacturer leadership model. Then, from equation (21), it must be the

case that

ΠMP(w∗
P
, p∗(w∗

P
)) > ΠMN(w∗

N
, q∗min(w∗

N
)). (B-1)

We show that the wholesale w∗
P

induces posted pricing even with a discretionary retailer. Once we

show that w∗
P

induces posted pricing even with a discretionary retailer, we will have concluded the
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proof, because a manufacturer facing the discretionary retailer would set its wholesale price equal

to w∗
P

and obtain the same profits as in the manufacturer leadership model.

In preparation for the rest of the proof, define ∆M(w) = ΠMP(w, p∗(w)) − ΠMN(w, q∗min(w)).

Since w∗
N

is a maximizer of ΠMN(w, q∗min(w)), we have

ΠMP(w∗
P
, p∗(w∗

P
)) > ΠMN(w∗

N
, q∗min(w∗

N
)) ≥ ΠMN(w∗

P
, q∗min(w∗

P
)).

In other words, ∆M(w∗
P
) > 0.

We divide the proof into three cases depending on the behavior of ∆R(w) = ΠRP(p∗(w), w) −

ΠRN(q∗min(w), w), which crosses zero at most once and from below.

If ∆R(w) ≥ 0 for all w ≥ c, the retailer already prefers posted pricing no matter what wholesale

price. Hence, the equilibrium of the discretionary retailer model is posted pricing with the wholesale

price w∗
P
.

Now consider the case that there exists a ŵR > c such that ∆R(w) ≤ 0 for all w ≤ ŵR and

∆R(w) > 0 for all w ≥ ŵR. From the part (e) of Lemma B.1, there must exist a wholesale price ŵM

such that ŵM ≥ ŵR, ∆M(w) ≤ 0 for w ≤ ŵM and ∆M(w) ≥ 0 for w ≥ ŵM. Given that ∆M(w∗
P
) > 0,

we have w∗
P
≥ ŵM. Therefore, w∗

P
≥ ŵR as well. Thus, the wholesale price w∗

P
will induce the

retailer to use posted pricing.

Finally, consider the case that ∆R(w) ≤ 0 for all w ≥ c. Observe, however, this case cannot

occur, because ∆M(w∗
P
) > 0 as shown above: If ∆R(w) were less than or equal to 0 for all w ≥ c,

then we should have ∆M(w) ≤ 0 for all w ≥ c by Lemma B.1(f).

As for part (b), it is not difficult to find examples. For instance, in the numerical example

presented in Figure 1, if cT = 1.5, the equilibrium is ordinary negotiation in the manufacturer

leadership model, but reconciliatory negotiation in the discretionary retailer model. However, at

cT = 1.62, the equilibrium is ordinary negotiation in the manufacturer leadership model, but posted

pricing in the discretionary retailer model.

Technical Lemmas used in Appendix B

Lemma B.1. For a given wholesale price w and capacity Q, let ∆R(w,Q) be the difference be-

tween the retailer’s optimal profits under posted pricing and negotiation, that is, ∆R(w,Q) =

ΠRP(p∗(w,Q), w,Q) − ΠRN(q∗min(w,Q), w,Q). Likewise, let ∆M(w,Q) be the difference between

the manufacturer’s optimal profits under posted pricing and negotiation, that is, ∆M(w,Q) =

ΠMP(w, p∗(w,Q), Q)−ΠMN(w, q∗min(w,Q), Q). Then:
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(a) If ∆R(c,Q) ≥ 0, then ∆R(w,Q) ≥ 0 for all w > c.

(b) If ∆R(c,Q) < 0, then either:

(i) ∆R(w,Q) < 0 for all w > c, or

(ii) There exists a ŵR(Q) > c such that ∆R(ŵR(Q), Q) = 0, ∆R(w,Q) ≤ 0 for w < ŵR(Q), and

∆R(w,Q) ≥ 0 for w ≥ ŵR(Q). In other words, ∆R(w,Q) crosses zero only once at ŵR(Q) > c.

(c) For a given Q, suppose that there exists wP(Q) ≥ c but there does not exist wN(Q) ≥ c. Then,

∆R(w,Q) ≥ 0 for all w ≥ c.

(d) For a given Q, suppose that there exist wP(Q) ≥ c and ŵR(Q) > c. Then, wN(Q) > wP(Q) and

ŵR(Q) > wP(Q).

