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Abstract

In this research, we consider a retailer selling products from two different generations, both
with limited inventory over a predetermined selling horizon. Due to the spatial constraints
or the popularity of a given product, the retailer may only display goods from one specific
generation. If the transaction of the displayed item cannot be completed, the retailer may
provide an alternative from another generation. We analyze two models - Posted-Pricing-First
model and Negotiation-First model. The former considers negotiation as being allowed on
the price of the second product only and in the latter, only the price of the first product is
negotiable. Our results show that the retailer can adopt both models effectively depending on
the relative inventory levels of the products. In addition, the retailer is better off compared to
the take-it-or-leave-it pricing when the inventory level of the negotiable product is high.

Keywords: Revenue management; multi-generation products; bargaining; dynamic programming.

1. Introduction

In a customer-oriented retail market, manufacturers constantly develop new products that satisfy

a variety of customer needs. As a result, the life cycle of a product becomes shorter and the co-

existence of multi-generation products is a prevailing phenomenon. For example, a car dealership

of Toyota may exhibit 2011 Camry cars in the showroom but stock a number of 2010 Camrys in

the warehouse. Apple retail stores mainly display iPhone 4G phones but still maintain a certain

inventory level of iPhone 3GS phones upon request. Both generation products are available for

customers to purchase, depending on their personal preferences. When the latest version of the

product is released into the market, the retailer tends to promote the new generation product

because of its popularity, while in the case of the previous generation, the retailer would rather
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reduce the list price and/or allow customers to bargain the price down. For instance, before the

latest Macbook Pro 15.4-inch Laptop (MB985LL/A) became available in the market in June 2009,

the previous generation MacBook Pro 15.4-inch Laptop (MB470LL/A) was sold at a price of $1,999

based on the data on Apple’s official website. Since then, one finds the price of the previous model

starts from $1,500, which implies that retailers cut the price of the previous generation product so

as to clear their inventories. Not surprisingly, this brings about the problem of determining price

and inventory for multi-generation products in the current retailing environment.

From the retailers’ point of view, displaying the full range of multi-generation products at the

same time may not be the best option. Instead, responding to either lack of space on showroom

floors or shelves or the specific requirements of manufacturers, retailers will limit displays to those

products with relatively high profit margins 1. Therefore, a customer considering purchasing a

Toyota Camry can only observe the 2011 model when visiting the dealership. If the transaction

fails, the dealer will seek to keep the transaction alive by offering the 2010 Camry. However, not all

customers will consider the salesman’s second offer, simply because they have a strong preference for

the latest edition of the car. Similarly, certain customers have a predilection for previous generation

products. As a result, in the case of some retailers, the price of the previous generation, such as

Air Jordan series shoes, is even higher than that of the latest generation.

When selling the latest generation products, retailers can use a take-it-or-leave-it pricing strat-

egy under which customers and the retailer make a transaction based on the posted price announed

by the retailer. For example, the latest generation of MacBook Pro 15.4-inch Laptop (MB985LL/A)

is sold at a price of $1,999 in US and there does not exist space for customers to bargain the price

down. However, for the automobile industry, negotiation is common so that customers arriving

in the dealership may initiate negotiation via a series of offers and counteroffers to get a better

deal. Differences in sales formats basically depend on industry characteristics and the products

themselves. If the transaction of the latest generation product fails, the sales formats of the pre-

vious generation product may change. One could observe that the retailer adopts various sales

formats when selling two products from different generations. Apple franchised retailers do not al-

low customers to bargain for laptop products due to the request of that manufacturer. For previous

generation products, however, negotiation will be offered by some retailers, and helps the retailers

clear their inventories. For the automobile industry, on the other hand, a Toyota dealer may allow

1The latest generation products generally utilize the advantages of new technology and operations process. Thus,
the reduction in costs of production and materials will result in an increase in the profit margin of the latest products.
For instance, it is reported that the cost of all parts inside the new generation of iPod nano drops about 18% per
unit compared with the previous generation (Hesseldahl, 2007).
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negotiation on the product of 2011 Toyota Camry. Compared to the latest version of the cars,

the dealer will set a discount price for the 2010 model. When the customer asks for the previous

generation, room for bargaining is relatively limited, which is regarded as take-it-or-leave-it pricing.

In this research, we model the pricing decisions of the retailer when she sells products from

two different generations for a given period of time, each with limited inventories. We consider a

dynamic programming model that characterizes the pricing policies of both products under a pair

of different inventory levels and the time remaining to the end of the selling season. To analyze

realistic pricing decisions in a variety of industries, we consider two general models, namely the

Posted-Pricing-First and the Negotiation-First models. In both cases, we assume customers can

only observe one product at a time due to limited showroom space or the market condition in which

the retailer hopes to promote one product rather than another. In the Posted-Pricing-First model,

the retailer does not allow negotiation on the price of the first product. If the transaction fails,

customers may consider purchasing the other product whose price is negotiable. In the Negotiation-

First model, however, the retailer reverses the order of the sales formats by accepting the request

for negotiation on the price of the first product. Similarly, the retailer offers the second product

based on take-it-or-leave-it pricing to customers who do not purchase the first product.

Customers are categorized into two types – price-takers and bargainers. If the price of the

product is negotiable, a price-taker simply buys the product if his reservation price is above the

posted price, whereas the bargainer will bargain the price for a discount. Furthermore, when the

retailer disallows negotiation, all customers, whether price-takers or bargainers, follow the take-it-

or-leave-it policy. We use the generalized Nash bargaining solution (GNBS) to model the outcome of

negotiation between bargainers and the retailer. Under GNBS, bargainers with higher willingness-

to-pay will pay for a product at a higher price up to the posted price. For both models, we find

that the posted price of the negotiable product increases when bargainers make up the majority of

the customer population and/or the retailer plays a leading role in negotiation. These observations,

however, do not necessarily hold for the other product. In addition, to compare the posted prices

of the second product under both models, the price of the negotiable product is higher than that

under take-it-or-leave-it pricing, in that the retailer tends to raise the posted price and collect excess

revenue from bargainers with higher reservation prices. We have two interesting findings from our

numerical study. The posted price of a product may decrease in the time remaining to the end of

the selling season which is different from the observation in traditional dynamic pricing literature.

Also in certain circumstances, negotiation may hurt the retailer.

We extend our general models in two directions. In the first, we consider a situation under
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which the retailer adjusts the belief of the customer’s reservation price distribution on the second

product after the transaction of the first product fails. This adjusted model is mostly applied to

the case when the latest generation is always preferable (e.g., iPhone 4G, and Toyota Camry 2011

model). In the second, we focus on the case where the prices of both products are negotiable. We

investigate the optimal pricing decisions and the associated revenue of the retailer and compare

them with the general models. The extended models are analyzed in the appendix.

The remainder of this paper is organized as follows. Section 2 provides a survey of the relevant

literature. Sections 3 and 4 describe our two dynamic programming models and derive analytical

results. We propose the results of the numerical study in Section 5. A discussion of results and

future research directions is included in Section 6. The discussions of extended models and all the

proofs are relegated to the appendix.

2. Literature Review

We review the literature from two aspects: (1) dynamic pricing of limited inventories, and (2)

negotiation between two parties. Research in dynamic pricing with limited inventories has been

intensively conducted in the last decade since the pioneering works by Gallego and van Ryzin

(1994), and Bitran and Mondschein (1997). In their papers, when facing limited inventories of a

product over a short selling season, the seller will constantly adjust the price so that his expected

total revenue is maximized. Extensive reviews on this subject are provided in Elmaghraby and

Keskinocak (2003) and Bitran and Caldentey (2003). Researchers have explored dynamic pricing

topics from various perspectives. Among them, Netessine et al. (2006) and Aydin and Ziya (2008)

consider cross-selling. Aydin and Ziya (2009) consider the scenario under which the seller offers

a personalized price based on the information of individual customer’s willingness-to-pay. Ziya

(2009) extends the work of Aydin and Ziya (2009) to more general conditions which lead to simple

optimal pricing policies. In addition, Popescu and Wu (2007) discuss the optimal pricing policies

when consumers form a reference price while Ahn et al. (2007) consider a scenario in the setting

of multiple periods where demand is affected by the price. Transchel and Minner (2009) combine

the issues of dynamic pricing and economic order quantity (EOQ) and Koenig and Meissner (2010)

compare dynamic and listing pricing policies when selling multiple products that consume a single

resource and investigate the risk of adopting listing pricing.

Some articles study the effect of the presence of strategic customers on dynamic pricing. The

presence of forward looking customers is considered by Aviv and Pazgal (2008) and advanced selling

is considered in Liu and van Ryzin (2008). Elmaghraby et al. (2008) determine a markdown pricing
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mechanism while buyers purchase multiple units and Dasu and Tong (2010) consider customers

anticipate price policies. Others that investigate pricing decisions when customers are strategic

include Su (2007), and Kuo et al. (2009a). Regarding dynamic pricing for multiple products,

several articles have appeared, such as Zhang and Cooper (2005), Maglaras and Meissner (2006),

and Suh and Aydin (2009). In addition, Lin and Sibdari (2009) adopt the multinomial logit (MNL)

demand model to consider dynamic pricing competition under different information structures.

Sibdari and Pyke (2010) analyze dynamic pricing with the stockpile of the products. Differing

from the existing literature, our problem assumes that the retailer sells two products, and an

arriving customer can only observe one product at a time due to limited storage or exhibition

space. The retailer can decide on the price of which product negotiation is allowed. Our main

contribution is to provide a comparison between two models to determine whether retailers would

be better off by allowing negotiation on specific types of products. In addition, under our setting,

it can be shown that negotiation is not necessarily beneficial to the retailer.

Bargaining is a major research topic in relation to our work, and has been intensively studied in

literature, especially in the fields of economics and operations management. A detailed introduction

of bargaining theory is provided by Fudenberg and Tirole (1991) as well as Muthoo (1999). One of

the classic models in bargaining theory is the Nash bargaining solution. Under the Nash bargaining

solution, two parties with equal bargaining power negotiate for a pie that is split based on their

surplus and the disagreement payoffs. The Nash bargaining solution can be extended to a more

general version – the generalized Nash bargaining solution, in which two parties have different

bargaining powers and the one who owns a relatively larger bargaining power gains a larger fraction

of the total surplus. Another classic model in bargaining theory is the Rubinstein alternating-offers

model (Rubinstein 1982) in which two parties split a pie based on a series of offers and counteroffers.

Unlike the Nash bargaining solution that only focuses on the outcome of negotiation, Rubinstein’s

model emphasizes the bargaining process and contains a detailed discussion. This bargaining

process leads to the same equilibrium as the generalized Nash bargaining solution when the time

intervals between two subsequent offers are close to zero and the discount factor is close to one. As

a result, the generalized Nash bargaining solution can be simply applied to a problem that discusses

the negotiation process between two parties.

