Today's topics

Reconstructing phylogeny

© The concepts of trees

- The data used to construct phylogenetic trees - Morphological data
- Molecular data

O Homology of characters in data matrices

- Sequence alignment

The basics of evolutionary trees
The tree shapes

Are these two trees different?

Most recent common ancestor (MRCA)

Which is the MRCA of a mushroom and a sponge? d
Which is the MRCA of a mouse and a fern? b
\qquad

Distance method

UPGMA (Unweighted Pair Group Method using Arithmetic averages)
Transformed distance method
Neighbor-Joining method
Minimum evolution

Types of data

O Character and character types

- Quantitative and qualitative characters
- Binary and multistate characters
- Assumptions about character evolution
- Substitution models
- Step matrix

In distance method, sequences were grouped based on their similarity, we need to measure the differences among sequences

Measuring genetic distance

O How different are the two sequences we have?

- The ways of measuring nucleotide substitution
- Simplest way
- Hamming distance $=\mathrm{n} / \mathrm{N} \times 100 \%$

Measuring differences between sequences

© The common ways

- Direct counting
- The probability of substitution at certain nucleotide site change from i to j.
© Nucleotide substitution models
- Jukes \& Cantor(1969)'s one parameter model
- Kimura(1980)'s two parameter model
- $\mathbf{F 8 1}$ (Felsenstein, 1981)
- HKY85 (Hasegawa et al., 1985)
- Generalized time reversible model (GTR)

We can just use another estimator, \boldsymbol{K}, the number of substitutions per site since time of divergence between the two sequences

Therefore, $\boldsymbol{K}=2 \times 3 \alpha t=6 \alpha t$

$$
8 \alpha t=-\ln \left(1-\frac{4}{3} p\right) \quad \therefore K=-\frac{3}{4} \ln \left(1-\frac{4}{3} p\right)
$$

where $p=$ the observed proportions of different nucleotides between the two sequences

Overview of Distance method

The probability of nucleotide substitution

```
SpC tcagCcgactgt
SpD meaggcgactgr
```

O In order to know the probability of the sequences to be different (\boldsymbol{p}), we can calculate the probability of the sequences being the same ${ }_{\left(I_{(t)}\right)}$ first.

- Let's start with Jukes-Cantor model

Example of calculation

If there are 80 transitions and 20 transversions between two sequences (length=1000bp), the number of substitutions per site \boldsymbol{K} can be estimated:
Under J-C model,

$$
K=-\frac{3}{4} \ln \left(1-\frac{4}{3} p\right)=0.10732 \quad(p=0.1)
$$

Under Kimura 2P model:

$$
\begin{aligned}
K & =\frac{1}{2} \ln \left(\frac{1}{1-2 P-Q}\right)+\frac{1}{4} \ln \left(\frac{1}{1-2 Q}\right) \quad(P=0.08, Q=0.02) \\
& =0.10943
\end{aligned}
$$

where $P=$ the proportions of transitions and $Q=$ the proportions 4im. - D f transversions. p is the proportion of total substitution.

UPGMA

оти	A	в	${ }^{\mathrm{d} C D}$	оти	(AB)	c
в	${ }^{\text {d }}$ AB			c	${ }^{\text {d }}$ (ABIC	
c	${ }^{\text {d }}$ AC	${ }^{\text {d }}$ B				
D	${ }^{\text {d }}$ AD	${ }^{\text {d }}$ BD		D	${ }^{\text {d }}$ (ABB ${ }^{\text {d }}$	${ }^{\text {a }} \mathrm{CD}$

where $d_{(A B) C}=\left(d_{A C}+d_{B C}\right) / 2$ and $d_{(A B) D}=\left(d_{A D}+d_{B D}\right) / 2$

Limitation on distance methods

O All nucleotide sites change independently．
O When evolutionary rates vary from site to site， than the data set needs to be corrected
O The substitution rate is constant over time and in different lineages．
O The base composition is at equilibrium．
O The conditional probabilities of nucleotide substitutions are the same for all sites and do not change over time．

Discrete methods

[^0]
Parsimony methods

O The goal is to find the most parsimonious tree
－The criteria are to calculate the changes of character states，i．e．the evolutionary steps
－First，we have to know the way to evaluate a given tree

A simple data matrix w／discrete characters
SpA：TCAGACGATTGTCAGACCATTG
SpB：TCAGTCGACTGTCAACCATTG
SpD：TCGGTCAATTGTCAAACGATTG

A simple data matrix w／discrete characters

> So, how many trees out there are we dealing with?