(e) Suppose that ∆R(w,Q) crosses zero from below at ŵR(Q) > c. Then, there must exist a wholesale

price ŵM(Q) such that ŵM(Q) ≥ ŵR(Q), ∆M(w,Q) ≤ 0 for w ≤ ŵM(Q) and ∆M(w,Q) ≥ 0 for

w ≥ ŵM(Q).

(f) Suppose that ∆R(w,Q) ≤ 0 for all w ≥ c. Then, ∆M(w,Q) ≤ 0 for w ≥ c.

Proof of Lemma B.1

Notice that under the posted pricing policy, the supply chain capacity Q will not play a role

if w ≥ wP(Q): ΠRP(p∗(w,Q), w,Q) = Πu
RP

(pu(w), w). Likewise, under the negotiation, the supply

chain capacity Q will not play a role if w ≥ wN(Q): ΠRN(q∗min(w,Q), w,Q) = Πu
RN

(qumin(w), w).

Hence, equations (5) and (14) can be written as

ΠRP(p∗(w,Q), w,Q) =

{
ΠRP(p̄(Q), w,Q) for w ≤ wP(Q)
Πu

RP
(pu(w), w) for w > wP(Q)

and

ΠRN(q∗min(w,Q), w,Q) =

{
ΠRN(p̄(Q), w,Q) for w ≤ wN(Q)
Πu

RN
(qumin(w), w) for w > wN(Q)

These relationships between the retailer’s profits in the capacitated and uncapacitated cases, de-

scribed by the above equalities, will be used in the rest of the proof.

Proofs of (a) and (b): We consider four cases depending on whether there exist wN(Q) ≥ c

and/or wP(Q) ≥ c, that is, whether there exists a feasible wholesale price (i.e. greater than or

equal to c) at which the quantity sold under negotiation and/or posted pricing is bounded by

capacity. These four cases are: (1) neither wN(Q) nor wP(Q) exists, (2) both wN(Q) and wP(Q)

exist, (3) only wP(Q) exists, and (4) only wN(Q) exists.

Case (1) neither wN(Q) nor wP(Q) exists: The retailer and manufacturer’s profits are never

bounded by capacity. The problem then collapses to the uncapacitated one. Thus, the

results follow from Lemma A.3(a) and A.3(b).
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Case (2) both wN(Q) and wP(Q) exist: We will divide the proof of case (2) into three mutually

exclusive subcases: 
(2.a) wP(Q) ≥ wN(Q)
(2.b) wP(Q) < wN(Q) and ∆R(wP(Q), Q) ≥ 0
(2.c) wP(Q) < wN(Q) and ∆R(wP(Q), Q) < 0.

As we will prove next, in subcases (2.a) and (2.b), part (a) of this lemma holds. In subcase

(2.c), part (b) of this lemma holds.

(2.a) wP(Q) ≥ wN(Q)

Since wP(Q) ≥ wN(Q) ≥ c, applying equations (5) and (14), we have

∆R(w,Q) = ΠRP(p∗(w,Q), w,Q)−ΠRN(q∗min(w,Q), w,Q)

=


ΠRP(p̄(Q), w,Q)−ΠRN(p̄(Q), w,Q) for w ∈ [c, wN(Q)],
ΠRP(p̄(Q), w,Q)−Πu

RN
(qumin(w), w) for w ∈ [wN(Q), wP(Q)],

Πu
RP

(pu(w), w)−Πu
RN

(qumin(w), w) for w ≥ wP(Q).
(B-2)

From the definitions of wN(Q), wP(Q) and p̄(Q), it can be shown that ∆R(w,Q) is continuous

and differentiable in w. To help with the proof, we substitute from (5) and (14) into (B-2),

and take the derivative to obtain

d∆R(w,Q)

dw
=


0 for w ∈ [c, wN(Q)],

−Q+ aF (qumin(w)) for w ∈ [wN(Q), wP(Q)],

−aF (pu(w)) + aF (qumin(w)) for w ≥ wP(Q).

(B-3)

First, we show that ∆R(w,Q) ≥ 0 for any w ∈ [c, wP(Q)]. We prove this by contradiction.

Suppose there exists some wo ≤ wP(Q) such that ∆R(wo, Q) < 0. Notice that aF (qumin(w)) ≤

Q for w ∈ [wN(Q), wP(Q)] (since qumin(w) ≥ qumin(wN(Q)) = p̄(Q) for w ≥ wN(Q)). Thus,
d∆R(w,Q)

dw ≤ 0 for w ∈ [c, wP(Q)], and it must be that ∆R(wP(Q), Q) < 0. Also notice from

(B-2) that, for w ≥ wP(Q), capacity is no longer binding and the retailer’s profits under both

pricing policies are given by the profits in the uncapacitated problem: ∆R(w,Q) = ∆u
R
(w) for

w ≥ wP(Q). Combining the facts above, we must have

∆u
R
(wP(Q)) = ∆R(wP(Q), Q) < 0 and

d∆u
R
(w)

dw

∣∣∣∣
w=wP(Q)

=
d∆R(w,Q)

dw

∣∣∣∣
w=wP(Q)

≤ 0.