In our study, the generalized Nash bargaining solution is being used for exploring the negoti-

ation between the retailer and the arriving bargainer. The total surplus between the two parties

is determined by the customer’s valuation, the posted prices, and the marginal revenues of the

products; the latter of which depends on the inventory levels of the two products and the time
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remaining to the end of the selling season. The marginal revenues of the products form as the

disagreement payoffs and the retailer will adjust the posted prices of two products based on time

and inventories on hand. When the bargainer’s valuation of the product is below the posted price,

the total surplus is determined by the difference between the valuation and the marginal revenue.

When the valuation is above the posted price, however, the total surplus is the difference between

the posted price and the marginal revenue due to the fact that the bargainer is reluctant to reveal

his real valuation and to share excess surplus with the retailer. Therefore, the price that a bar-

gainer pays is always less than the posted price which is the exact price paid by the price-takers.

Under our setting, bargainers always gain a larger surplus compared to price-takers with the same

valuation of the product.

Several papers consider negotiation with a single retailer (e.g., Riley and Zeckhauser, 1983,

Wang, 1995, Arnold and Lippman, 1998, Roth et al., 2006, Kuo et al., 2009b, Kuo et al., 2009) and

with competing retailers (e.g., Bester, 1993, Adachi, 1999, Desai and Purohit, 2004). The Nash bar-

gaining solution we adopt is also commonly used in literature. Among these papers, Wang (1995)

shows negotiation is always a better mechanism when implementing cost is low enough. Bester

(1993) investigates the bargaining between the seller and the end customers with quality uncer-

tainty. Desai and Purohit (2004) consider a model with two competing retailers who choose either

posted pricing or negotiation whereas Roth et al. (2006) consider a scenario in which customization

services are offered by service providers. Kuo et al. (2009b) analyze how the manufacturer uses the

wholesale-price-only contract to induce the retailer to adopt either posted pricing or negotiation.

Kuo et al. (2009) discuss the optimal pricing strategies in a supply chain when price-takers and

bargainers co-exist.

A fair amount of research includes negotiation within the supply chain management context.

Nagarajan and Sosic (2006) provides a detailed review of cooperative bargaining theory in supply

chains. In addition, Nagarajan and Bassok (2002) consider supplier alliance in the assembly prob-

lem. Iyer and Villas-Boas (2003) study negotiation in distribution channel relationships. Dukes and

Gal-Or (2003) apply the Nash bargaining solution to advertising. Wu (2004) uses the Rubinstein’s

model to find the coordinating contracts. Furthermore, Gurmami and Shi (2006) discuss the design

of a supply chain contract when the supplier is unreliable in delivery, and Lovejoy (2010) includes

negotiation in a series supply chain.
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3. Model Description

We consider a scenario in which a retailer is selling two products (denoted by product i, i = 1, 2),

each with limited inventories over a fixed selling horizon. The selling horizon can be divided into

T periods short enough so that at most one arrival occurs during each period. We assume the

probability that a single arrival occurs in one period is λ ∈ [0, 1]. An arriving customer can only

observe product 1 due to limit of display space or the retailer’s selling strategy. If the customer fails

to buy product 1, the retailer will offer the alternative – product 2. The timing of the events in each

period is as follows. At the beginning of each period, the retailer offers product 1 and announces

the posted price, p1, to the arriving customer. If the customer purchases the item, then the period

ends, otherwise, the retailer provides product 2 at the posted price, p2. The customer population

consists of two types - price-takers and bargainers. Let q ∈ (0, 1) be the fraction of bargainers in

the customer population, and 1− q be the fraction of price-takers. In this research, we consider the

case where the retailer is able to decide whether she allows the customers to bargain for a specific

product (either product 1 or product 2, but not both). If the retailer allows negotiation for the price

of a specific product, then bargainers seek to negotiate for a price discount from the posted price,

and price-takers, on the other hand, either accept the posted price and purchase the item or simply

reject the offer. If a specific product is not allowed for negotiation, the purchase decisions of both

bargainers and price-takers follow the take-it-or-leave-it policy. From the retailer’s perspective, for

each product, there exists an opportunity cost, ci, below which she would never sell. Such cost

associated with each product may vary in each period and is determined by the remaining time

of the selling season, and the inventory levels of both products. The goal of the retailer is to set

the posted prices p1 and p2 in each period to maximize the expected total revenue over the selling

horizon.

Each customer, whether a bargainer or a price-taker, has a respective reservation price for each

product (the highest price a customer is willing to spend on the product). Let ri be the reservation

price of an arriving customer for product i. The reservation price of each individual customer is

the information which remains unrevealed to the retailer. To the retailer, the reservation prices

of the customer population are regarded as a random variable, Ri, over the interval [0, bi] with

the cumulative density function, Fi(·) and the probability density function, fi(·). We assume Fi

is strictly increasing and define F i(·) := 1 − Fi(·). Notice that the preference of each individual

customer for both products may vary to the extent that one may prefer the product of the latest

generation (e.g., iPhone 4G) while others would rather purchase old-fashioned generations (e.g., Air
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Jordan series)2. As a result, for the purpose of generality, we do not impose any specific assumptions

on the reservation price distribution of each product. In the appendix, we will consider a model

under which all customers prefer the product of the latest generation (product 1). In this case, the

posted price of product 1 forms the upper bound on the customer’s reservation price distribution

for product 2, provided that customers’ valuation for the first product is always better than that

for the other.

For each product, the retailer can determine the sales format – allow or disallow negotiation.

For product i, if the retailer does not allow negotiation, each customer, whether a price-taker or

a bargainer, compares the observed posted price, pi, with his reservation price ri. The customer

with ri will accept the posted price and purchase the product if pi ≤ ri, and reject otherwise. If

the retailer allows negotiation for the price of product i, the price-taker will purchase the product

if pi ≤ ri. The bargainer, however, will try to negotiate the price down and the final price that

he actually pays for the product depends on his reservation price ri. Therefore, not all bargainers

purchase the product at the posted price. In this model, we assume all customers are myopic in the

sense that he will purchase product 1 as long as the surplus of purchasing product 1 is non-negative.

In this paper, the detailed process of negotiation is not the major concern, instead we simply

consider the negotiation outcome based on the generalized Nash bargaining solution (GNBS) (for

details, see Muthoo, 1999). In fact, a large stream of research adopts GNBS to describe the

outcome of negotiation (Bester, 1993, Wang, 1995, Arnold and Lippman, 1998, and Kuo et al.,

2009a). Under the generalized Nash bargaining solution, the total surplus (the difference between

the bargainer’s reservation price and the opportunity cost of the product) will be split by the retailer

and a bargainer based on the relative bargaining power. Let β ∈ (0, 1) be the relative bargaining

power of the retailer and 1 − β be the relative bargaining power of bargainers. If a bargainer’s

reservation price is less than the opportunity cost of the product, ci, then the agreement between

both parties is not achieved. On the other hand, if the reservation price of a bargainer exceeds the

opportunity cost of the product, his negotiation behavior will depend on whether his reservation

price is higher than the posted price of the product. For those bargainers whose reservation prices

are lower than the posted price, the final price is determined by the bargainer’s reservation price,

the cost of the product, and the relative bargaining power between the two parties. According to

the generalized Nash bargaining solution, when the bargainer’s reservation price is ri ∈ [ci, pi), the

2To the extreme, if a specific customer is only willing to buy product 2, then his reservation price for product 1
can be denoted by r1 = 0. Same logic can be applied to product 1 as well.
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relationship between these parameters is expressed as the following function:

max
pN

(ri − pN)1−β (pN − ci)β (1)

subject to ci ≤ pN ≤ ri

where pN is the price agreed after negotiation. Note that for a bargainer who succeeds in negotiation,

a surplus ri − pN is gained. For the retailer, on the other hand, an item is sold at a price higher

than ci, and the surplus is pN − ci. Based on GNBS, the transaction is always committed when

ri ≥ ci, and the party who has relatively higher bargaining power will gain more surplus.

Consider now that the bargainer’s reservation price is higher (i.e., ri ≥ pi). After he has

observed the posted price, he tends to adjust his reservation price down to pi and negotiate the

price with the retailer. The final price that the bargainer pays will maximize the following problem:

max
pN

(pi − pN)1−β (pN − ci)β (2)

subject to ci ≤ pN ≤ pi

Note that the setting of negotiation outcome reflects two facts. First, a bargainer with a reservation

price higher than the posted price is reluctant to share excess surplus (ri − pi) with the retailer

under negotiation. In addition, the posted price not only serves as the upper bound of the final

price that a bargainer pays, but also has effects on the outcome of negotiation. Let p∗
N

(ci, ri, pi) be

the final price agreed after negotiation. Based on the aforementioned discussion (equations (1) and

(2)), we can characterize the optimal price agreed by both parties after negotiation:

p∗
N

(ci, ri, pi) = min

{
arg max
ci≤pN≤ri

[
(ri − pN)1−β(pN − ci)β

]
, arg max
ci≤pN≤pi

[
(pi − pN)1−β(pN − ci)β

]}
= min{βri + (1− β)ci, βpi + (1− β)ci}

=


βpi + (1− β)ci if ri ≥ pi;

βri + (1− β)ci if ci ≤ ri < pi.
(3)

Notice that if β → 1, the negotiation outcome is dominated by the retailer, in which the final price

agreed by both parties is either the bargainer’s reservation price, ri, or the posted price of the

product, pi, whichever is smaller. If β → 0, the bargainer has full bargaining power so that he

can drive the final price down to ci. Also note that the final price that a bargainer pays is never

above the posted price. That is, under negotiation, bargainers always purchase the products at a

lower price compared with price-takers. In fact, bargainers with reservation prices lying within this

range (ci ≤ ri < pi) are the target customers, from which the retailer discriminates prices better.
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It is because under negotiation the final price of the product sold to the bargainer is based on his

individual reservation price instead of a fixed posted price. Observe that the retailer can always set

a higher posted price in order to receive more revenue from the bargainers under negotiation; doing

this will however exclude the price-takers with lower reservation prices. This is the tradeoff the

retailer faces when determining the posted price. In the following two subsections, we will consider

two models – Posted-Pricing-First Model and Negotiation-First Model, depending on whether the

price of the product is allowed for negotiation.

3.1 Posted-Pricing-First Model

We consider a scenario in which the retailer only allows negotiation for the price of product 2. When

transacting with the retailer for product 1, all customers follow the take-it-or-leave-it principle

(purchase if r1 ≥ p1). If a customer successfully buys product 1, the period ends; otherwise, the

retailer will offer product 2 whose price is negotiable. The price-taker will pay p2 if r2 ≥ p2. If the

customer is a bargainer, the final price that he pays is based on the result shown in equation (3),

in which he pays βr2 + (1− β)c2 if r2 ∈ [c2, p2) and βp2 + (1− β)c2 if r2 ≥ p2.

