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• Probability and principles of statistical 
inference

• Bayes’s theorem & Bayesian statistics
• Bayesian computation
• Two applications

• coalescent analysis of a DNA sample
• phylogeny reconstruction

Probability: dual conceptsProbability: dual concepts

1.1. FrequencyFrequency
When I toss this coin 1000 times, the When I toss this coin 1000 times, the 
frequency of heads is about frequency of heads is about ½½..

2.2. Degree of (rational or personal) beliefDegree of (rational or personal) belief
The probability that it will rain tomorrow The probability that it will rain tomorrow 
is is ½½..

Frequentist (classical) statisticsFrequentist (classical) statistics
In Frequentist statistics, parameters are fixed, and we 

think of properties of estimation methods in 
repeated sampling, that is, when we imagine taking 
many data samples from the same process that 
generated our observed data.

It is not meaningful to talk about the probability that 
the parameter falls within a range, such as Prob(θ > 
0), or the probability of a hypothesis, Prob(H0).

Probability measures degree of belief.  Inference is 
conditional on the observed data.  There is not much 
distinction between parameters and random variables.

Bayesian statisticsBayesian statistics

Confidence interval (CI)Confidence interval (CI)

( 1.96 , 1.96 )x s n x s n− +

Suppose the data are a sample (x1, x2, …, xn) from the 
normal distribution N(μ, σ2), with unknown mean μ
and variance σ2.  If n is large, the 95% confidence 
interval for μ is 

It is incorrect to say that the CI includes the true 
mean with probability 95%.

A 75% confidence intervalA 75% confidence interval
Suppose we take two random draws (x1 and x2) from 
the following distribution to estimate θ (-∞< θ <∞). 
The following procedure produces a 75% confidence 
interval (set).
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Before the experiment, the probability that 
the interval contains the true θ is 75%.  
After the experiment, it is either 0 or 1.



Confidence interval (CI)  vs. Confidence interval (CI)  vs. 
Bayesian credibility interval (CI)Bayesian credibility interval (CI)

The 95% confidence interval (θL, θU):
Imagine that we fix θ and draw many 
data samples under this θ.  In each 
sample, construct a 95% CI, which will 
vary among samples.  Among those 
CIs, 95% of them cover the true θ.  
Sometimes the 95% CI from the 
observed data clearly does not include 
the true θ (that is, the probability that 
the CI includes θ is 0).

Given the data, the 95% Bayesian credibility interval
(θL, θU) includes the true θ with probability 95%.

BayesBayes’’ss theorem (inverse probability theorem)theorem (inverse probability theorem)

P(positive | infection) = 0.99

P(positive | no infection) = 0.02

P(infection) = 0.001

P(no infection) = 0.999

Example (screening paradox).  Suppose a 
person has tested positive in a clinical test.  
What is the probability that he has the 
infection?

BayesBayes’’ss theoremtheorem

P(positive | infection) = 0.99

P(positive | no infection) = 0.02

P(infection) = 0.001

P(no infection) = 0.999

P(positive) = 0.001 × 0.99 + 0.999 × 0.02 = 0.02097

P(infection | positive) = 0.001 × 0.99/0.02097 = 0.047

: infection;   : no infection

: test-postive
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Bayesian estimation of Bayesian estimation of θθ
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f(θ): prior;   f(θ|x): posterior;  f(x|θ): 
likelihood; f(x): normalizing constant

The posterior is proportional to the prior times the 
likelihood.  The posterior information is the sum of 
the prior information and the sample information.
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The use of The use of BayesBayes’’ss theorem when theorem when ff((θθ) ) 
does not have a frequency interpretation does not have a frequency interpretation 
is controversial.  is controversial.  

All controversies about Bayesian statistics are about All controversies about Bayesian statistics are about 
the prior.the prior.
Bayesians claim that classical statistics is a Bayesians claim that classical statistics is a 
fundamentally flawed theory with fundamentally flawed theory with ad hocad hoc fixes that fixes that 
often work, while Bayesian statistics is a often work, while Bayesian statistics is a 
fundamentally valid theory with some technical fundamentally valid theory with some technical 
difficulties.difficulties.