However, this contradicts Lemma A.3 since the function ∆u
R
(w) cannot be decreasing at a

w where ∆u
R
(w) is strictly negative. (See Figure 7 for the possible behaviors of ∆u

R
(w).)

Therefore, ∆R(w,Q) ≥ 0 for any w ∈ [c, wP(Q)].

Second, we show that ∆R(w,Q) ≥ 0 for w > wP(Q). Recall that for w ≥ wP(Q), ∆R(w,Q) =

∆u
R
(w) and we have shown above that ∆u

R
(wP(Q)) ≥ 0. Lemma A.3(a) and (b) together imply
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that once ∆u
R
(w) is positive for some w, ∆u

R
(w) remains positive for any larger w. Therefore,

∆R(w,Q) = ∆u
R
(w) ≥ 0 for w > wP(Q).

Combining the two intervals — w ∈ [c, wP(Q)] and w > wP(Q), we conclude that ∆R(w,Q) ≥

0 for w ≥ c.

(2.b) wP(Q) < wN(Q) and ∆R(wP(Q), Q) ≥ 0

Since wP(Q) < wN(Q), applying equations (5) and (14), we have

∆R(w,Q) = ΠRP(p∗(w,Q), w,Q)−ΠRN(q∗min(w,Q), w,Q)

=


ΠRP(p̄(Q), w,Q)−ΠRN(p̄(Q), w,Q) for w ∈ [c, wP(Q)],
Πu

RP
(pu(w), w)−ΠRN(p̄(Q), w,Q) for w ∈ [wP(Q), wN(Q)],

Πu
RP

(pu(w), w)−Πu
RN

(qumin(w), w) for w ≥ wN(Q).
(B-4)

From the definitions of wN(Q), wP(Q) and p̄(Q), it can be shown that ∆R(w,Q) is differen-

tiable in w. To help with the proof, we substitute from (5) and (14) into (B-4), and take the

derivative to obtain

d∆R(w,Q)

dw
=


0 for w ∈ [c, wP(Q)],

−aF (pu(w)) +Q for w ∈ [wP(Q), wN(Q)],

−aF (pu(w)) + aF (qumin(w)) for w ≥ wN(Q).

(B-5)

First, observe from (B-5) that d∆R(w,Q)
dw = 0 for w ∈ [c, wP(Q)]. Hence, given our assumption

that ∆R(wP, Q) ≥ 0, it follows that ∆R(w,Q) ≥ 0 for w ∈ [c, wP(Q)].

Second, notice that aF (pu(w)) ≤ Q for w ∈ [wP(Q), wN(Q)] (since pu(w) ≥ pu(wP(Q)) = p̄(Q)

for w ≥ wP(Q)). Therefore, we observe from (B-5) that d∆R(w,Q)
dw ≥ 0 for w ∈ [wP(Q), wN(Q)].

Since ∆R(wP, Q) ≥ 0 by assumption, it follows that ∆R(w,Q) ≥ 0 for all w ∈ [wP(Q), wN(Q)].

It remains to show that ∆R(w,Q) ≥ 0 for w > wN(Q). Notice from (B-4) that for w ≥ wN(Q),

∆R(w,Q) = ∆u
R
(w). We have shown above that ∆u

R
(wN(Q)) ≥ 0. Lemma A.3(a) and (b)

together imply that once ∆u
R
(w) is positive for some w, ∆u

R
(w) remains positive for any larger

w. Therefore, ∆R(w,Q) = ∆u
R
(w) ≥ 0 for w > wN(Q).

Combining the three intervals — w ∈ [c, wP(Q)], w ∈ (wP(Q), wN(Q)] and w > wN(Q), we

conclude that ∆R(w,Q) ≥ 0 for w ≥ c.

(2.c) wP(Q) < wN(Q) and ∆R(wP(Q), Q) < 0

Since wP(Q) < wN(Q), ∆R(w,Q) and d∆R(w,Q)
dw are given by (B-4) and (B-5), respectively. Ob-

serve that d∆R(w,Q)
dw = 0 for w ∈ [c, wP(Q)]. Hence, given our assumption that ∆R(wP(Q), Q) <

0, it must be that ∆R(w,Q) < 0 for w ∈ [c, wP(Q)].