The retailer’s revenue is determined by the number of remaining selling periods and the in-

ventory levels of the products. Let t denote the number of the remaining selling periods where

t = 1, . . . , T , and x ≥ 0 and y ≥ 0 denote the inventory levels of product 1 and product 2, re-

spectively. For each t, the retailer determines p1 and p2 given x units of product 1 and y units of

product 2 so as to maximize her expected total revenue. Let VP(x, y, t) be the retailer’s expected

total revenue with t periods to go and the inventory levels x and y for products 1 and 2, respec-

tively. As a result, the retailer’s revenue maximization problem is modeled based on the dynamic

programming setting:

VP(x, y, t) = max
p1,p2

JP(p1, p2, x, y, t) for x, y > 0, t = 1, . . . , T,

where

JP(p1, p2, x, y, t) = λF 1(p1)(p1 + VP(x− 1, y, t− 1))

+λqF1(p1)[
∫ b2
p2

[βp2 + (1− β)c2]f2(x)dx+
∫ p2
c2

[βx+ (1− β)c2]f2(x)dx

+F 2(c2)VP(x, y − 1, t− 1)] + λ(1− q)F1(p1)F 2(p2)(p2 + VP(x, y − 1, t− 1))

+(1− λF 1(p1)− λqF1(p1)F 2(c2)− λ(1− q)F1(p1)F 2(p2))VP(x, y, t− 1).

Boundary condition: VP(x, y, 0) = 0 for x, y ≥ 0, and VP(0, 0, t) = 0 for t = 1, . . . , T. (4)
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Note that when the inventory level of either product is zero, the terms in the revenue function,

JP(p1, p2, x, y, t), with respect to that product will vanish as the retailer only considers single-

product revenue optimization problem (see Bitran and Mondschein, 1997, and Kuo et al., 2009a).

Furthermore, for the retailer, the opportunity cost of product 1 with t periods to go is equivalent

to the marginal revenue of the product, that is, VP(x, y, t − 1) − VP(x − 1, y, t − 1). Similarly, the

cost of product 2 is VP(x, y, t− 1)− VP(x, y − 1, t− 1). Then the costs of products 1 and 2 with t

periods to go, depending on the inventory levels x and y, can be expressed as follows:

c1 = c1(x, y, t) := VP(x, y, t− 1)− VP(x− 1, y, t− 1), and

c2 = c2(x, y, t) := VP(x, y, t− 1)− VP(x, y − 1, t− 1). (5)

For simplicity, we use ci as the shorthand notation of ci(x, y, t) for i = 1, 2. Therefore, the

function JP(p1, p2, x, y, t) can be rewritten as

JP(p1, p2, x, y, t) = λF 1(p1)(p1 − c1)

+λqF1(p1)

[∫ b2

p2

[βp2 + (1− β)c2]f2(x)dx+

∫ p2

c2

[βx+ (1− β)c2]f2(x)dx

−F 2(c2)c2
]

+ λ(1− q)F1(p1)F 2(p2)(p2 − c2) + VP(x, y, t− 1). (6)

3.2 Negotiation-First Model

In this model, we suppose the retailer allows negotiation for the price of product 1 only. For

product 1, bargainers and price-takers follow their individual purchasing behavior, respectively. If

an arriving customer is a price-taker, he will purchase product 1 only if r1 ≥ p1. If the customer is

a bargainer, he will pay βp1 + (1− β)c1 if r1 ≥ p1 and βr1 + (1− β)c1 if r1 ∈ [c1, p1). If customers

successfully buy product 1, then the period ends; otherwise, the retailer will offer product 2 at the

take-it-or-leave-it price, p2. Customers will buy product 2 if their reservation price is higher than

the posted price p2. Similarly, given the inventory levels x and y, in each period, the retailer will

set the posted prices, p1 and p2, to maximize the expected total revenue denoted by VN(x, y, t). As

a result, the retailer’s revenue maximization problem is given by

VN(x, y, t) = max
p1,p2

JN(p1, p2, x, y, t) for x, y > 0, t = 1, . . . , T,

where
JN(p1, p2, x, y, t) = λq

[∫ b1
p1

[βp1 + (1− β)c1] f1(x)dx+
∫ p1
c1

[βx+ (1− β)c1] f1(x)dx

+F 1(c1)VN(x− 1, y, t− 1)
]

+ λ(1− q)
[
p1F 1(p1) + F 1(p1)VN(x− 1, y, t− 1)

]
+λ [qF1(c1) + (1− q)F1(p1)]F 2(p2) [p2 + VN(x, y − 1, t− 1)]

+
[
1− λ(qF 1(c1) + (1− q)F 1(p1) + (qF1(c1) + (1− q)F1(p1))F 2(p2))

]
VN(x, y, t− 1).
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Boundary condition: VN(x, y, 0) = 0 for x, y ≥ 0, and VN(0, 0, t) = 0 for t = 1, . . . , T. (7)

Using the same expression as in equation (5), JN(p1, p2, x, y, t) can be simplified as follows:

JN(p1, p2, x, y, t) = λq

[∫ b1

p1

[βp1 + (1− β)c1] f1(x)dx+

∫ p1

c1

[βx+ (1− β)c1] f1(x)dx− F 1(c1)c1

]
+λ(1− q)F 1(p1)(p1 − c1) + λ [qF1(c1) + (1− q)F1(p1)]F 2(p2)(p2 − c2)

+VN(x, y, t− 1). (8)

Similar to the Posted-Pricing-First model, the retailer will consider the single-product revenue

maximization problem when she has no inventory of either product in stock.

Remark 1. Our models are inherently applicable to a scenario under which the latest gener-

ation products do not have limited inventories by assuming x > T . In this case, the opportunity

cost of product 1, c1, is equal to zero, and the associated posted price should be lower compared

to that in the limited inventory level case. In addition, our analysis in the next section remains

unaltered. On the other hand, one may relax the assumption of the fixed time horizon in both

models. In fact, when the number of remaining selling periods is sufficiently large, the opportunity

costs of both products are relatively high, and hence, the retailer always targets the customers with

high reservation price. In this sense, negotiation provides less benefit to the retailer compared to

dynamic pricing.

Remark 2. Our setting can be applied to the case where all arriving customers are aware of

the fact that both generation products are available for purchase or both products are displayed

simultaneously, while the retailer only announces the price of the second product after the purchase

decision of the arriving customer for the first product has been made. Furthermore, the potential

customers may know the average selling prices of the products, such as automobiles and consumer

electronic products, in the local area from the Internet. However, the posted prices tend to vary

from retailer to retailer based on their cost structures and the scales of the channel. If the price of

each product is revealed to the arriving customer at the same time, the purchase decision made by

the customer is according to comparing the surplus between two products. Such strategic customer

behavior may result in the issues of price competition and product line selection, and thus, is

beyond the scope of this paper.

Remark 3. In our model, we focus on the case under which each customer is quoted a price

of product 1 upon arrival. This assumption is appropriate under dynamic pricing settings in which

the retailer intends to sell products under a relatively short selling horizon and the cost of changing

the price tags is negligible. We acknowledge that there exists some limitations in our model, for
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example, for cases where price-takers simply leave quietly without asking for product 2. Such

scenario is beyond the scope of the paper and we leave this possibility as a fruitful direction for

future work.

4. Analysis

In this section, we characterize the optimal prices of the retailer that maximize the expected total

revenue in both models. For the Negotiation-First model, observe from equation (8) that if all

customers are bargainers (i.e., q → 1), the retailer has the incentive to set the posted price of

product 1 as high as possible; this price allows the retailer to do better price discrimination. On

the other hand, if the customer population only consists of price-takers (i.e., q → 0), the posted

price of product 1 only depends on its opportunity cost, c1, and the customer’s reservation price

distribution, F1(x). In this scenario, the problem can be simply solved and has been discussed

widely in the dynamic pricing literature (see Gallego and van Ryzin 1994, Bitran and Mondschein

1997, and Kuo et al. 2009a). The decision on the posted price of product 2 is irrelevant to

the posted price of product 1, p1, but the retailer’s expected revenue as accrued from product

2 is indeed affected by the value of p1. With a higher p1, fewer customers can afford product

1. Therefore, a portion of the customers, λ [qF1(c1) + (1− q)F1(p1)]F 2(p2), will successfully buy

product 2. Similarly, a lower p1 induces more purchases of product 1, and thus, fewer customers

will buy product 2.

Likewise, in the Posted-Pricing-First model, the retailer disallows price negotiation for product

1. That is, all customers can be regarded as price-takers. If the retailer raises the posted price of

product 1, p1, too high, then more customers cannot afford product 1 and λF1(p1) of the customers

will consider buying product 2. Note that the retailer can always reduce p1 if clearing the inventory

of product 1 is a major concern, though doing so will result in a lower profit margin. When

determining p1, the retailer also needs to consider the potential revenue accrued from product 2,

received from both price-takers and bargainers. A higher fraction of bargainers induces the retailer

to set a higher posted price of product 2, enabling the retailer to gain more surplus under negotiation

among bargainers with high reservation prices. The decision of the posted price for product 2 is

similar to the case when the retailer chooses the posted price of product 1 in the Negotiation-First

model. Notice that if q → 0 in both models, these two models are identical, in that, negotiation

does not exist for both products.

Before characterizing the technical propositions of the posted prices of the two products, we

require the following assumptions on the customer’s reservation price distributions and the fraction
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of bargainers in the customer population:

Assumption 1. The cdf of the customer’s reservation price distribution for product i, Fi(·), has

increasing failure rate. That is, fi(·)
F i(·)

is increasing.

Assumption 2. The fraction of bargainers in the customer population, q, is less than 1
2 .

The first assumption provides some regularity to the revenue function. Several probability dis-

tributions which are commonly used have increasing failure rates such as uniform, Erlang, normal,

weibull with shape parameter greater than one, and their truncated versions. The restriction of q

in the second assumption remains consistent with Kuo et al. (2009a), in which as in our model,

the retailer has the latitude to give a discount to retain bargainers but does not necessarily use it

as a major sales mode.

Throughout the paper, we use model P for the Posted-Pricing-First model and model N to stand

for the Negotiation-First model. The following lemma shows that under the given assumptions, the

retailer’s expected total revenue functions are well-behaved so that the optimal posted prices can

be determined uniquely for both models.

Lemma 1. Suppose that the retailer has x and y units of inventory for products 1 and 2, re-

spectively, with t periods to go until the end of the selling horizon. For model s, s = P,N , if

Assumptions 1 and 2 hold, there exists a unique pair of the posted prices, p1 and p2, that satisfies

the first order conditions of Js(p1, p2, x, y, t) and maximizes Js(p1, p2, x, y, t).