Bayesian credibility interval (CI)Bayesian credibility interval (CI)
The 95% credibility interval (θL, θU):
Let x1, x2, …, xn be a sample from N(θ, 1).  Assume a 

non-informative prior on θ.  Then the 95% CI is  

Given the data, the Bayesian CI includes the true θ with 
probability 95%.

nx /96.1±

PP value vs. posterior probabilityvalue vs. posterior probability

Significance test: H0: θ < 0.
• P value is not the probability that H0 is correct.  It 

is the probability of observing data at least as 
extreme as the observed data if H0 is correct.

P value = Pr(extreme data | H0)

• Bayesian posterior probability for H0 is the 
probability that H0 is correct, given the data.

Pr(θ < 0|data)

All Bayesian inference is based on the All Bayesian inference is based on the 
posterior.posterior.
• Mean, median, mode as point estimate
• 95% equal-tail credibility interval: (θL, θU)
• 95% highest posterior density (HPD) region 

(interval): (θ1, θ2), (θ3, θ4)

95%

θ1 θ2 θ3 θ4

95%

2.5%2.5%

θL θU

Example: JukesExample: Jukes--Cantor distanceCantor distance
data: x out of n sites are different.
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MLEs:

Example: Example: 
Jukes and Cantor distanceJukes and Cantor distance
xx=10 differences out of =10 differences out of 
nn=100 sites=100 sites

MLE and likelihood interval
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The Bayesian solutionThe Bayesian solution
Suppose we use an exponential prior with mean 
μ = 0.1.
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The Bayesian solution: The Bayesian solution: 
numerical integrationnumerical integration
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Likelihood

The prior The prior ff((θθ))

• It describes our previous knowledge about the 
parameter before data are considered (objective 
Bayesian)

• It reflects my personal belief about the parameter 
before the data are collected (subjective Bayesian)

• Difficulties in representing ignorance 
(noninformative, vague, diffuse, reference priors).

• Prior means your prejudice against mine as well as 
different inferences from the same data.

The difficulties of representing ignorance The difficulties of representing ignorance 
using uniform distributionsusing uniform distributions

• Discrete case
Prob(E occurs on weekend, not on weekday) = ½ or 
2/7

• Continuous case (size of square)
The side is U(1, 2) meters
The area is U(1, 4) square meters

Ways for specifying priorsWays for specifying priors

• Use of a physical model to describe uncertainties n 
parameters

• Previous data or knowledge under similar conditions
• Mathematical convenience (conjugate priors)
• vague (diffuse) prior 
• Personal beliefs

Bayesian computationBayesian computation
• Difficulties in calculating high-dimensional 

integrals
• Markov chain Monte Carlo (MCMC)
• Application to molecular phylogenetics

Difficulty in calculating the integrals was Difficulty in calculating the integrals was 
a major reason that prevented the a major reason that prevented the 
widespread use of Bayesian statistics.widespread use of Bayesian statistics.

Numerical integration (the curse of dimension)Numerical integration (the curse of dimension)
Monte Carlo integration (& importance sampling)Monte Carlo integration (& importance sampling)
Markov chain Monte CarloMarkov chain Monte Carlo



Monte Carlo integrationMonte Carlo integration

To calculateTo calculate

where where f(θθ) is a density, draw independent ) is a density, draw independent 
samples samples θθ11, , θθ22, , ……, , θθNN from f(θθ).  Then).  Then
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Monte Carlo integration: difficultiesMonte Carlo integration: difficulties

•• We rarely know how to sample from the We rarely know how to sample from the 
posterior.posterior.

•• Sampling from the prior is inefficient.Sampling from the prior is inefficient.

Markov chain Monte CarloMarkov chain Monte Carlo

Draw dependent samples Draw dependent samples θθ11, , θθ22, , ……, , θθNN from f(θθ||xx) such 
that θθ11, , θθ22, , ……, , θθNN form a time-homogeneous Markov 
chain.  Then 
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Metropolis algorithm for discrete parameter (Metropolis et Metropolis algorithm for discrete parameter (Metropolis et 
al. 1953)al. 1953)

1.1. Set initial state: Set initial state: θθ = 1 (say).= 1 (say).
2.2. Propose one of the two alternative states with equal Propose one of the two alternative states with equal 

probability probability ½½.  Let this be θθ*.*.