Next, we consider the behavior of ∆R(w,Q) for w > wP(Q) by examining two subcases: (2.c.i)

∆R(wN(Q), Q) ≥ 0, and (2.c.ii) ∆R(wN(Q), Q) < 0.
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(2.c.i) : ∆R(wN(Q), Q) ≥ 0.

For w ∈ (wP(Q), wN(Q)], observe from (B-5) that d∆R(w,Q)
dw > 0 (since pu(w) > pu(wP(Q)) =

p̄(Q) for w > wP(Q)). Since ∆R(wP(Q), Q) < 0 and ∆R(wN(Q), Q) ≥ 0, it must be that

∆R(w,Q) crosses zero only once for some w ∈ (wP(Q), wN(Q)].

As for w ≥ wN(Q), observe from (B-4) that ∆R(w,Q) = ∆u
R
(w) when w ≥ wN(Q). By

Lemma A.3(a) and (b) together, once ∆u
R
(w) crosses zero at some w, it stays strictly

positive for larger w. Therefore, ∆R(w,Q) = ∆u
R
(w) > 0 for w > wN(Q)

Combining the three intervals — w ∈ [c, wP(Q)], w ∈ (wP(Q), wN(Q)] and w > wN(Q),

we conclude that ∆R crosses zero only once from below and stays strictly positive after-

ward (corresponding to part (b)(ii) of the lemma).

(2.c.ii) : ∆R(wN(Q), Q) < 0.

Recall that d∆R(w,Q)
dw = 0 for w ∈ [c, wP(Q)] and d∆R(w,Q)

dw ≥ 0 for w ∈ [wP(Q), wN(Q)]

from (B-5). Therefore, given the assumption that ∆R(wN(Q), Q) < 0, it must be that

∆R(w,Q) < 0 for w ∈ [c, wN(Q)].

For w > wN(Q), recall that ∆R(w,Q) = ∆u
R
(w). Since ∆R(wN(Q), Q) = ∆u

R
(wN(Q)) < 0,

the behavior of ∆R(w,Q) = ∆u
R
(w) for w > wN(Q) must be the same as the behavior

described in Lemma A.3(b).

Case (3) only wP(Q) exists: Consider now the case where wP(Q) ≥ c exists, but wN(Q) ≥ c does

not exist. The quantity sold under negotiation is not bounded by capacity for any w ≥ c.

Hence, ΠRN(q∗min(w,Q), w,Q) = Πu
RN

(qumin(w), w) for all w ≥ c. Given this fact and applying

equation (5), we have

∆R(w,Q) = ΠRP(p∗(w,Q), w,Q)−ΠRN(q∗min(w,Q), w,Q)

=

{
ΠRP(p̄(Q), w,Q)−Πu

RN
(qumin(w), w) for w ∈ [c, wP(Q)],

Πu
RP

(pu(w), w)−Πu
RN

(qumin(w), w) for w ≥ wP(Q).
(B-6)

Notice that (B-6) is a special case of (B-2). Therefore, case (3) collapses to case (2.a), and

∆R(w,Q) ≥ 0 for all w ≥ c.

Case (4) only wN(Q) exists: Consider now the case where wN(Q) ≥ c exists, but wP(Q) ≥ c

does not exist. The quantity sold under posted pricing is not bounded by capacity for any

w ≥ c. Hence, ΠRP(p∗(w,Q), w,Q) = Πu
RP

(pu(w), w) for all w ≥ c. Given this fact and

applying equation (5), we have

∆R(w,Q) = ΠRP(p∗(w,Q), w,Q)−ΠRN(q∗min(w,Q), w,Q)

=

{
Πu

RP
(pu(w), w)−ΠRN(p̄(Q), w,Q) for w ∈ [c, wN(Q)],

Πu
RP

(pu(w), w)−Πu
RN

(qumin(w), w) for w ≥ wN(Q).
(B-7)
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Depending on whether ∆R(wN(Q), Q) ≥ 0 or ∆R(wN(Q), Q) < 0, the result is the same as in

case (2.c.i) or (2.c.ii), respectively.

Proof of (c): If wP(Q) ≥ c exists, but wN(Q) ≥ c doesn’t, we must be in Case (3) discussed in

the proof of parts (a) and (b). Then, the result that ∆R(w,Q) ≥ 0 for all w ≥ c follows immediately.