Notice that if the customer’s reservation prices for both products are uniformly distributed, the

assumption of q being less than 1
2 is not necessary. In fact, when distributions for both products

are uniform, one can check that for any q ∈ (0, 1), both posted prices are uniquely determined and

satisfy the first order conditions of the retailer’s expected revenue function. Let p∗s1(x, y, t) and

p∗s2(x, y, t) be, respectively, the optimal posted prices of product 1 and product 2 with inventory

levels x and y with t periods to go for model s, s = P,N . In the remainder of this section, we

characterize the properties of the optimal posted prices as well as the associated expected total

revenue of the retailer in both models.

First, we discuss the effects of the fraction of bargainers, q, and the relative bargaining power

of the retailer, β, on the posted prices, p∗s1(x, y, t) and p∗s2(x, y, t) for model s, s = P,N .

Proposition 1. Suppose that the retailer adopts model P with x and y units of inventory for

products 1 and 2, respectively, and t periods to go until the end of the selling horizon. Then:
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(a) The optimal posted price of product 2, p∗
P2

(x, y, t), increases in the fraction of bargainers, q.

(b) The optimal posted prices of products 1 and 2, p∗
P1

(x, y, t) and p∗
P2

(x, y, t), both increase in the

relative bargaining power of the retailer, β.

When the retailer adopts model P , the fraction of bargainers, q, influences not only the posted

price of product 2, but also the posted price of product 1. A high fraction of bargainers enables

the retailer to set a high posted price, which expands the range of the final purchase price paid

by bargainers, and in turn increases the retailer’s revenue. On the other hand, when the retailer

determines the posted price of product 1, she has to compare the revenue of product 1 with that of

product 2, which in turn, is influenced by the fraction of bargainers, q. In particular, if the retailer

experiences a larger revenue from product 2 due to an increase in q, she will raise the posted price

of product 1 as a means to induce more bargainers to purchase product 2. In that sense, the posted

price of product 1 increases in q. However, the posted price of product 1 may decrease if an increase

in q is negatively related to the revenue of product 2.

The effect of bargaining power, β, on the posted price of product 2 is intuitive: the retailer

can take advantage of higher relative bargaining power and set a higher price for better price

differentiation. Furthermore, an increase in the bargaining power will also increase the posted price

of product 1. The retailer sets a higher price for the first product which targets high reservation

price customers. If the transaction fails, the retailer can still use high bargaining power to generate

excess revenue on the second product.

Proposition 2. Suppose that the retailer adopts model N with x and y units of inventory for

product 1 and 2, respectively, and t periods to go until the end of the selling horizon. Then:

(a) The optimal posted price of product 1, p∗
N1

(x, y, t), increases in the fraction of bargainers, q, but

the optimal posted price of product 2, p∗
N2

(x, y, t), is independent of q.

(b) The optimal posted price of product 1, p∗
N1

(x, y, t), increases in the relative bargaining power of

the retailer, β, but the optimal posted price of product 2, p∗
N2

(x, y, t), is independent of β.

Observe from equation (8) that as the posted price of product 1, p1, increases, the expected

revenue of the retailer from bargainers also increases. This revenue increment is derived from two

sources. First, notice that the bargainers with reservation prices r ∈ [c1, p1) are the major group

from which the retailer does price discrimination. Setting a higher p1 provides a wider range for

the retailer to achieve this goal. Secondly, the final price paid by the bargainer, βp1 + (1− β)c1, is

also augmented if his reservation price is larger than the opportunity cost of the product. At the

same time, when the fraction of bargainers, q, increases, the retailer can raise p1 without worrying
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about excluding more price-takers. As a result, the retailer has more tendency to set p1 higher as

q increases. However, the change of q only affects the proportion of the customers who consider

buying the second product, but does not lead the decision of p2.

As β increases, setting a higher p1 enables the retailer to take advantage of negotiation for

better price discrimination, but this price increment sacrifices the revenue gained from price-takers.

In fact, the former benefit resulted from bargainers due to the increases of both β and p1 basically

compensates for the revenue loss from price-takers. However, such higher bargaining advantage

cannot be extended to the posted price decision of the second product, which only relates to the

distribution of the customer’s reservation price and the opportunity cost of the product.

Proposition 3. Consider the opportunity costs of products 1 and 2 with t periods to go and inven-

tories x and y for both products, respectively, c1(x, y, t) and c2(x, y, t) for model s, s = P,N . Then:

(a) The optimal posted price of product 1, p∗s1(x, y, t) increases in c1(x, y, t), but decreases in

c2(x, y, t).

(b) The optimal posted price of product 2, p∗s2(x, y, t) increases in c2(x, y, t), but is independent of

c1(x, y, t).

Apparently, a higher cost of a product will drive the retailer to raise its posted price for both

models. However, the magnitude of the increase in the posted price depends on the customer’s

reservation price distribution and whether the retailer allows negotiation. Furthermore, when the

cost of product 2, c2(x, y, t), increases, the retailer will decrease the posted price of product 1,

p1. It is because an increase in c2(x, y, t) drives the retailer to raise the posted price of product

2, p2, so that a smaller proportion of customers can afford to purchase product 2. Therefore, the

retailer tends to lower p1 to increase the probability of a successful transaction. For both models,

however, the change of c1(x, y, t) has no effect on p2. Notice that c1(x, y, t) only has direct effect

on the price that each customer pays for the first product (for both models) and on the fraction

of customers considering purchasing product 2 (model N only). When the customer considers

purchasing product 2, c1(x, y, t) is not a factor that determines p2.

Proposition 4. Suppose that the retailer adopts model s with x and y units of inventory for

products 1 and 2, respectively, and with t periods to go until the end of the season for s = P,N .

(a) If the retailer’s bargaining power, β, increases, then the retailer’s optimal expected revenue,

Vs(x, y, t), increases.

(b) If bargainers have full bargaining power (i.e., β → 0), then the retailer’s optimal expected

revenue, Vs(x, y, t), decreases in the fraction of bargainers, q.
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Note that higher bargaining power has no effect on the revenue from price-takers and from the

other product without negotiation, but increases revenue accrued from bargainers. As a result,

when the retailer allows negotiation for the price of a product, everything being equal, the retailer

can realize more revenue if she has higher bargaining power. On the other hand, when the bargainers

have full bargaining power, the final transaction price paid by the bargainers is equal to the cost

(i.e., marginal revenue) of the product. Therefore, the larger fraction of the bargainers is, the less

revenue the retailer is able to collect. Note that when the retailer has full bargaining power, β → 1,

the retailer’s optimal expected revenue does not necessarily increase in the fraction of bargainers.

The logic behind the conclusion is that the retailer is able to price discriminate among bargainers

with reservation price between the cost of the product and the posted price. If price discrimination

from bargainers can compensate for the revenue loss due to price-takers being priced out, then the

retailer is better off with more bargainers. Similarly, if the effect of losing too many price-takers

dominates the effect of price discrimination, having more bargainers may not be an advantage to

the retailer.

In the rest of this section, we further consider the relationship between both models. The

following proposition shows that the posted price of product 2 under model P is always higher

than that under model N .

Proposition 5. Suppose that in each of both models, the retailer has x and y units of inventory for

products 1 and 2, respectively with t periods to go until the end of the season. The optimal posted

price for product 2 in model P is higher than that in model N , that is, p∗
P2

(x, y, t) ≥ p∗
N2

(x, y, t).

From the retailer’s point of view, the decision for the posted prices of product 2, p2, in both

models is equivalent to that of only one product being sold when she chooses to use negotiation or

not, given the same cost. When negotiation is allowed, p2 tends to be higher, which enables better

price discrimination. This observation is consistent with Kuo et al. (2009a), in which the posted

price is higher under negotiation relative to take-it-or-leave-it pricing when only one product is sold.

Furthermore, the comparison between the optimal posted prices for product 1 in both models is

complex; both posted prices are sensitive to the retailer’s bargaining power, β, and the customer’s

reservation price distributions for both products, Fi, i = 1, 2. As a result, there does not seem to

exist a particular structure.

Proposition 6. Assume the customer’s reservation price for product i is uniformly distributed over

the interval [0, bi]. Given the cost of product i, ci, the retailer adopts model s with x and y units

of inventory for products 1 and 2, respectively, and with t periods to go until the end of the season.
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Suppose the optimal posted price for product i in model s is p∗si(x, y, t) for s = P,N and i = 1, 2.

(a) The difference in the optimal posted prices for product 1 between model P and model N ,

p∗
P1

(x, y, t)− p∗
N1

(x, y, t), increases in c1.

(b) The difference in the optimal posted prices for product 2 between model P and model N ,

p∗
P2

(x, y, t)− p∗
N2

(x, y, t), decreases in c2.

In model P , when the cost of product 1 increases by one unit, the retailer will incur a marginal

loss by exactly one unit if she does not adjust the posted price for product 1. In model N , on the

other hand, the final negotiation price agreed by the bargainer and the retailer will be increased

by 1 − β unit even though the retailer keeps the posted price the same (see equation (8)). More

specifically, an increase in c1 already supports the retailer to compensate for part of the loss when

the negotiation is allowed. Therefore, with the use of negotiation in model N , the retailer will not

set the posted price too high compared to model P . This intuition can be applied to the case of

product 2 with the reversed result.

5. Numerical Study

We conduct a numerical study to further explore the effects of negotiation and dynamic pricing

on the retailer’s expected revenue when she sells multiple generations products. In our numerical

study we use three different values for each of the probability that a customer arrives in each period

(λ ∈ {0.2, 0.5, 0.8}), the bargaining power of the retailer (β ∈ {0.2, 0.5, 0.8}), and the fraction of

bargainers (q ∈ {0.2, 0.5, 0.8}). We consider different combinations of parameter values, λ, β, and q

in a 10-period selling horizon and range the beginning inventory level of each product from 1 to 10.

For each combination and the beginning inventory level, we solve the dynamic programs in (6) and

(8) and determine the optimal posted price of each product and the retailer’s expected revenue.

Dynamic pricing literature suggests that, the retailer tends to raise the posted price of a product

as the inventory level decreases and/or the time remaining to the end of the selling season increases

regardless of using dynamic pricing only (Gallego and van Ryzin, 1994, Bitran and Mondschein,

1997) or dynamic pricing with negotiation (Kuo et al., 2009a). The conclusion was reached under

the assumption that the retailer offers only one product. In our models in which the retailer provides

two products, one at a time, these conclusions are not necessarily valid. Based on the numerical

study we conducted, the retailer may decrease the posted price of a product when she has more

time to sell no matter whether the price of this product is negotiable. The optimal posted price

of product 1 over the selling season for given inventory levels of both products in both models is
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illustrated in Figure 1.
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Figure 1: The optimal posted price of product 1 over the remaining time to the end of the selling
season under model N (left) and model P (right). Here, λ = 0.8 and F1(·) Weibull over the internal
[0, 150] with shape parameter 2 and scale parameter 40 and F2(·) Weibull over the internal [0, 150]
with shape parameter 2 and scale parameter 30.

