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Use of molecular clock to date species
divergences
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Some difficulties of dating

The molecular clock is often violated, and
assumptions about rates affect time
estimation.

Fossil calibrations involve uncertainties (errors
in dating a fossil and errors in assigning a
fossil on the phylogeny).

Rates and patterns of substitution are
different at different loci.

Strategies to improve molecular dating

- Use multiple genes which may be evolving in
different ways.

- Usemultiple fossil calibrations to constrain the
rates.

« Use good estimation methods

Likelihood

Branches are grouped into rate classes, and rates and times
are estimated jointly.

Kishino & Hasegawa (1990 Methods Enzymol. 183, 550-570)
assigned transition and transversion rates to branches on a
phylogeny and estimated rates and times simultaneously.
A normal approximation to the numbers of transitional and
transversional differences between sequences is used to
calculate the likelihood.

Quartet-Dating (Rambaut & Bromham 1998 Mol. Biol. Evol.
15, 442-448) assigns two rates on a tree of four species.
Likelihood calculated on sequence alignment.

This was extended to an arbitrary tree (Yoder & Yang 2000 Mol.
Biol. Evol. 17, 1081-1090) and to multiple genes and
multiple calibrations (Yang & Yoder 2003 Syst. Biol. 52, 705-
716).

Likelihood local-clock model
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Likelihood method

Advantages
Multiple gene loci can be analyzed simultaneously,
with their differences accounted for.
Multiple fossil calibrations can be used
simultaneously.

Disadvantages
Assignments of rates to branches are arbitrary.
Calibration node ages are assumed to be constants,
known without error. (The penalized-likelihood
method (r8s) uses constrained minimization to
incorporate fossil uncertainties, which is problematic.)

Bayesian methods
Rate drifts over time, described by a probabilistic model.

A geometric Brownian motion model is used to model rate changes
by Thorne, Kishino & colleagues (Thorne, Kishino, & Painter 1998 Mol.
Biol. Evol. 15, 1647-1657; Kishino, Thorne & Bruno 2001 Mol. Biol.
Evol. 18, 352-361; Thorne & Kishino 2002 Syst. Biol. 51, 689-702).
Fossil calibrations are specified as constraints, that is, minimum
and/or maximum ages of nodes on the tree.

Yang & Rannala (2006. Mol. Biol. Evol. 23:212-226) developed “soft
bounds” to accommodate fossil uncertainties. The molecular clock
assumption is relaxed by Rannala & Yang (2007. Syst. Biol. 56:453-
466)

Drummond et al. (2006. PLoS Biology 4:e88) developed a similar
MCMC program (called BEAST) that can use statistical distributions to
accommodate fossil uncertainties.

Bayesian MCMC algorithm for date estimation
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Soft bounds to account for fossil uncertainties
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Hard vs. soft bounds: a simulation study
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Infinite-sites theory

When the amount of sequence data approaches infinity
the posterior CIs get narrower.
the posterior means, and the lower and upper CI limits fall
on straight lines.

Even with an infinite amount of sequence data, time estimates
involve substantial uncertainties.
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It is now more profitable to dig than to sequence!

Johnson et
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Cavgrna Data from Johnson et al.

Node Fossl Johnsonetal.  39s-clock 3 38s-clock 1 38s-clock 3

1 <16 108 (84,145 140(10.1,167) 152(122,171) 153(124,17.1)
2 94(7.4,128) 122(8.7,150) 141(11.2,162) 14.2(10.9, 16.4)
3 85(67,11.6) 11.1(7.9,136) 128(101,146)  12.7(9.7,14.6)
4 >5 81(63,11.00 105(7.5130) 122(9.7,141)  12.1(9.1,14.0)
5 >5.3 72(56,98) 94(68118) 108(85124)  10.7(7.8 125)
6 67(5392)  87(63109 10.0(7.9, 115) 9.8(6.9, 11.5)
7 >4.2 62(4.886) 81(58102)  93(7.3,108) 9.1(6.2,10.6)
11 >1 1.4(0.9,2.2) 17 (1.2,2.3) 23(17,29) 20(13,26)
14 >1 59(4.5,82) 76(55,96)  87(68 10.1) 8.4(5.7,10.0)
18 >38 4.9(3.9,6.9) 6.2(4.4,8.1) 7.0(55,83) 7.1(50,87)
19 >1.8 4.2(3.2,6.0) 50(34,6.7) 56 (4.3, 6.8) 57(39,7.2)
20 >2.5 32(25,4.7) 3.8(26,5.3) 46(35,5.7) 43(31,55)
23 <5 2.9(2.0,4.2) 37(27,4.9) 44 (3.4,50) 43(33,5.0)
25 >1 24(1.7,3.6) 31(22,4.1) 3.7(28,4.4) 36(27,43)
29 >38 56(4.1,7.9) 7.2(4.9,9.4) 83(6.4,9.8) 8.2(6.1,10.1)
33 >38 64(45093)  7.2(48103) 7.7 (6.1,9.0) 7.6 (5.8, 10.5)
37 >1 29(1.8,46) 3.2(20,5.0 35(27,44) 35(25,4.8)