Proof of (d): Since wP(Q) ≥ c exists, Cases (1) and (4) are ruled out. Furthermore, since

ŵR(Q) > c exists, Cases (2.a), (2.b), (3) are ruled out as ∆R(w,Q) ≥ 0 for all w ≥ c in these

cases, which does not permit the existence of ŵR(Q) > c. Hence, we must be in case (2.c): both

wP(Q) ≥ c and wN(Q) ≥ c exist, wP(Q) < wN(Q), and ∆R(wP(Q), Q) < 0. In the proof of case

(2.c), we have shown that ∆R(w,Q) < 0 for w ∈ [c, wP(Q)]. Hence, the wholesale price at which

∆R(w,Q) = 0, i.e., ŵR(Q), must be strictly greater than wP(Q).

Proof of (e): For ease of exposition, we prove the results when there exist market-clearing whole-

sale prices, wP(Q) ≥ c and wN(Q) ≥ c for a given Q. Notice that if neither wP(Q) ≥ c nor wN(Q) ≥ c

exists, then, under any pricing policy, there would be no feasible wholesale price (w ≥ c) that makes

the sales volume bounded by the supply chain capacity. Thus, the problem reverts to the case with

sufficient capacity, for which the result has already been established in Section A of this appendix.

If only one of wP(Q) ≥ c or wN(Q) ≥ c exists, then there would be no feasible wholesale price that

makes the sales volume bounded by the supply chain capacity under one of the pricing policies,

and the result would follow as a special case of the proof we provide here.

First, note from Lemma B.1(d) that the existence of ŵR(Q) > c implies that wN(Q) > wP(Q)

and ŵR(Q) > wP(Q). Since wN(Q) > wP(Q), using the expressions for the manufacturer’s profit

functions, given by (6) and (15), we have

∆M(w,Q) = ΠMP(w, p∗(w,Q), (Q))−ΠMN(w, q∗min(w,Q), Q)

=


0 for w ∈ [c, wP(Q)],

a(w − c)F (pu(w))− (w − c)Q ≤ 0 for w ∈ [wP(Q), wN(Q)],

a(w − c)F (pu(w))− a(w − c)F (qumin(w)) for w ≥ wN(Q).

(B-8)

Notice from above that ∆M(w,Q) ≤ 0 for w ≤ wN(Q). We next analyze the behavior of

∆M(w,Q) for w > wN(Q). Observe that, if w ≥ wN(Q), then the sales quantity will not be bounded

by the supply chain capacity Q under either pricing policy. Since capacity Q does not play any role

under either pricing policy when w ≥ wN(Q), ∆M(w,Q) is equal to ∆u
M

(w) and ∆R(w,Q) is equal

to ∆u
R
(w) for w ≥ wN(Q).

From (B-8), ∆M(w,Q) = a(w− c)
(
F (pu(w))− F (qumin(w))

)
for w ≥ wN(Q). Also, from (A-15),
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d∆R(w,Q)
dw = d∆u

R(w)
dw = −aF (pu(w)) + aF (qumin(w)) for w ≥ wN(Q). Then, we have

∆M(w,Q) = ∆u
M

(w) = −(w − c)d∆R(w,Q)

dw
= −(w − c)d∆u

R
(w)

dw
for w ≥ wN(Q) (B-9)

Since ∆M(wN(Q), Q) ≤ 0, d∆R(w,Q)
dw ≥ 0 at w = wN(Q). This observation will be used later in the

proof.

To show that ŵM(Q) exists and that ŵM(Q) ≥ ŵR(Q), we separately examine two cases: (1)

ŵR(Q) ≤ wN(Q) and (2) ŵR(Q) > wN(Q). Note that, by the definition of ŵR(Q), ŵR(Q) ≤ wN(Q)

is equivalent to ∆R(wN(Q), Q) ≥ 0, and ŵR(Q) > wN(Q) is equivalent to ∆R(wN(Q), Q) < 0.

(1) ŵR(Q) ≤ wN(Q) (equivalently, ∆R(wN(Q), Q) ≥ 0)

∆R(w,Q) ≥ 0 at w = wN(Q) by the assumption of this case. Furthermore, as we showed above,

∆R(w,Q) is locally increasing in w at w = wN(Q). Given that ∆R(w,Q) = ∆u
R
(w) for w ≥ wN(Q),

we can now apply Lemma A.3(b) to conclude that the function ∆R(w,Q) is unimodal in w for

w ≥ wN(Q) and peaks at some wo ≥ wN(Q). This implies that d∆R(w,Q)
dw changes sign from positive

to negative at wo ≥ wN(Q), which in turn implies that ∆M(w,Q) changes sign from negative to

positive precisely at this wo ≥ wN(Q) (see (B-9)). Hence, ŵM(Q) = wo ≥ wN(Q) ≥ ŵR(Q).