Compared with the single product case under which the retailer determines the posted price

based on only the opportunity cost (i.e., marginal revenue) of the product, in the multiple-product

case, the decision of the posted price depends on not only the cost of the product, but also the

relative magnitude of the costs for both products. If one product brings less benefit to the retailer

(i.e., the marginal revenue of the retailer by retaining the product for another period is lower), then

the retailer tends to lower the posted price in a way to promote the product at that period. It can

be the driver that marks the price down as there is more time until the end of the selling season.

According to our numerical study, this counterintuitive result mainly occurs when the retailer sets

the posted price of product 1 regardless of whether negotiation is allowed. In our setting in which

the customer can only observe one product at a time, the retailer can use the posted price of

product 1 as a tool to induce the customers for purchasing one product as opposed to the other.

For example, the retailer reduces the posted price of product 1 so as to attract the customers to

purchase product 1, doing which may result from the fact that at the current period it is considered

more valuable to retain product 2 for another period.

How the posted price of a product is affected by the inventory level of the other product is

shown in Figure 2. First, we consider the effect of the inventory level of product 1 on the posted

price of the second product. Notice that given the inventory level of product 2, the posted price of

product 2 decreases with the inventory level of the first product for both models (see Figure 2 right

panel). When setting the price of product 2, the retailer is more cautious of the possibility of failed

transaction for product 2, in particular, when the total inventory level (i.e., x+ y units) is higher,

irrespective of the relative magnitude of the inventory level of each product. In other words, the
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retailer is facing the pressure of reducing the posted price of product 2 with the increase in the

inventory level of the first product since the retailer’s immediate concern is successfully making the

deal and clearing the inventory level of the current product (i.e., product 2), rather than collecting

more revenues.
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 Figure 2: The optimal posted price of a product over the inventory level of the other product under
both models. Here, λ = 0.8 and F1(·) Weibull over the internal [0, 150] with shape parameter 2 and
scale parameter 40 and F2(·) Weibull over the internal [0, 150] with shape parameter 2 and scale
parameter 30.

The effect of the inventory level for the second product on the posted price of product 1 under

model N is similar to the observations in the right panel of Figure 2, as the retailer reduces the

posted price of product 1 when the inventory level of product 2 increases. Although the retailer

can seek a successful deal of product 2 by setting a lower price even if the transaction of product 1

fails, under model N , take-it-or-leave-it pricing narrows the flexibility of selling the second product

to the customers with lower reservation prices, especially if the retailer has excess inventory. As a

result, the retailer is not able to adopt an aggressive pricing strategy on product 1 as the inventory

level of the second product is high. On the other hand, under model P where the price of the second

product is negotiable, the retailer can utilize negotiation in two ways: gaining excess revenues from

high reservation price customers and liquidating excess inventory to low reservation price customers.

That is, the retailer can set a high posted price of product 1 without being worried about excess

inventory of the second product. Therefore, the posted price pattern of product 1 with respect to

the inventory level of the second product under each model is reversed.

We also compare the revenues of both models with the one when negotiation is not allowed

on the prices of both products (No-neg. model), respectively, as shown in Figure 3. According to

Kuo et al. (2009a) in the case of single product, negotiation is especially beneficial for the retailer

when the inventory level of the product is high. The explanation behind this observation is that

when the retailer needs to clear the inventory, she can always price discriminate among customers
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Figure 3: The effect of negotiation on the expected total revenue of model N , model P , and no
negotiation model. Here, λ = 0.8 and F1(·) Weibull over the internal [0, 150] with shape parameter
2 and scale parameter 40 and F2(·) Weibull over the internal [0, 150] with shape parameter 2 and
scale parameter 30.

with high reservation prices by means of negotiation. However, the exposition can be extended

to the two-product case only when the retailer’s relative bargaining power is high, and the results

are reversed when the bargainer has higher bargaining power. In our model settings, negotiation

serves as an impetus for the retailer to collect excess revenues from high reservation price bargainers

when her relative bargaining power is high. On the contrary, lower relative bargaining power makes

negotiation become resistant since low reservation price bargainers may purchase the product at

the price close to the opportunity cost of the product. As a result, for the case of the bargaining

power, β, being 0.2 (Figure 3 left panel), when the inventory level of product 1 is higher, the

expected revenue of model N is the lowest among these models. On the other hand, for the case

when bargaining power is 0.8 (Figure 3 central panel), the retailer can collect more revenue in

model N compared to the other two scenarios. Similarly, the expected revenue of model P is the

highest among three models as the retailer has higher bargaining power and a higher inventory level

of product 2 (Figure 3 right panel). These results suggest that the retailer with high bargaining

power should adopt model N when she has a larger amount of product 1 in stock and adopts model

P when the inventory level of product 2 is significant.

6. Conclusion

This paper studies dynamic pricing among multi-generation products with limited inventories when

the retailer allows negotiation over the price of just one product. In particular, we consider two

models in which the retailer determines whether the price of the product is negotiable or based on a

take-it-or-leave-it principle. Every arriving customer only observes the first product and transacts

with the retailer accordingly. The second product is offered only if the transaction of the first
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product fails. In fact, the decision on a whether the price of the product is negotiable serves as

a driver that influences the retailer’s optimal pricing strategies and the associated revenue. In

this study, we adopt the generalized Nash bargaining solution to describe the bargaining behavior

initiated between the retailer and bargainers. The results derived from our settings characterize

one phenomenon: regardless of the bargainers’ reservation prices, the transaction price paid by the

bargainers is always lower than their price-taking counterparts.

For both models, we show that a unique pair of the posted prices for both products can be

uniquely determined to maximize the retailer’s expected revenue. When bargainers make up the

majority of the customer population, our model suggests the retailer can raise the posted price of

the product allowed for negotiation. By so doing, the retailer can collect more revenue for better

price discrimination. The relative bargaining power of the retailer plays a more complex role in

influencing the decision of the posted prices. Higher bargaining power augments the posted price

of the negotiable product, which in turn raises the ceiling of the price that bargainers pay. The

resultant revenues received from bargainers can compensate for the portion of price-takers being

left out. The effect of the relative bargaining power on the other (non-negotiable) product depends

on whether negotiation is allowed for the price of the second product. In such a case (model P in

our setting), the impact of the bargaining power is extended to the decision of the posted price for

the first product.

According to our computational study, we present results that differ from traditional dynamic

pricing literature. Given the inventory levels of both products, we show that the posted price of a

product may not increase with the time remaining to the end of the selling season. Furthermore, the

retailer may be worse off when adopting negotiation. Depending on the relative bargaining power,

negotiation can be a double-edged sword. When the bargaining power is high, the retailer can

benefit from negotiation. If the bargainer leads the negotiation, the retailer abandons negotiation

as a tool for price differentiation.

Our main objective is to study the effects of dynamic pricing and negotiation on the retailer’s

optimal pricing strategies. In pursuit of this goal, two models are constructed in compliance with

the current practice. In the automobile industry, car dealers already offer an attractive deal for

the previous generation, and thus, the range for negotiation is relatively small compared with the

latest one. On the other hand, due to the short lifespan of electronic products, retailers need to

liquidate the inventories of the previous generations so as to avoid obsolescence. In this situation,

negotiation becomes an adoptable scheme for the retailer. For the tractability of the problem, we

assume negotiation is allowed on the price of one product in each model. This setting allows us

22



to better understand the effects of negotiation and sales format sequences on the retailer’s profit.

One may consider the case where the prices of both products are negotiable. In fact, adopting

negotiation on two products simply increases complexity of the problem in that the optimal posted

price in each period may not be uniquely determined.

Several research directions extend out from this work. One could extend our work by considering

a case in which the retailer sets not only the posted prices, but also the cut-off prices, below which

the retailer does not sell. The decision of the cut-off price may help the retailer do better price

discrimination without selling products to the bargainers with reservation prices too low. Another

interesting research direction is to consider a case when each arriving customer can observe all the

products at the same time and determine which to purchase depending on their relative surplus.
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Online Supplement

A. Adjusted Belief of Reservation Price Distributions

Here, we extend the model to the case under which all customers, whether bargainers and price-

takers, prefer the first product to the other. More specifically, the willingness-to-pay of the cus-

tomers for product 2 is no higher than that for product 1 (i.e., r2 ≤ r1). Therefore, if the transaction

of product 1 fails, the retailer will adjust the reservation price distribution of the customers for

product 2. Notice that this phenomenon is of practical relevance, in particular, for automobiles

and consumer electronic products. We consider model P first. At the beginning of each period,

the retailer sets the non-negotiable price, p1, for product 1. An arriving customer will purchase the

product if his reservation price, r1, is higher than p1. If the transaction fails, the retailer knows

the reservation price of the arriving customer for product 2 will not exceed p1, and adjusts the

belief of the customer’s reservation price. That is, p1 forms as the upper bound of the reservation

price distribution from the retailer’s perspective, which implies that p1 ≥ p2. Let F a2 (·) be the

cumulative density function of the adjusted reservation price for product 2 with its pdf, fa2 (·), and

F
a
2(·) := 1− F a2 (·). We have

fa2 (x) =


f2(x)
F2(p1)

if 0 ≤ x ≤ p1;

0 otherwise.

(A-1)

Therefore, for p1 ≥ c2, we can rewrite the function Jp(p1, p2, x, y, t) in equation (6) as follows:

JP(p1, p2, x, y, t) = λF 1(p1)(p1 − c1)

+λqF1(p1)

[∫ p1

p2

[βp2 + (1− β)c2]f
a
2 (x)dx+

∫ p2

c2

[βx+ (1− β)c2]f
a
2 (x)dx

−F a2(c2)c2
]

+ λ(1− q)F1(p1)F
a
2(p2)(p2 − c2) + VP(x, y, t− 1). (A-2)

Notice that if p1 < c2, the retailer will not offer product 2 due to the fact that the arriving

customer cannot afford c2, which is the marginal revenue of product 2. In this sense, the function

Jp(p1, p2, x, y, t) in equation (A-2) will be reduced to

Jp(p1, p2, x, y, t) = λF 1(p1)(p1 − c1) + VP(x, y, t− 1).

In model N , customers are divided into two groups – price-takers and bargainers. A price-

taker or a bargainer will purchase product 1 if his reservation price is above p1, or c1, respectively.