3.3. Accept or reject the proposal Accept or reject the proposal θθ**.  If .  If ππ((θθ*)*) > ππ((θθ), ), 
accept accept θθ*.  Otherwise accept *.  Otherwise accept θθ** with probability
ππ((θθ*)*)//ππ((θθ).  If the proposal is accepted, set ).  If the proposal is accepted, set θθ = = θθ**.  .  
Otherwise set Otherwise set θθ = = θθ.  Print out .  Print out θθ..

4.4. Go to step 2.Go to step 2.

The algorithm generates a Markov chain with state space The algorithm generates a Markov chain with state space θθ = 1, 2, = 1, 2, 
3 and 3 and target density target density ππ((θθ).  (Suppose ).  (Suppose ππ11 = 0.3, = 0.3, ππ22 = 0.5, = 0.5, ππ33 = 0.2, = 0.2, 
but we can calculate their ratios only.)but we can calculate their ratios only.)

1
3

2

1 2 1 1 3 2 2 2 1 2 2 3 2 2 2 1 ...

Features of the algorithmFeatures of the algorithm

•• The proposal density is symmetrical: The proposal density is symmetrical: qq((θθ|θθ**) = ) = qq((θθ**|θθ) = ) = ½½.
•• The sequence of states sampled over the iterations forms The sequence of states sampled over the iterations forms 

a Markov chain.a Markov chain.
•• The steadyThe steady--state distribution of the chain is state distribution of the chain is ππ((θθ); that is, ); that is, 

the time the boy spends on each box is proportional to the time the boy spends on each box is proportional to 
the height of that box.the height of that box.

•• The algorithm requires calculation of the ratio The algorithm requires calculation of the ratio ππ((θθ**)/)/ππ((θθ), ), 
but not of but not of ππ((θθ).).

The ratio of the posterior is easier to The ratio of the posterior is easier to 
calculate than the posterior itselfcalculate than the posterior itself
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Metropolis algorithm (Metropolis et al. 1953)Metropolis algorithm (Metropolis et al. 1953)
for a continuous parameterfor a continuous parameter
JC69 distance calculation, target density JC69 distance calculation, target density ππ((θθ)=)=ff((θθ||xx).).
1.1. Initialize: Initialize: nn = 100,  = 100,  xx = 10, = 10, ww = 0.01.= 0.01.
2.2. Set initial state: Set initial state: θθ = 0.5, say.= 0.5, say.
3.3. Propose a new state Propose a new state θθ** ~ ~ UU((θθ-w/2, θθ+w/2).  

If θθ** < 0, set θθ** = -θθ**.
4.4. Calculate the acceptance probabilityCalculate the acceptance probability

5.5. Accept or reject the proposal Accept or reject the proposal θθ**.  Draw .  Draw rr ~ ~ UU(0,1).  If (0,1).  If 
rr<<αα set set θθ = = θθ**.  Otherwise set .  Otherwise set θθ = = θθ.  Print out .  Print out θθ..

6.6. Go to step 3.Go to step 3.
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Neither large nor small windows are good.Neither large nor small windows are good.
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w = 0.01,   acceptance rate = 97%
w = 1,        acceptance rate = 20%

Optimum acceptance rate is ~50% for 1-D proposal, decreasing 
to ~26% for multi-dimensional proposal.  
Recommended values are 20-70% for 1-D and 15-40% for 
multi-D proposals.

θ

BurnBurn--in, histogram, density smoothingin, histogram, density smoothing
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MetropolisMetropolis--Hastings algorithm (Hastings 1970)Hastings algorithm (Hastings 1970)
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The proposal (jump) density The proposal (jump) density qq((θθ**||θθ) may be asymmetrical.  
The acceptance probability is thenThe acceptance probability is then

Proposal ratio (Hastings ratio)Proposal ratio (Hastings ratio)

Suppose the robot proposes a Suppose the robot proposes a leftleft move with probability move with probability 
2/3 and a 2/3 and a rightright move with probability 1/3.  By accepting move with probability 1/3.  By accepting 
left moves less often than right moves through the left moves less often than right moves through the 
proposal ratio, the chain converges to the correct target proposal ratio, the chain converges to the correct target 
distribution.distribution.