(2) ŵR(Q) > wN(Q) (equivalently, ∆R(wN(Q), Q) < 0)

Now, applying Lemma A.3(c), there must exist a ŵu
M
≥ ŵR(Q) ≥ wN(Q) such that ∆u

M
(w) ≤ 0

for w ≤ ŵu
M

, and ∆u
M

(w) ≥ 0 for w ≥ ŵu
M

. Now, recalling that ∆M(w,Q) = ∆u
M

(w) for w ≥ wN(Q),

the value of ŵu
M

yields ŵM(Q) in this case.

Proof of (f): The proof follows a similar argument to that of part (e).

Lemma B.2. Define ∆R(w,Q) = ΠRP(p∗(w,Q), w,Q) − ΠRN(q∗min(w,Q), w,Q). Suppose there

exists a unique ŵR(Q) > c such that ∆R(ŵR(Q), Q) = 0, ∆R(w,Q) < 0 for w < ŵR(Q), and

∆R(w,Q) > 0 for w > ŵR(Q). Consider the following optimization problem:

max
c≤w≤ŵR(Q)

ΠMN(w, q∗min(w,Q), Q) (B-10)

Let wo
N

(Q, cT) denote the optimal solution to (B-10) and GN(Q, cT) be the optimal value of the

objective function for a given capacity, Q, and a given cost of negotiation, cT. Then,

(a) wo
N

(Q, cT) = min{ŵR(Q), w∗
N

(Q)}.

(b) wN(Q) decreases in cT. Furthermore, dwN(Q)
dcT

= −1.

(c) ŵR(Q) decreases in cT. Furthermore, dŵR(Q)
dcT

< −1.

(d) If wo
N

(Q, cT) = ŵR(Q) for some cT = co
T

, then wo
N

(Q, cT) = ŵR(Q) for cT > co
T

.

(e) GN(Q, cT) decreases in cT.
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Proof of Lemma B.2

The proof of Lemma B.2 is similar to that of Lemma A.4 and mostly algebraic, therefore

omitted.

Lemma B.3.

(a) Suppose there exists a wN(Q) > c at a given Q. Then, dwN(Q)
dQ ≤ 0.

(b) Define ∆R(w,Q) = ΠRP(p∗(w,Q), w,Q)−ΠRN(q∗min(w,Q), w,Q). Suppose there exists a unique

ŵR(Q) > c such that ∆R(ŵR(Q), Q) = 0, ∆R(w,Q) < 0 for w < ŵR(Q), and ∆R(w,Q) > 0 for

w > ŵR(Q). Then, dŵR(Q)
dQ ≥ 0.

Consider now the following optimization problem:

max
c≤w≤ŵR(Q)

ΠMN(w, q∗min(w,Q), Q) (B-11)

Let wo
N

(Q) denote the optimal solution to (B-11) and GN(Q) be the optimal value of the objective

function for a given Q. Then,

(c) Suppose, for some Q = Qo, wo
N

(Qo) = w∗
N

(Qo). Then, wo
N

(Q) = w∗
N

(Q) for Q > Qo.

(d) GN(Q) increases in Q.

Proof of Lemma B.3

Proof of (a): For a given capacity Q, the market-clearing wholesale price under negotiation,

wN(Q), is defined so that qumin(wN(Q)) = p̄(Q) (see (13)). Hence, qumin(wN(Q)) = p̄(Q) will satisfy

the first-order condition of the retailer’s profit function under negotiation, Πu
RN

(qmin, w) at w =

wN(Q). Using the expression for ∂ΠuRN(qmin,w)
∂qmin

from (A-5) and the fact that qumin(w) satisfies the

first-order condition for Πu
RN

(qmin, w):

∂Πu
RN

(qmin, w)

∂qmin

∣∣∣∣
qmin=qumin(w)

= a(−qumin(w) + w + cT)f(qumin(w)) + aβF (qumin(w)) = 0.

Substituting w = wN(Q) and qumin(wN(Q)) = p̄(Q) in the above equation, we obtain the following

identity:

(
−p̄(Q) + wN(Q) + cT

)
f(p̄(Q)) + βF (p̄(Q)) = 0, or, − βF (p̄(Q))

f(p̄(Q))
+ p̄(Q) = wN(Q) + cT. (B-12)

When Q increases, p̄(Q) decreases (since aF (p̄(Q)) = Q) and, thus, β F (p̄(Q))
f(p̄(Q)) increases due to F

being IFR. Therefore, the left-hand side of the above identity decreases in Q. Hence, wN(Q) must

decrease in Q.