Similarly, if the arriving customer fails to purchase product 1, the retailer adjusts the belief of the
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customer’s reservation price for product 2. The adjusted reservation price distribution for price-

takers is derived based on equation (A-1). For bargainers, the upper bound will be replaced by

c1, and the pdf of the adjusted reservation price distribution of product 2 for bargainers, f b2(x), is

given by:

f b2(x) =


f2(x)
F2(c1)

if 0 ≤ x ≤ c1;

0 otherwise.

(A-3)

For max{c1, c2} ≤ p1, the function in equation (8) can be rewritten by

JN(p1, p2, x, y, t) = λq

[∫ b1

p1

[βp1 + (1− β)c1] f1(x)dx+

∫ p1

c1

[βx+ (1− β)c1] f1(x)dx− F 1(c1)c1

]
+λ(1− q)F 1(p1)(p1 − c1) + λ

[
qF1(c1)F

b
2(p2) + (1− q)F1(p1)F

a
2(p2)

]
(p2 − c2)

+VN(x, y, t− 1). (A-4)

We can observe that if c1 ≤ p1 ≤ c2, the third term of function JN(p1, p2, x, y, t) in equation (A-4)

will disappear in that the retailer has no incentive to offer product 2 knowing that the arriving

customer will never pay a price higher than the marginal revenue of product 2.

It should be noted that both adjusted models only apply for the case in which the retailer has

the first product in stock (i.e., x > 0). When the retailer has product 2 only, she will not be able to

use the posted price, p1, or the opportunity cost, c1, of product 1 to update the reservation price

distribution of the customers for product 2 (i.e., fa2 (·) = f b2(·) = f(·)). In that sense, each adjusted

model is equivalent to the original model P or N , respectively.

For both models, the adjusted customers’ reservation distributions of product 2 are the functions

of the posted price, p1. The revenue to go function of the retailer in each period is complex due

to the structure of bimodality, and thus, the optimal posted prices cannot be uniquely determined.

We conduct a numerical experiment to further explore their managerial implications.

To test whether the aforementioned results in Sections 4 and 5 are robust in the adjusted

model, we vary the arrival rate, the proportion of bargainers, the relative bargaining power, initial

inventory levels of both products, and the remaining time to the end of the selling season. In

all the cases we considered, we found that Propositions 1 through 4 continue to hold except the

effects of the proportion of bargainers, q, the relative bargaining power, β, and the cost of the

first product, c1, on the posted price of product 2, p2, in particular, under model N . In fact, in

the adjusted model, amplifying any of these driving effects expands the space of adjustment for p2

(due to an increase in p1), which allows the retailer to set a higher p2 to subtract more revenue

2



from higher willingness-to-pay customers. Furthermore, the choice of p1 adjusts the belief of the

customer’s reservation price distribution for the other product, and thus, indirectly influences the

determination of p2. This complexity of interaction between p1 and p2 leads to the conclusion that

Propositions 5 and 6 may not hold. On the other hand, all the results in Section 5 still hold. It is

worth noting that when the retailer adjusts the belief of the customer reservation price distribution,

the posted price of the first product, p1, is higher while the posted price of product 2, p2, is lower

compared to the original scenarios no matter whether model P or model N is adopted. It is due

to the fact that, p1 now becomes the ceiling that restricts the pricing flexibility of product 2 if

p1 is set too low. With a low p1, the retailer cannot choose a higher price on the second product

since the customers tend to value the second product lower after observing the posted price of the

first product in the adjusted model. This effect of limited pricing flexibility directly results in less

revenue.

B. Prices of Both Products Are Negotiable

In this section, we consider the case where the prices of both products are negotiable. Follow the

same analysis in Section 3, the retailer’s expected total revenue can be rewritten as follows:

V (x, y, t) = max
p1,p2

J(p1, p2, x, y, t) for x, y > 0, t = 1, . . . , T,

J(p1, p2, x, y, t) = λq

[∫ b1

p1

[βp1 + (1− β)c1] f1(x)dx+

∫ p1

c1

[βx+ (1− β)c1] f1(x)dx− F 1(c1)c1

]
+λ(1− q)F 1(p1)(p1 − c1)

+λqF1(c1)

[∫ b2

p2

[βp2 + (1− β)c2] f2(x)dx+

∫ p2

c2

[βx+ (1− β)c2] f2(x)dx− F 2(c2)c2

]
+λ(1− q)F1(p1)F 2(p2)(p2 − c2) + V (x, y, t− 1).

Boundary condition: V (x, y, 0) = 0 for x, y ≥ 0, and V (0, 0, t) = 0 for t = 1, . . . , T.

Notice that the optimal posted prices of both products in the above model cannot be uniquely

determined. To gain further managerial insights, we conduct a numerical study using the combi-

nations of different parameters mentioned in Section 5 and check whether the results are robust in

the aforementioned formulations. Based on the results, we conclude that the retailer will raise the

prices of both products when the fraction of bargainers, q, and/or the retailer’s bargaining power,

β, increases. Furthermore, for both products, an increase in the opportunity cost of the product

results in an increase in the associated price; though the cost and the price of the other product may
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be negatively related. When the retailer adopts this model, our analysis shows that the price of

product 2 always dominates that of model N , but the outcome may vary when compared with the

price of product 2 in model P . Similar patterns can be observed as in Figures 1 to 3, particularly,

in Figure 3, the effect of the retailer’s bargaining power on the retailer’s revenue is more intense

than models N and P . The interpretations of these outcomes follow the discussions in Sections 4

and 5.

C. Proofs of Results in Section 4

Proof of Lemma 1

Note that we provide the proof of the result for model N in detail and omit the proof for model

P since the proof of model P follows a similar sequence of arguments. We prove that, for a given

p2 ∈
[
c2, b2

)
, JN(p1, p2, x, y, t) is strictly unimodal in p1 for p1 ∈ [c1, b1). To do so, we prove the

following claims: (i) ∂JN(p1,p2,x,y,t)
∂p1

∣∣∣
p1=c1

≥ 0, (ii) ∂2JN(p1,p2,x,y,t)
∂p21

< 0 whenever ∂JN(p1,p2,x,y,t)
∂p1

= 0,

and (iii) ∂JN(p1,p2,x,y,t)
∂p1

∣∣∣
p1=b1

≤ 0.

The first and second derivatives of JN(p1, p2, x, y, t) (given by (8)) with respect to p1 are

∂JN(p1, p2, x, y, t)

∂p1
= λ

[
qβF 1(p1) + (1− q)F 1(p1)− (1− q)f1(p1)(p1 − c1)

]
+λ(1− q)f1(p1)F 2(p2)(p2 − c2) and (C-1)

∂2JN(p1, p2, x, y, t)

∂p21
= λ

[
−qβf1(p1)− 2(1− q)f1(p1)− (1− q)f ′1(p1)(p1 − c1)

]
+λ(1− q)f ′1(p1)F 2(p2)(p2 − c2). (C-2)

Note that claims (i) and (iii) directly follow from (C-1) since p1 ≥ c1 and p2 ≥ c2. To show claim

(ii), note from (C-1) and (C-2),

∂2JN(p1,p2,x,y,t)
∂p21

∣∣∣ ∂JN(p1,p2,x,y,t)
∂p1

=0
= λ

[
−qβf1(p1)− 2(1− q)f1(p1)− f ′1(p1)

qβF 1(p1)+(1−q)F 1(p1)
f1(p1)

]
.(C-3)

Note that if f ′(p1) ≥ 0, then all three terms in the brackets of (C-3) are negative. Now, consider

the case that f ′(p1) < 0. First, note that β ∈ (0, 1) and q < 1/2 (Assumption 2), we have

qβF 1(p1) + (1− q)F 1(p1)

f1(p1)
<
F 1(p1)

f1(p1)
, and− 2(1− q)f1(p1) ≤ −f1(p1)

As a result, given f ′(p1) < 0,

−f ′1(p1)
qβF 1(p1) + (1− q)F 1(p1)

f1(p1)
− 2(1− q)f1(p1) < −f ′1(p1)

F 1(p1)

f1(p1)
− f1(p1). (C-4)
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Now, observe that −f ′1(p1)
F 1(p1)
f1(p1)

−f1(p1) ≤ 0 (because F1 is IFR, and thus, f21 (·)+f ′1(·)F 1(·) ≥ 0).

Hence, all the three terms in the brackets of (C-3) add up to a negative number, concluding the

proof of claim (ii).

By the strict unimodality of JN(p1, p2, x, y, t) in p1 ∈ [c1, b1) for a given p2 ∈ [c2, b2), let p∗1(p2)

be the unique optimal value of p1 at a given p2. Define the induced function J∗
N

(p2, x, y, t) :=

JN(p∗1(p2), p2, x, y, t). We now show that J∗
N

(p2, x, y, t) is strictly unimodal in p2 for p2 ∈ [c2, b2).

We prove the unimodality of J∗
N

(p2, x, y, t) by showing (iv) dJ∗
N(p2,x,y,t)
dp2

∣∣∣
p2=c2

≥ 0, (v)d
2J∗

N(p2,x,y,t)
dp22

<

0 whenever dJ∗
N(p2,x,y,t)
dp2

= 0, and (vi) dJ∗
N(p2,x,y,t)
dp2

∣∣∣
p2=b2

≤ 0.

Claims (iv) and (vi) are directly from the partial derivative of JN(p1, p2, x, y, t) with respect to

p2 and by utilizing the envelope theorem:

∂JN(p1, p2, x, y, t)

∂p2
= λ(qF1(c1) + (1− q)F1(p1))

[
F 2(p2)− f2(p2)(p2 − c2)

]
(C-5)

To conclude that J∗
N

(p2, x, y, t) is strictly unimodal in p2, it remains to prove claim (v). To that

end, we use p∗1 as a shorthand notation for p∗1(p2). first note that:

d2J∗
N

(p2, x, y, t)

dp22
=
∂2JN(p1, p2, x, y, t)

∂p22

∣∣∣∣
p1=p∗1

+
dp∗1
dp2

∂2JN(p1, p2, x, y, t)

∂p2∂p1

∣∣∣∣
p1=p∗1

(C-6)

Using the implicit function theorem, we have

d2J∗
N

(p2, x, y, t)

dp22
=

∂2JN(p1,p2,x,y,t)
∂p22

∣∣∣
p1=p∗1

∂2JN(p1,p2,x,y,t)
∂p21

∣∣∣
p1=p∗1

−
(
∂2JN(p1,p2,x,y,t)

∂p2∂p1

∣∣∣
p1=p∗1

)2

∂2JN(p1,p2,x,y,t)
∂p21

∣∣∣
p1=p∗1

(C-7)

Note that the denominator is always negative since JN(p1, p2, x, y, t) is strictly unimodal in p1 for a

given p2, as we proved in the first part of this lemma. Hence, it suffices to show that the numerator

in (C-7) is strictly positive. Note that

∂2JN(p1, p2, x, y, t)

∂p21
= λ

[
−qβf1(p1)− 2(1− q)f1(p1)− (1− q)f ′1(p1)(p1 − c1)

]
+ λ(1− q)f ′1(p1)F 2(p2)(p2 − c2), (C-8)

∂2JN(p1, p2, x, y, t)

∂p22
= λ(qF1(c1) + (1− q)F1(p1))

[
−2f2(p2)− f ′2(p2)(p2 − c2)

]
(C-9)

∂2JN(p1, p2, x, y, t)

∂p1∂p2
= λ(1− q)f1(p1)

[
F 2(p2)− f2(p2)(p2 − c2))

]
(C-10)

Using the expressions above, one can check that by (C-5) and (C-10), when dJ∗
N(p2,x,y,t)
dp2

= 0, we

obtain ∂2JN(p1,p2,x,y,t)
∂p1∂p2

∣∣∣
p1=p∗1

= 0. In addition, one can easily show that ∂2JN(p1,p2,x,y,t)
∂p22

∣∣∣
p1=p∗1

< 0 by
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substituting F 2(p2)− f2(p2)(p2− c2) = 0 (since dJ∗
N(p2,x,y,t)
dp2

= 0) into (C-9) and by the fact that F2

is IFR. Thus, the numerator in (C-7) is strictly positive, concluding the proof of claim (v).