Example: θ = 1, θ* = 2.

qq((θθ ||θθ*) = 1/3,   = 1/3,   qq((θθ**||θθ) = 2/3,= 2/3,

qq((θθ ||θθ*)//qq((θθ**||θθ) = = ½½..
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ProposalsProposals

The proposal (jump) density The proposal (jump) density qq((θθ**||θθ) should specify a 
recurrent aperiodic Markov chain.  It should be possible 
to reach any other state from any state, and the chain 
should not have a period.
The proposal density can be entirely unrelated to the 
target density, so the same proposals can be used in 
different MCMC algorithms.  The proposal greatly affects 
the convergence and mixing properties of the Markov 
chain.



Sliding window with reflectionSliding window with reflection

bb

θθ**

aa θθ

θθ**

θθ* ~ * ~ UU((θθ-w/2, θθ+w/2)
Suppose θθ is defined in the interval (a, b).  If the proposed 
value θθ* is outside the range, the excess is reflected back * is outside the range, the excess is reflected back 
into the interval.  into the interval.  This is a symmetrical proposal and the 
proposal ratio is 1.

If θθ* < * < aa, reset , reset θθ** to a + (a - θθ*) = 2*) = 2aa -- θθ*.*.
If θθ* > * > bb, reset , reset θθ** to b - (θθ** - b) = 2) = 2bb -- θθ*.*.

Sliding window with normal proposalSliding window with normal proposal

θθ* ~ * ~ NN((θθ, σσ22)
σ controls the step size.
If the proposal is outside the range, reflect as in the 
case of the uniform proposal.

bbaa θθ

Correlation between parametersCorrelation between parameters

-2 -1 0 1 2
-2

-1

0

1

2Inefficient proposals
• one component at a time
• both components but 

ignoring the correlation
Efficient proposals
• reparametrize the model
• multi-dimensional proposal 

to account for correlation

SingleSingle--component Mcomponent M--H algorithmH algorithm

Partition multiple parameters into blocks: θ1, θ2, …, θm, 
each of which can be multi-dimensional.  

Propose changes to each block in turn, or update 
blocks with fixed probabilities.  

It is more efficient to group highly-correlated 
parameters in one block and update them 
simultaneously.

Multiple local peaksMultiple local peaks

Difficult to cross 
valleys.

MetropolisMetropolis--coupled Markov chain Monte coupled Markov chain Monte 
Carlo (MCMCMC or MCCarlo (MCMCMC or MC33))
MCMCMC runs several chains simultaneously, with 

one cold chain approaching the target while the other 

hot chains to help with the move.  

[π(θ)]1/4

π(θ)

θ

[π(θ)]1/16



Monitoring and diagnosing MCMC algorithmsMonitoring and diagnosing MCMC algorithms

Slow convergence and poor mixing are the two major 
problems.

• Use time series (trace) plot of variables.  Check for 
convergence in “all” variables.

• Acceptance rate should be neither too high nor 
too low.

• Without data, the posterior should equal the prior.

• Use simulation to confirm target distribution.

• Should we run multiple long chains or one 
extremely long chain?

Excitements about MCMC?Excitements about MCMC?

MCMC has revolutionized Bayesian statistics in the 
past two decades.  It offers exciting opportunities 
for implementing sophisticated and realistic models 
for analysis of genetic data.

Nevertheless, MCMC algorithms are difficult to code 
and validate.  The problem is exacerbated by the 
use of parameter-rich models which are hardly 
identifiable.  

to a distribution to a point (MLEs)Convergence

moremanyWays to make 
mistakes

more difficultdifficultFinding bugs

no directiongoes to 0Gradient

LikelihoodLikelihood no directionalways goes up

Bayesian MCMCLikelihood optimization

MCMC algorithms are part science part art!MCMC algorithms are part science part art! Likelihood vs. BayesianLikelihood vs. Bayesian

straightforward problematicNuisance parameters

Yes, please.No, thanks.Prior

Inference 

Invariant to 
parameterizations?

inference conditional on 
data, straightforward 
interpretation

conditional on 
parameters, indirect 
Frequentist
interpretation

prior is notMLEs are  

BayesianLikelihood (frequentist)

Application 1: The neutral coalescentApplication 1: The neutral coalescent

Fisher R. 1930. The Genetic Theory of Natural Selection. Clarendon Press, Oxford.
Haldane JBS. 1932. The Causes of Evolution. Longmans Green & Co., London.
Wright S. 1931. Evolution in Mendelian populations. Genetics 16:97-159.