Proof of (b): We consider four cases depending on whether there exist wN(Q) ≥ c and/or wP(Q) ≥

c, that is whether there exists a feasible wholesale price (i.e. greater than or equal to c) at which
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the quantity sold under negotiation and/or posted pricing is bounded by capacity. Four cases are:

(1) both wN(Q) and wP(Q) exist, (2) only wN(Q) exists, (3) only wP(Q) exists, and (4) neither of

them exists.

(1) both wP(Q) and wN(Q) exist

Note from Lemma B.1(d) that wP(Q) < min{ŵR(Q), wN(Q)}. We will prove that dŵR(Q)
dQ ≥ 0 in

the following two subcases: (1.a) wP(Q) < ŵR(Q) < wN(Q), and (1.b) wP(Q) < wN(Q) ≤ ŵR(Q).

Consider the first subcase (1.a). By definition, ŵR(Q) satisfies ∆R(ŵR(Q), Q) = 0. Observe

from the expressions for ΠRP and ΠRN, given by (5) and (14) that

ΠRP(p∗(ŵR(Q), Q), ŵR(Q), Q) = Πu
RP

(pu(ŵR(Q)), ŵR(Q)) (since wP(Q) < ŵR(Q)), and

ΠRN(q∗min(ŵR(Q), Q), ŵR(Q), Q) = ΠRN(p̄(Q), ŵR(Q), Q) (since ŵR(Q) < wN(Q)).

Therefore, at w = ŵR(Q), the following identity must be satisfied:

ΠRN(p̄(Q), ŵR(Q), Q)−Πu
RP

(pu(ŵR(Q)), ŵR(Q)) = 0.

Implicit differentiation of the above identity with respect to Q yields:

0 =
dΠRN(p̄(Q), ŵR(Q), Q)

dQ
− dΠu

RP
(pu(ŵR(Q)), ŵR(Q))

dQ

= dp̄(Q)
dQ

∂ΠRN(qmin,w,Q)
∂qmin

∣∣∣
qmin=p̄(Q),w=ŵR(Q)

+ dŵR(Q)
dQ

∂ΠRN(qmin,w,Q)
∂w

∣∣∣
qmin=p̄(Q),w=ŵR(Q)

−dpu(ŵR(Q))
dQ

∂ΠuRP(p,w)
∂p

∣∣∣
p=pu(ŵR(Q)),w=ŵR(Q)

− dŵR(Q)
dQ

∂ΠuRP(p,w)
∂w

∣∣∣
p=pu(ŵR(Q)),w=ŵR(Q)

(B-13)

Note that the third term on the right-hand side of (B-13) is zero since pu satisfies the first-order

condition of Πu
RP

(p, w). Recall that

ΠRN(qmin, w,Q) = a

∫ ∞
qmin

[(1− β)x+ βqmin − w − cT]f(x)dx,

Πu
RP

(p, w) = a(p− w)F (p).

Taking the partial derivatives of these functions, we obtain

∂ΠRN(qmin, w,Q)

∂qmin
= a(−qmin + w + cT)f(qmin) + aβF (qmin),

∂ΠRN(qmin, w,Q)

∂w
= −aF (qmin), and

∂Πu
RP

(p, w)

∂w
= −aF (p).

Substituting the partial derivatives above in (B-13) and rearranging the terms, we obtain:

dŵR(Q)

dQ

(
F (p̄(Q))− F (pu(ŵR(Q)))

)
=
dp̄(Q)

dQ

[(
−p̄(Q) + ŵR(Q) + cT

)
f(p̄(Q)) + βF (p̄(Q))

]
(B-14)
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Note from (B-12) that
(
−p̄(Q) + wN(Q) + cT

)
f(p̄(Q)) + βF (p̄(Q)) = 0. Since ŵR(Q) < wN(Q), it

follows that (
−p̄(Q) + ŵR(Q) + cT

)
f(p̄(Q)) + βF (p̄(Q)) < 0.

Furthermore, dp̄(Q)
dQ ≤ 0 since p̄(Q) is such that aF (p̄(Q)) = Q. Hence, the right-hand side of

(B-14) is positive. We then consider the left-hand side of (B-14). Note that, since wP(Q) < ŵR(Q),

it follows that pu(ŵR(Q)) > pu(wP(Q)) = p̄(Q), where the equality is by definition of wP(Q).