Tree searching
O The number of unrooted trees:

$$
N_{\text {unrooted }}=\frac{(2 n-5)!}{2^{n-3}(n-3)!}
$$

- The number of rooted trees:

$$
N_{\text {rooted }}=\frac{(2 n-3)!}{2^{n-2}(n-2)!}
$$

Note

- Say a computer can evaluate 10^{6} trees per second.
O If we want to evaluate all of the trees for 25 taxa, we will need
年)

We got to have some ways to approximate the true tree.

Ways to solve time paradigm

O Skip unnecessary calculation
O Change the tree searching ways

39

Searching for optimal trees

- Exhausted search

O Branch-and-bound method

- Heuristic approach
- Stepwise/closest/random addition
- Star decomposition
- Branch swapping

The procedure can be simplified
SpA: TCAGACGATtGTCAGACCATtG
SpB: TCGGTCGACTGTCAGACCATTG
SpC: TCAGTCGATTGTCA-ACGATTG
SpD: TCAGTCGATTGTCA-ACGATTG SpE: TCAGTCGATCGTCA-ACGATTG

Parsimonious
uninformative

Parsimonious informative

Distribution of tree length

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
\& \text { Tree-is } \\
\& \text { Island }
\end{aligned}
\] \& profi \& \({ }_{\substack{\text { First } \\ \text { tree }}}^{\text {cen }}\) \& \({ }_{\substack{\text { Last } \\ \text { tree }}}^{\text {cen }}\) \& score \& \({ }_{\substack{\text { Pirst } \\ \text { replicate }}}^{\text {ate }}\) \& \& \\
\hline 1 \& 101 \& 1471 \& 1571 \& 3890 \& 3 \& 1 \& Results of heuristic search, \\
\hline \({ }_{3}^{2}\) \& 69 \& \({ }_{4}^{4961}\) \& (14236 \& \begin{tabular}{|c}
3890 \\
3890 \\
\hline
\end{tabular} \& 10 \& 1 \& with random addition from \\
\hline 4 \& 5 \& 14237 \& \({ }_{14241}\) \& 3890 \& 31 \& 1 \& random starting points \\
\hline 5 \& 1236 \& 1 \& 1236 \& 3891 \& 1 \& 2 \& randorm starting points \\
\hline 6 \& -96 \& \({ }_{8816}^{8854}\) \& \({ }_{97211}\) \& \({ }^{3891}\) \& 20 \& 1 \& \\
\hline 7 \& 256
960 \& - \({ }_{192424}\) \& 9779
15201 \& 3891
3891 \& \({ }_{32}^{23}\) \& 2 \& \\
\hline 9 \& 624 \& 15202 \& 15825 \& 3891 \& 33 \& 1 \& \\
\hline 10 \& \begin{tabular}{l}
3085 \\
1088 \\
\hline 1828
\end{tabular} \& 15870 \& \begin{tabular}{l}
18954 \\
3398 \\
\hline
\end{tabular} \& \({ }^{3891}\) \& \({ }_{5}^{37}\) \& 1 \& \\
\hline 12 \& 1488
626 \& \({ }_{3448}^{1911}\) \& \({ }_{4073}\) \& 3892
3892 \& 5 \& \(\frac{1}{2}\) \& \\
\hline 13 \& 211 \& 4074 \& 4284 \& 3892 \& 8 \& 1 \& \\
\hline 14
15
15 \& -96 \& 5935 \& 6030
7366 \& \(\begin{array}{r}3892 \\ 3892 \\ \hline\end{array}\) \& 12 \& 1 \& \\
\hline 16 \& \begin{tabular}{l}
1266 \\
\hline 156
\end{tabular} \& \({ }_{7367} 711\) \& 7366
7602 \& \(\begin{array}{r}3892 \\ 392 \\ \hline\end{array}\) \& 15 \& \({ }_{2}^{2}\) \& \\
\hline 17 \& 1053 \& 7667 \& 8719 \& 3892 \& 18 \& 1 \& \\
\hline 18 \& 291 \& 9780 \& 10070 \& 3892 \& \({ }^{24}\) \& 1 \& \\
\hline \({ }_{20}^{19}\) \& 576
96 \& \({ }_{18987}^{10071}\) \& \({ }^{10646}\) \& \begin{tabular}{l}
3892 \\
3892 \\
\hline
\end{tabular} \& \({ }_{39}^{25}\) \& 1 \& \\
\hline \({ }_{21}^{20}\) \& 96
676 \& 18987
4285 \& 19882
4960 \& \({ }^{3892}\) \& \({ }^{39}\) \& 1 \& \\
\hline \({ }_{23}^{22}\) \& 995 \& \& 5934
8815 \& 3893
3893 \& 11 \& 1 \& \\
\hline 23
24 \& 668 \& - 89720 \& \({ }_{9523}^{8815}\) \& \begin{tabular}{|c}
3893 \\
3893
\end{tabular} \& \({ }_{21}^{19}\) \& 1 \& \\
\hline 25
26 \& 32
18 \& 18955
19083 \& 19896
19100 \& 3893
3893 \& 38 \& 1 \& \\
\hline \({ }_{27}^{26}\) \& 18
339 \& 1983