The proof for model P is omitted since it follows a similar sequence of arguments.

Proof of Proposition 1 and 2

Here, we only provide the proof for Proposition 2 as the proof of Proposition 1 follows the same

logic.

Proofs of (a): Following from Lemma 1, we obtain that the optimal posted price for both products,

p∗
N1

(x, y, t) and p∗
N2

(x, y, t), are given by the unique pair of p1 and p2 that satisfy the first order

conditions of JN(p1, p2, x, y, t), that is,

∂JN(p∗
N1

(x, y, t), p∗
N2

(x, y, t), x, y, t)

∂p1
= 0 and

∂JN(p∗
N1

(x, y, t), p∗
N2

(x, y, t), x, y, t)

∂p2
= 0. (C-11)

For simplification, in the remainder of this proof, we use p∗1 and p∗2 as the shorthand notations for

p∗
N1

(x, y, t) and p∗
N2

(x, y, t). Thus, the implicit differentiation of the above identities with respect to

q can be obtained:

dp∗1
dq

∂2JN(p1,p2,x,y,t)
∂p21

∣∣∣
p1=p∗1,p2=p

∗
2

+
dp∗2
dq

∂2JN(p1,p2,x,y,t)
∂p1∂p2

∣∣∣
p1=p∗1,p2=p

∗
2

+ ∂2JN(p1,p2,x,y,t)
∂p1∂q

∣∣∣
p1=p∗1,p2=p

∗
2

= 0,

(C-12)

dp∗1
dq

∂2JN(p1,p2,x,y,t)
∂p1∂p2

∣∣∣
p1=p∗1,p2=p

∗
2

+
dp∗2
dq

∂2JN(p1,p2,x,y,t)
∂p22

∣∣∣
p1=p∗1,p2=p

∗
2

+ ∂2JN(p1,p2,x,y,t)
∂p2∂q

∣∣∣
p1=p∗1,p2=p

∗
2

= 0.

(C-13)

We first prove
dp∗2
dq = 0. Note that the partial derivative of JN(p1, p2, x, y, t) with respect to p2 is

∂JN(p1, p2, x, y, t)

∂p2
= λ(qF1(c1) + (1− q)F1(p1))

[
F 2(p2)− f2(p2)(p2 − c2)

]
. (C-14)

One can check that ∂2JN(p1,p2,x,y,t)
∂p1∂p2

∣∣∣
p1=p∗1,p2=p

∗
2

= ∂2JN(p1,p2,x,y,t)
∂p2∂q

∣∣∣
p1=p∗1,p2=p

∗
2

= 0, and thus, the first

and the third terms of (C-13) are both zero. In addition, ∂2JN(p1,p2,x,y,t)
∂p22

∣∣∣
p1=p∗1,p2=p

∗
2

< 0 as shown

in the proof of Lemma 1. As a result, we have
dp∗2
dq = 0.

To prove
dp∗1
dq ≥ 0, note that since

dp∗2
dq = 0, (C-12) can be rewritten by:

dp∗1
dq

= −

∂2JN(p1,p2,x,y,t)
∂p1∂q

∣∣∣
p1=p∗1,p2=p

∗
2

∂2JN(p1,p2,x,y,t)
∂p21

∣∣∣
p1=p∗1,p2=p

∗
2

(C-15)

We first note that the denominator of (C-15) is strictly negative as shown in the proof of Lemma

1. Therefore, it suffices to show that the numerator of (C-15) is non-negative. Taking the partial

6



derivative of (C-1) with respect to q, we have

∂2JN(p1, p2, x, y, t)

∂p1∂q
= λ

[
f1(p1)(p1 − c1)− (1− β)F 1(p1)− f1(p1)F 2(p2)(p2 − c2)

]
. (C-16)

Since ∂JN(p1,p2,x,y,t)
∂p1

∣∣∣
p1=p∗1,p2=p

∗
2

= 0, it follows from (C-1) that p1 − c1 = qβF 1(p1)+(1−q)F 1(p1)
(1−q)f1(p1) +

F 2(p2)(p2 − c2). Substituting this expression for p1 − c1 in (C-16), we obtain

∂2JN(p1, p2, x, y, t)

∂p1∂q

∣∣∣∣
p1=p∗1,p2=p

∗
2

=
λβ

1− q
F 1(p1) ≥ 0. (C-17)

where the inequality comes from q ∈ (0, 1). Thus,
dp∗1
dq ≥ 0.

Proofs of (b): Similarly, the implicit differentiation of the identities in (C-11) with respect to β

can also be obtained:

dp∗1
dβ

∂2JN(p1,p2,x,y,t)
∂p21

∣∣∣
p1=p∗1,p2=p

∗
2

+
dp∗2
dβ

∂2JN(p1,p2,x,y,t)
∂p1∂p2

∣∣∣
p1=p∗1,p2=p

∗
2

+ ∂2JN(p1,p2,x,y,t)
∂p1∂β

∣∣∣
p1=p∗1,p2=p

∗
2

= 0,

(C-18)

dp∗1
dβ

∂2JN(p1,p2,x,y,t)
∂p1∂p2

∣∣∣
p1=p∗1,p2=p

∗
2

+
dp∗2
dβ

∂2JN(p1,p2,x,y,t)
∂p22

∣∣∣
p1=p∗1,p2=p

∗
2

+ ∂2JN(p1,p2,x,y,t)
∂p2∂β

∣∣∣
p1=p∗1,p2=p

∗
2

= 0.

(C-19)

To prove
dp∗2
dβ = 0, first note from (C-19) that both ∂2JN(p1,p2,x,y,t)

∂p1∂p2

∣∣∣
p1=p∗1,p2=p

∗
2

= ∂2JN(p1,p2,x,y,t)
∂p2∂β

∣∣∣
p1=p∗1,p2=p

∗
2

=

0 (Part (a)). Also, ∂2JN(p1,p2,x,y,t)
∂p22

∣∣∣
p1=p∗1,p2=p

∗
2

< 0 as shown in the proof of Lemma 1. As a result,

we have
dp∗2
dβ = 0. To prove

dp∗1
dβ ≥ 0, note that given

dp∗2
dβ = 0, (C-18) can be rewritten by:

dp∗1
dβ

= −

∂2JN(p1,p2,x,y,t)
∂p1∂β

∣∣∣
p1=p∗1,p2=p

∗
2

∂2JN(p1,p2,x,y,t)
∂p21

∣∣∣
p1=p∗1,p2=p

∗
2

(C-20)

Again, the denominator of (C-20) is strictly negative. Taking the partial derivative of (C-1) with

respect to β, we have ∂2JN(p1,p2,x,y,t)
∂p1∂β

= λqF 1(p1) ≥ 0 which concludes the proof of
dp∗1
dβ ≥ 0.

Proof of Proposition 3

In this proof, we show the results of model N in detail. The proof of model P follows a similar

sequence of arguments, and thus, omitted. We first show that in model N , the posted price of

product 1, p∗
N1

(x, y, t), is increasing in c1(x, y, t) but the posted price of product 2, p∗
N2

(x, y, t), is

independent of c1(x, y, t). Then we show that p∗
N1

(x, y, t) is decreasing but p∗
N2

(x, y, t) is increasing

in c2(x, y, t). Note from Lemma 1, p∗
N1

(x, y, t) and p∗
N2

(x, y, t) satisfy the first order conditions of

JN(p1, p2, x, y, t), that is,

∂JN(p∗
N1

(x, y, t), p∗
N2

(x, y, t), x, y, t)

∂p1
= 0 and

∂JN(p∗
N1

(x, y, t), p∗
N2

(x, y, t), x, y, t)

∂p2
= 0. (C-21)
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For simplification, we use p∗1 and p∗2 as the shorthand notations for p∗
N1

(x, y, t) and p∗
N2

(x, y, t),

respectively. Hence, the implicit differentiation of the above identities with respect to c1 can be

obtained:

dp∗1
dc1

∂2JN(p1,p2,x,y,t)
∂p21

∣∣∣
p1=p∗1,p2=p

∗
2

+
dp∗2
dc1

∂2JN(p1,p2,x,y,t)
∂p1∂p2

∣∣∣
p1=p∗1,p2=p

∗
2

+ ∂2JN(p1,p2,x,y,t)
∂p1∂c1

∣∣∣
p1=p∗1,p2=p

∗
2

= 0,

(C-22)

dp∗1
dc1

∂2JN(p1,p2,x,y,t)
∂p1∂p2

∣∣∣
p1=p∗1,p2=p

∗
2

+
dp∗2
dc1

∂2JN(p1,p2,x,y,t)
∂p22

∣∣∣
p1=p∗1,p2=p

∗
2

+ ∂2JN(p1,p2,x,y,t)
∂p2∂c1

∣∣∣
p1=p∗1,p2=p

∗
2

= 0.

(C-23)

We first prove
dp∗2
dc1

= 0. Note that the partial derivative of JN(p1, p2, x, y, t) with respect to p2 is

∂JN(p1, p2, x, y, t)

∂p2
= λ(qF1(c1) + (1− q)F1(p1))

[
F 2(p2)− f2(p2)(p2 − c2)

]
. (C-24)

It is not hard to check that ∂2JN(p1,p2,x,y,t)
∂p1∂p2

∣∣∣
p1=p∗1,p2=p

∗
2

= ∂2JN(p1,p2,x,y,t)
∂p2∂q

∣∣∣
p1=p∗1,p2=p

∗
2

= 0. In addition,

∂2JN(p1,p2,x,y,t)
∂p22

∣∣∣
p1=p∗1,p2=p

∗
2

< 0 from the proof of Lemma 1. Hence, we have
dp∗2
dc1

= 0.