Hence, F
(
p̄(Q)

)
> F

(
pu(ŵR(Q))

)
. Since the right-hand side of (B-14) is positive, we now conclude

dŵR(Q)
dQ ≥ 0.

Subcase (1.b) can be proven similarly by implicit differentiation of the same identity.

(2) only wN(Q) exists

We consider two separate subcases: (2.a) ŵR(Q) < wN(Q) and (2.b) wN(Q) ≤ ŵR(Q). The

proof of (2.a) is similar to case (1.a), and (2.b) is similar to case (1.b).

(3) only wP(Q) exists

Note that if wP(Q) exists but wN(Q) does not exist, Lemma B.1(c) shows that ∆R(w,Q) ≥ 0

for all w ≥ c. Therefore, ŵR(Q) does not exist, and this case cannot occur.

(4) both wP(Q) and wN(Q) do not exist

The analysis is similar to case (1.b).

Proof of (c): Suppose that wo
N

(Qo) = w∗
N

(Qo) for some Qo. Pick a capacity level Q′ such that

Q′ > Qo. We consider three cases depending on whether there exists a feasible wholesale price at

which the quantity sold under negotiation will be capacity-constrained at each capacity level, Qo

and Q′: (1) both wN(Qo) ≥ c and wN(Q′) ≥ c exist, (2) neither of them exists, and (3) wN(Qo) ≥ c

exists, but wN(Q′) ≥ c does not exist. (The case that wN(Qo) ≥ c does not exist and wN(Q′) ≥ c

exists cannot occur since wN(Q) decreases in Q, which is proven in part (a) of this lemma.)

(1) wN(Qo) ≥ c and wN(Q′) ≥ c

Note that wo
N

(Q) = min{ŵR(Q), w∗
N

(Q)} (from Lemma B.2(a)) and that w∗
N

(Q) = max{wN(Q), wu
N
}

(from Proposition 2). Therefore, given that wo
N

(Qo) = w∗
N

(Qo), it must be that ŵR(Qo) ≥ w∗
N

(Qo) =

max{wN(Qo), wu
N
}. Observe that wu

N
is constant with respect to Q and, from part (a) of this lemma,

wN(Q) decreases when Q increases. Also observe from part (b) of this lemma, ŵR(Q) increases as

Q increases. Therefore,

ŵR(Q′) ≥ ŵR(Qo) ≥ max{wN(Qo), wu
N
} ≥ max{wN(Q′), wu

N
},

and wo
N

(Q′) = w∗
N

(Q′).
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(2) neither of them exists

In this case, there does not exist a feasible wholesale price at which the quantity sold under

negotiation is capacity-constrained at either Qo or Q′. Hence, w∗
N

(Qo) = wu
N

and w∗
N

(Q′) = wu
N

. It

follows that

wo
N

(Qo) = min{ŵR(Qo), wu
N
} and wo

N
(Q′) = min{ŵR(Q′), wu

N
}.

Then, wo
N

(Q′) = w∗
N

(Q′) follows since wo
N

(Qo) = w∗
N

(Qo) = wu
N

and ŵR(Q′) ≥ ŵR(Qo) (from part

(b) of this lemma).

(3) only wN(Qo) ≥ c exists

In this case, w∗
N

(Q′) = wu
N

. The result follows from the following set of inequalities:

ŵR(Q′) ≥ ŵR(Qo) ≥ max{wN(Qo), wu
N
} ≥ wu

N

where the first inequality comes from part (b) of this lemma and the second inequality comes from

the fact that wo
N

(Qo) = w∗
N

(Qo) = max{wN(Qo), wu
N
}. Hence, wo

N
(Q′) = w∗

N
(Q′) = wu

N
.

Proof of (d): It is not difficult to check that ΠMN(w, q∗min(w,Q), Q) increases in Q. Therefore, if

Qo < Q′, then

GN(Qo) = ΠMN(wo
N

(Qo), q∗min(wo
N

(Qo), Qo), Qo) ≤ ΠMN(wo
N

(Qo), q∗min(wo
N

(Qo), Q′), Q′). (B-15)

Furthermore, since ŵR(Q) increases in Q, wo
N

(Qo) must be feasible for the optimization problem

(B-11) at Q = Q′ > Qo. Therefore,

GN(Q′) = ΠMN(wo
N

(Q′), q∗min(wo
N

(Q′), Q′), Q′) ≥ ΠMN(wo
N

(Qo), q∗min(wo
N

(Qo), Q′), Q′). (B-16)

Combining (B-15) and (B-16), we obtain GN(Q′) ≥ GN(Qo).
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