1572 \& 19100
1910 \& $\stackrel{3893}{3894}$ \& ${ }_{4}^{40}$ \& $\frac{1}{2}$ \&

\hline ${ }^{28}$ \& 64 \& 7603 \& 7666 \& 3994 \& 17 \& 1 \&

\hline 29
30 \& 3589
234 \& 10647
1237 \& 14235
1470 \& ${ }^{3894} 3$ \& 26 \& 1 \&

\hline ${ }_{32}^{31}$ \& 49
44 \& -3399 \& 3447

15969 \& - 3895 \& ${ }_{35}^{6}$ \& 1 \&

\hline ${ }_{33}^{32}$ \& ${ }_{1180}^{44}$ \& 15826
6031 \& 15869

7210 \& | 3895 |
| :--- |
| 896 | \& 35

13 \& ${ }_{1}^{1}$ \& Data of bird

\hline
\end{tabular}

A shortest Hamiltonian path problem

Branch-and-bound
search
This method can greatly
improve the speed of search,
but it still cannot escape from
he constraints of the NP .
hardness proof.
heuristic searching for best tree

Heuristic approach- Branch swapping: NNIs

How greedy should we be?

O In a tree with n tips, there will be $n-3$ interior branches.

- In all, 2(n-3) neighbors will be examined for each tree.
O Should we do NNI for each of the best trees, or stop at some point, or should we start from scratch more often? 50

The space of all 15 possible unrooted trees

The space of all 15 possible unrooted trees

NNI is to moving in this graph

Felsenstein (2004) Inferring phyloge92

Heuristic approach- Branch swapping: TBR

Browsing tree space

Parsimony ratchet

- Described by Nixon (1999), and available in various programs (NONA, WINCLADA, PAUPRat, etc.).
O Parsimony ratchet uses a re-weighted subset of characters as a starting point to browse the tree space, and tries to find as many tree islands as possible by using adjacent-tree searching method.
\qquad
O Generate a starting "Wagner" tree
- Randomly select a subset of character (5-25\%) and add 1 weight score
- Performing TBR branch swapping, keep 1 tree
- Reset the weighting to original
- Performing branch swapping, keep the best tree
- Return to step 2, repeat the iteration (step2-6) 50-200 times

Notes on parsimony ratchet

- It seems to improve the effectivity of tree searching
O It can be used with any objective function based on character data: compatibility, distance matrix, and likelihoods.
- The strategy can be modified

Weighted parsimony method

C Incorporating simple nucleotide models into MP analysis

- Transition vs. transversion scores

	A	C	G	T
A	0	2.5	1	2.5
C	2.5	0	2.5	1
G	1	2.5	0	2.5
T	2.5	1	2.5	0

The Sankoff algorithm applied to the tree

How do we know the tree we got is right？

The evaluation

Properties of characters

Consistency index (Cl) of each character is：

$$
\text { character } \mathrm{CI}=m_{i} \mid S_{i}
$$

Tree Cl for all characters in a specific tree：

$$
\text { tree } \mathrm{CI}=\frac{\sum_{i=1}^{n} m_{i} w_{i}}{\sum_{i=1}^{n} w_{i} s_{i}}
$$