Classic population genetics theory studies the Classic population genetics theory studies the 
change of gene frequencies over generations, change of gene frequencies over generations, 
influenced by random sampling (genetic drift), influenced by random sampling (genetic drift), 
natural selection, etc.  natural selection, etc.  

Modern work (Modern work (aa) is dominated by data, () is dominated by data, (bb) ) 
uses the coalescent model, which uses the coalescent model, which ““runs runs 
the time machine backwardthe time machine backward””, and (, and (cc) is ) is 
often computationoften computation--intensive (MCMC).intensive (MCMC).
Kingman JFC. 1982. On the genealogy of large 
populations. J. Appl. Prob. 19A:27-43.
Kingman JFC. 1982. The coalescent. Stochastic 
Process Appl. 13:235-248.

Hein J, Schieriup MH, Wiuf C. 2005. Gene Genealogies, 
Variation and Evolution: A Primer in Coalescent Theory. 
Oxford University Press, Oxford.

Wakeley J. 2007. Coalescent Theory: An Introduction. Roberts 
& Company.



The coalescent model (The coalescent model (θθ = 4= 4NNμμ))
Measure time in N generations and 
look backward in time.  Then neutral 
mutations accumulate at rate θ/2 while 
coalescent events occur at rate 1 for 
each pair of lineages.  
Each genealogy (G) has equal 
probability.  The waiting times (tj) until 
the next coalescence have independent 
exponential distributions:

154362

( )( 1) ( 1)
2 2( ) expj j j j

j jf t t− −= −t5

246135

t2

t3

t4

t6

Estimation of Estimation of θθ = 4= 4NNμμ from a population from a population 
sample at a neutral locussample at a neutral locus

( | )  ( ) ( ) ( | , ) ( | , , ) di i i i i ii
f X f f G f G f X Gθ θ θ θ∝∑ ∫ t t t

Random variables integrated out in the model:

• genealogy (tree topology) Gi

• s – 1 coalescent times ti on each Gi

Sketch of an MCMC algorithmSketch of an MCMC algorithm
• Start with a random tree G, with random coalescent 

times t, and random θ.

• Each iteration consists of the following:

• Propose a change to the tree, by rearranging 
nodes, which may change times t as well.

• Propose a change to the times t.

• Propose a change to parameter θ.

• Every k iterations, sample the chain: save θ as well 
as G and t to disk.

• After many iterations, summarize the results (mean, 
median of θ, and other features of the posterior.

Population sizes and species divergence timesPopulation sizes and species divergence times

tHCG

tHC

GCH

HCG

H1 GH2 H3 C1 C2

H C

HC

t3
( )H t2

( )C

t3
(HC)

t2
(HC)

t2
(HCG)

Yang (2002. Genetics 162:1811-1823) 
Rannala & Yang (2003. Genetics 164:1645-1656)

Parameters: 

• Speciation times:
tHC, tHCG

• Population sizes: 
θH, θC, θHC, θHCG

Estimation of Estimation of θθ = 4= 4NNμμ from a population from a population 
sample at a neutral locussample at a neutral locus

Kuhner, Yamato & Felsenstein (1995. Genetics 
140:1421-1430) uses an MCMC algorithm to calculate 
the likelihood for given θ under a finite-site model, 
using θ0 as a driving value.  (coalesce, migrate, 
recombine → lamarck)

Stephens & Donnelly (2000 J. R. Statist. Soc. B. 62:605-
655) discussed problems with the idea of using a 
driving value θ0 to derive likelihood at other values of 
θ.

Estimation of Estimation of θθ = 4= 4NNμμ at a neutral locus at a neutral locus 
from a sample of DNA sequencesfrom a sample of DNA sequences

Griffiths & Tavare assume the infinite-site model of 
mutation, and an importance-sampling algorithm to 
calculate the likelihood.