To prove
dp∗1
dc1
≥ 0, note that since

dp∗2
dc1

= 0, (C-22) can be rewritten by:

dp∗1
dc1

= −

∂2JN(p1,p2,x,y,t)
∂p1∂c1

∣∣∣
p1=p∗1,p2=p

∗
2

∂2JN(p1,p2,x,y,t)
∂p21

∣∣∣
p1=p∗1,p2=p

∗
2

(C-25)

The denominator of (C-25) is strictly negative from the proof of Lemma 1. Taking the partial

derivative of (C-1) with respect to c1, we have ∂2JN(p1,p2,x,y,t)
∂p1∂c1

= λ(1−q)f1(p1) ≥ 0, which concludes

the proof of
dp∗1
dc1
≥ 0.

To prove
dp∗1
dc2
≤ 0 and

dp∗2
dc2
≥ 0, note that the implicit differentiation of (C-21) with respect to

c2 can be obtained:

dp∗1
dc2

∂2JN(p1,p2,x,y,t)
∂p21

∣∣∣
p1=p∗1,p2=p

∗
2

+
dp∗2
dc2

∂2JN(p1,p2,x,y,t)
∂p1∂p2

∣∣∣
p1=p∗1,p2=p

∗
2

+ ∂2JN(p1,p2,x,y,t)
∂p1∂c2

∣∣∣
p1=p∗1,p2=p

∗
2

= 0,

(C-26)

dp∗1
dc2

∂2JN(p1,p2,x,y,t)
∂p1∂p2

∣∣∣
p1=p∗1,p2=p

∗
2

+
dp∗2
dc2

∂2JN(p1,p2,x,y,t)
∂p22

∣∣∣
p1=p∗1,p2=p

∗
2

+ ∂2JN(p1,p2,x,y,t)
∂p2∂c2

∣∣∣
p1=p∗1,p2=p

∗
2

= 0.

(C-27)

Similarly, note that ∂2JN(p1,p2,x,y,t)
∂p1∂p2

∣∣∣
p1=p∗1,p2=p

∗
2

= 0 and ∂2JN(p1,p2,x,y,t)
∂p22

∣∣∣
p1=p∗1,p2=p

∗
2

< 0. Further-

more, from (C-24), ∂2JN(p1,p2,x,y,t)
∂p2∂c2

∣∣∣
p1=p∗1,p2=p

∗
2

= λ(qF1(c1) + (1− q)F1(p1))f2(p2) ≥ 0. As a result,

we have from (C-27) that
dp∗2
dc2
≥ 0. To prove

dp∗1
dc2
≤ 0, note that ∂2JN(p1,p2,x,y,t)

∂p1∂p2

∣∣∣
p1=p∗1,p2=p

∗
2

= 0 and

∂2JN(p1,p2,x,y,t)
∂p21

∣∣∣
p1=p∗1,p2=p

∗
2

< 0. In addition, ∂2JN(p1,p2,x,y,t)
∂p1∂c2

∣∣∣
p1=p∗1,p2=p

∗
2

= −λ(1− q)f1(p1)F 2(p2) ≤

8



0. As a result, we obtain that
dp∗1
dc2
≤ 0.

Proof of Proposition 4

Proofs of (a): For this proof, let p∗s1(β) and p∗s2(β) be the optimal posted prices and Js(p
∗
s1(β), p∗s2(β), x, y, t, β)

be the retailer’s optimal expected total revenue with x and y units in inventory and t periods to go,

for s = P,N . Define two different bargaining power β1 < β2. We will show Js(p
∗
s1(β2), p

∗
s2(β2), x, y, t, β2) ≥

Js(p
∗
s1(β1), p

∗
s2(β1), x, y, t, β1). Note that the bargaining power only affects the final price that bar-

gainers pay for the product. More specifically, when β increases, the final price that a bargainer

with reservation price r pays (βmin{p∗s2, r} + (1 − β)c2 in model P and βmin{p∗s1, r} + (1 − β)c1

in model N) also increases. Suppose the retailer with bargaining power β2 sets the same posted

prices as she does with bargaining power β1. Since an increase in the bargaining power only

increases the retailer’s revenue from bargainers without reducing the revenue from price-takers

(see (6) and (8)), we have Js(p
∗
s1(β1), p

∗
s2(β1), x, y, t, β2) ≥ Js(p

∗
s1(β1), p

∗
s2(β1), x, y, t, β1). How-

ever, p∗s1(β1) and p∗s2(β1) are the sub-optimal solutions when β = β2. As a result, we have

Js(p
∗
s1(β2), p

∗
s2(β2), x, y, t, β2) ≥ Js(p∗s1(β1), p∗s2(β1), x, y, t, β2), and the result follows.

Proofs of (b): Similar to (a), let p∗s1(q) and p∗s2(q) be the optimal posted prices of both products

and Js(p
∗
s1(q), p

∗
s2(q), x, y, t, q) be the retailer’s optimal expected total revenue with x and y units in

inventory and t periods to go, for s = P,N . When β → 0, the retailer’s optimal expected revenue

in both models are given by

JN(p∗
N1

(q), p∗
N2

(q), x, y, t, q) = λ[(1− q)F 1(p
∗
N1

(q))(p∗
N1

(q)− c1)

+[qF1(c1) + (1− q)F1(p
∗
N1

(q))]F 2(p
∗
N2

(q))(p∗
N2

(q)− c2)] + VN(x, y, t− 1)

JP(p∗
P1

(q), p∗
P2

(q), x, y, t, q) = λ[F 1(p
∗
P1

(q))(p∗
P1

(q)− c1) + (1− q)F1(p
∗
P1

(q))F 2(p
∗
P2

(q))(p∗
P2

(q)− c2)]

+VP(x, y, t− 1). (C-28)

Define two fractions of bargainers, q1 < q2. We will show

Js(p
∗
s1(q1), p

∗
s2(q1), x, y, t, q1) ≥ Js(p∗s1(q2), p∗s2(q2), x, y, t, q2),

for s = P,N . Note from (C-28) that when q increases, by charging the same posted prices,

Js(p
∗
s1(q), p

∗
s2(q), x, y, t, q) will decrease due to the facts that p∗si(q) ≥ ci for s = P,N and i = 1, 2.

Suppose now the retailer with fraction q1 sets the same posted prices as she does with the fraction q2.

We obtain that Js(p
∗
s1(q2), p

∗
s2(q2), x, y, t, q1) ≥ Js(p

∗
s1(q2), p

∗
s2(q2), x, y, t, q2). However, p∗s1(q2) and

p∗s2(q2) are not the optimal solutions when q = q1, we obtain that Js(p
∗
s1(q1), p

∗
s2(q1), x, y, t, q1) ≥

9



Js(p
∗
s1(q2), p

∗
s2(q2), x, y, t, q1). Thus, we obtain

Js(p
∗
s1(q1), p

∗
s2(q1), x, y, t, q1) ≥ Js(p∗s1(q2), p∗s2(q2), x, y, t, q2).

Proof of Proposition 5

For model P , recall from Lemma 1 that the definitions p∗1(p2) = arg maxp1{JP(p1, p2, x, y, t)} and

J∗
P

(p2, x, y, t) := JP(p∗1(p2), p2, x, y, t). Also, we showed that JP(p1, p2, x, y, t) is strictly unimodal in

p1 for a given p2 and J∗
P

(p2, x, y, t) is strictly unimodal in p2. By the envelope theorem, we have

dJ∗
P(p2,x,y,t)
dp2

= ∂JP(p1,p2,x,y,t)
∂p2

∣∣∣
p1=p∗1(p2)

. Substituting the partial derivative of JP(p1, p2, x, y, t) with

respect to p2, we obtain:

dJ∗
P

(p2, x, y, t)

dp2
= λF1(p

∗
1(p2))

[
qβF 2(p2) + (1− q)(F 2(p2)− f2(p2)(p2 − c2))

]
. (C-29)

In addition, in model N , based on the first order condition of JN(p1, p2, x, y, t), the optimal posted

price of product 2 satisfies the following identity (observe from (C-24)):

F 2(p
∗
N2

)− f2(p∗N2
)(p∗

N2
− c2) = 0. (C-30)

Using both (C-29) and (C-30), we can write:

dJ∗
P

(p2, x, y, t)

dp2

∣∣∣∣
p2=p∗N2

= λqβF1(p
∗
1(p
∗
N2

))F 2(p
∗
N2

) ≥ 0. (C-31)

Therefore, J∗
P

(p2, x, y, t) is non-decreasing at p2 = p∗
N2

. Note that since J∗
P

(p2, x, y, t) is strictly

unimodal in p2, the result follows that the optimizer of J∗
P

(p2, x, y, t), which is given by p∗
P2

, is at

least as large as p∗
N2

, which concludes the proof.

Proof of Proposition 6

When Fi is uniform over [0, bi], i = 1, 2, we can solve the systems of equations based on the

first order conditions of Js(p1, p2, x, y, t) for both models by substituting Fi(x) = x
bi
, fi(x) = 1

bi
, and

f ′(x) = 0 into (C-1) and (C-5). We can find that in model P , p∗
P1

(x, y, t) and p∗
P2

(x, y, t) are

p∗
P1

(x, y, t) =
q2(β − 1)2(b2 − c2)2

4b2(qβ − 2q + 2)

+
q[2β((b2 − c2)2 + b2(b1 + c1))− 2((b2 − c2)2 + 2b2(b1 + c1))] + ((b2 − c2)2 + 4b2(b1 + c1))

4b2(qβ − 2q + 2)

p∗
P2

(x, y, t) =
(1− q + qβ)b2 + (1− q)c2

qβ − 2q + 2
. (C-32)
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In model N , p∗
N1

(x, y, t) and p∗
N2

(x, y, t) are given by

p∗
N1

(x, y, t) = −4b1b2(q − qβ − 1)− b2(1− q)(b2 − 2c2)− c22(1− q)− 4c1b2(1− q)
4b2(qβ − 2q + 2)

,

p∗
N2

(x, y, t) =
b2 + c2

2
. (C-33)

Using (C-32) and (C-33) and taking the derivatives with respect to c1 and c2, respectively, we

obtain:

d

dc1
(p∗

P1
(x, y, t)− p∗

N1
(x, y, t)) =

qβ

2(qβ − 2q + 2)
≥ 0, and

d

dc2
(p∗

P2
(x, y, t)− p∗

N2
(x, y, t)) = − qβ

2(qβ − 2q + 2)
≤ 0,

where the inequalities come from q ∈ (0, 1) and β ∈ (0, 1).

11