$m_{i}=$ 所有可能演化樹中的特徵的最少可能演化步䮋（minimum conceivable steps）

$w_{i}=i$ 特徵的櫂重 $: n$ 為特慛數

Example：calculating CI \＆RI

－Character properties（CI，RI）
－Examining how＂clean＂is the data on a given tree
－Confidence level of trees
－Comparisons between obtained trees －Partition distance
－Kishino－Hasegawa test
－Distance test
－Likelihood ratio test
－Bootstrap／jackknife（internal support）
－Bremer support（for parsimony）

Evaluating trees

Properties of characters

Retention index（RI）of each characters is：

$$
\text { character } \mathrm{RI}=\frac{M_{i}-s_{i}}{M_{i}-m_{i}}
$$

$M_{i}=$ 所有可能演化樹中的特特徵的最多可能演化步聕（maximum conceivable steps）

Evaluating trees

O．Character properties $(\mathrm{Cl}, \mathrm{RI})$
－Confidence level of trees
－Comparisons between obtained trees
－Bootstrap／jackknife（internal support）
－Bremer support（for parsimony）

Decay/support index

O Also called 'Bremer support' (Bremer 1988, 1994; Donoghue et al. 1992)
O An index of support calculating the difference in tree lengths between the shortest trees that contain versus lack a specific group.

- Constraint trees can be generated by AutoDecay.

C Pseudo-resampling.
O An approximate measure of repeatability and accuracy of data.
O Will not correct the inconsistency caused by reconstruction method.

- The tree constructed in every replicate still depend on the methods you choose, therefore subject to associated problems

Bootstrapping

associated problems

Method of calculation

O 1. Obtain most parsimonious tree(s) (MP)

- Generate a strict consensus tree
- 2. Obtain all trees one step longer (MP + 1)
- Generate a strict consensus tree
- If branch is not supported, Decay index =1

O 3. Obtain all trees one step longer (MP + 2)

- Generate a strict consensus tree
- If branch is not supported, Decay index $=2$
- 4. Obtain all trees one step longer (MP + 3)
- Generate a strict consensus tree
- If branch is not supported, Decay index $=3$

Bremer Support (decay index)

3 trees $<=111$ steps

Bremer Support (decay index)

C 5 trees $<=117$ steps

Bremer Support (decay index)

O the number of extra steps it takes to collapse a group

- example: 1 MP tree, 110 steps

Bremer Support (decay index)

- 3 trees $<=111$ steps

Bremer Support (decay index)

O Can not be larger than the branch length
O No direct connection to branch length otherwise

- Quantification of support in a parsimony framework

Methodological concerns

- Sampling problem

O Performance of phylogenetic methods under computer simulation

Effects of sampling

Makes N0.2 a fast evolving taxon
4in
(Page \& Holmes, 1998) 80

Unequal rate of evolution

64.

Prge \& Holme (1998) Molecular evolutiog 84

References of phylogenetics

O Graur, D. and W.-H. Li. 2000. Fundamentals of Molecular Evolution. 2nd ed., Sinauer Assoc., Sunderland, MA, USA.
Hall, B. G. 2004. Phylogenetic trees made easy: a how-to manual, 2nd ed. Sinauer Assoc., Sunderland, MA.
O Hillis, D. M., C. Moritz, and B. K. Mable (eds) 1996. Molecular systematics. Sinauer Assoc., Sunderland, MA.
C Page, R. D. M., and E. C. Holmes. 1998. Molecular evolution - A phylogenetic approach. Blackwell Science Ltd, Oxford, the United Kingdom.
O Yang, Z. H. 2006. Computational molecular evolution. Oxford University Press

[^0]: ○ Maximum parsimony（高度間約原理）
 C Maximum likelihood（最大似然性原理）
 © Bayesian inference（貝葉氏導出式分析）
 O Others