Felsenstein, Kuhner, Yamato & Beerli (1999. IMS Lect. Notes 
Monogr. Ser. 33:163-185)



MCMC algorithms for closely related MCMC algorithms for closely related 
species/populationsspecies/populations

Wilson, Weal & Balding (2003. J. R. Statist. Soc. A 166:155-201) deals 
with micro-satellite data.  (Batwing)

Nielsen (2000. Genetics 154:931-942) models the divergence 
between two species followed by gene flow.  The algorithm works 
on sequence data and a tree of 2 species.  Hey & Nielsen (2004 
Genetics 167: 747-760) extends this to multiple loci.  (IM)

Beerli & Felsenstein (2001. Proc. Natl. Acad. Sci. U.S.A. 98:4563-
4568) and Bahlo & Griffiths (2000. Theor. Popul. Biol. 57:79-95) 
assume an equilibrium model of migration among populations. 
(migrate)

Application 2: Bayesian Application 2: Bayesian phylogeneticsphylogenetics

Edwards (1970.  J. R. Stat. Soc. B. 32:155-174) discussed 
the conditional distribution of labelled histories for 
human populations given the data of gene frequencies.  
Edwards & Cavalli-Sforza used a Brownian motion to 
model the drift of transformed gene frequencies over 
time and used the Yule process to specify the 
distribution of labelled histories and the divergence 
times.

Bayesian phylogenetics: brief historyBayesian phylogenetics: brief history

Three groups introduced the Bayesian methodology to 
estimation of molecular phylogenies:

Rannala & Yang (1996. J. Mol. Evol. 43:304-311)
Yang & Rannala (1997. Mol. Biol. Evol 14:717-724)
Mau & Newton (1997. J. Comput. Graph. Stat. 6:122-131)
Li, Pearl & Doss (2000. J. Amer. Stat. Assoc. 95:493-508)

Molecular clock is assumed.  
Prior on tree is uniform or from the birth-death process 
with species sampling.

Bayesian phylogenetics: brief historyBayesian phylogenetics: brief history

BAMBE 
(Larget & Simon. 1999. Mol. Biol. Evol. 16:750-759)

MrBayes
(Huelsenbeck & Ronquist. 2001. Bioinformatics 17:754-755; 
Ronquist & Huelsenbeck. 2003. Bioinformatics 19:1572-1574)

Molecular clock relaxed.  

More efficient proposal algorithms are implemented.

More models are implemented.

Bayesian phylogeneticsBayesian phylogenetics

Parameters that need priors:

• tree topology τi: uniform

• branch lengths bi: U(0,10) or exponential

• parameters in the substitution model θ
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Sketch of an MCMC algorithmSketch of an MCMC algorithm
• Start with a random tree τ, with random branch lengths 

b, and random substitution parameters θ.

• In each iteration do the following:

• Propose a change to the tree, by using tree 
rearrangement algorithms (such as nearest 
neighbour interchange or subtree pruning and 
regrafting).  The step may change b as well.

• Propose changes to branch lengths b.

• Propose changes to parameters θ.
• Every k iterations, sample the chain: save τ, b, θ to disk.

• At the end of the run, summarize the results.



Bayesian phylogenetics: summariesBayesian phylogenetics: summaries

• MAP tree: tree topology with the maximum posterior 
probability. 

• 95% credibility set of trees includes trees with the 
highest posterior probabilities until the total 
probability exceeds 95%.  

• Posterior clade probability: proportion of sampled 
trees that contain the clade, shown on the majority-
rule consensus tree

High posterior High posterior 
probabilitiesprobabilities

PosteriorPosterior
bootstrap MLbootstrap ML

from Murphy et al. 
(2001. Science 
294:2348-2351)
16.4K bp

Posterior probabilities for trees and Posterior probabilities for trees and cladesclades
appear too high and in general are not due appear too high and in general are not due 
to convergence problems with the MCMC.to convergence problems with the MCMC.

If the prior and likelihood model are both correct, the 
posterior probabilities are indeed the probabilities that 
the tree or clade is correct, as theory predicts.  

The posterior probabilities appear sensitive to model 
misspecifications, and to prior about (internal) branch 
lengths, and vague (diffuse) priors lead to extreme 
probabilities.

Bayesian model selection with vague priors on parameters 
is a difficult and controversial area.  
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