Model: HKY85+T5. clockl: global clock; clock3: correlated rates

Estimates from the two programs have
systematic differences

It is not very clear which differences are important.
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Bayesian MCMC methods provide a natural
framework for assembling different sources of
information (uncertainties), from fossils, sequences,
etc.

- Many factors may affect divergence time estimation,
and their relative importance is not well-understood:

- violation of the clock
prior on rates and times
substitution model

More work is needed to model fossil uncertainties
reliably.
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A model of errors in fossils

Every fossil has a probability p;, of being erroneous (and
excluded from the analysis), with the prior p; ~ beta(p, g). The
MCMC algorithm then generates a posterior distribution of p;
and a posterior probability that each fossil is in error.

A simple way of implementing the model is to have an
indicator variable for each fossil, and update the indicators in
the MCMC.

Suppose there are c = 3 fossils.
U= U,U,U; = 111: all three are used. Pr = (1 - p;)?
U = 011: first not in use, the other two in use. Pr = p(1-py)?
U = 000 is not allowed.

U can take 2¢ - 1 values for c fossils.

Constraint on the root age

We require that the root age be constrained,
whether or not a fossil is present at the root.

Simple upper bound: 4L <t

max

Lower & upper bounds: t,, <t <t

max

The constraints are implemented as soft
bounds, and are used if there is no fossil at the
root, or if there is a fossil at the root but it is
considered erroneous (as specified by U).

Simulation under the clock: 9s, 200K bp

Posterior distribution of root age t;
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Sanders & Lee (2007 Biology Letters 3: 275-279) used molecules to evaluate
the reliability of fossils.




Sequence data statistics
(MLEs under HKY+TI')

Partition bp  treelength K o
Rag 1&2 2106 1.1 2.9 0.26
Rag 3 1053 5.2 6.1 3.82
Cmos 1&2 738 1.9 2.3 0.65
Cmos 3 369 59.9 5.9 11.06

ML branch lengths without the clock (HKY+TI)
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Posterior estimates of times under the clock
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Posterior estimates of times under relaxed
clock model (clock3: auto-correlated)

L5 275
t,; root age

4.0 5.25 6.5 0 0.25 0.5
t;; mouse-rat age

RootAge >3.2<3.8, py~beta(1,10).

Fossil  Error
Node 18: 0.001
Node 19: 1.000
Node 22: 1.000
Node 24: 1.000
Node 25: 1.000
Node 31: 0.999

075 1.0

Posterior of times under clock3

RootAge<5
C17 (3.2, 3.8) treated as fossil

Fossil error

C17(3.2,3.8) 0.658
C18(2.95,3.60) 0.598
C19(2.37,2.72)  0.539
C€22(1.55,1.80) 0.88
€24 (1.90,2.50) 0.778
(€25 (2.28,2.66) 0.86
C31(0.09,0.18) 0.953

21.5 27 4.0 52 6.5
t;; root age

Constraint on root age is important.

Posterior estimates of times

Independent  Autocorrelated

Node Calibration Clock rates rates
17 root (320, 380) 376 (361, 384) 362(326,381) 360 (324, 381)
18 (295, 360) 285 (269, 301) 305(243,332) 332(296,374)
19 bird-lizard (237,272) 162 (150,175) 169 (130,204) 230 (185, 263)
22 (155, 180) 86 (77,94) 76 (55,99) 93 (68, 118)
24 (190, 250) 39 (33, 46) 48 (29, 74) 130 (46, 190)
25 bird-

crocodile (228,266) 103 (94,113) 107 (79, 136) 156 (123, 194)

31 mouse-rat

9, 18) 32 (28, 36) 32(17,45)

30 (15, 45)

pe~ beta(0.1, 10), with mean 0.01.




Summary

The model performs well in simulated data.

In the real data set, there seems to be much conflict,
and the Bayesian method appears place high
confidence on whatever results it ends up with.
More tests are needed.

Bayesian statistics provides a natural framework for
incorporating different sources of information
(uncertainties), from fossils, sequences, etc.
However, when the models are complex, and it is not
always easy to understand the effects of the
different components. The prior becomes more
important with the increase of model complexity.
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