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Likelihood & maximum likelihood

Likelihood is a central concept in statistics.  Maximum 
likelihood is a major statistical methodology.  (The 
other main competitor is Bayesian method.)

Methods discussed in a typical biostatistics course (χ2

test, t test, ANOVA, F-test, correlation etc.) are 
special cases of maximum likelihood or its 
approximations.

Maximum likelihood is due to Fisher (1912).

Ronald A. Fisher (1890-1962)

1912: graduate, Caius College Cambridge
1919-1933: Rothamsted Agricultural Station
1925: Statistical Methods for Research 

Workers (14th Edition in 1970)
1929: Fellow of the Royal Society
1930: Genetical Theory of Natural Selection
1933: Galton Professor of Eugenics, UCL
1935: The Design of Experiments (8th 

Edition in 1966)
1943-1957: Balfour Professor of Genetics, 

Cambridge
1962 (29 July): died in Adelaide

Notes

• is a constant and can be ignored.

• We can say that p = 0.1 is more likely to be true than p = 0.2, 
but prob(0.2< p < 0.3) is not a meaningful concept.
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Example 1.  There are many red and blue fish in a pond.  We want to 
estimate the proportion of red fish in the pond (p).  We take a 
sample of n = 100 fish and found x = 10 red and n – x = 90 blue.  
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Likelihood is the probability of the data, viewed 
as a function of the unknown parameters.
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Probability vs. likelihoodProbability vs. likelihood

• Probability is considered a function of the data with 
the parameter given (from population to sample) 
while likelihood is a function of the parameter when 
the data have been observed (from sample to 
population).

• Likelihood is relative, defined up to a proportionality 
constant.  Probability sums (integrates) to one.

• The height on a likelihood curve is meaningful but the 
area is not.  The area on a probability curve is 
meaningful but the height is not.



The area on a probability curve is preserved The area on a probability curve is preserved 
during variable transformation, but height is not.during variable transformation, but height is not.

x: exponential with mean 1
y: inverse gamma
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On a likelihood curve, height is preserved during On a likelihood curve, height is preserved during 
parameter transformation (parameter transformation (reparametrizationreparametrization).  The ).  The 
area does not have a meaning.area does not have a meaning.

Suppose α = p2.  Then 
If               is the MLE of p, then                 is the MLE of α.
MLEs are known to be invariant to re-parametrizations.
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Likelihood: example 2 (ABO blood groups)

Phenotypes Genotypes Probability Observed counts or freqs

A AA + AO p2 + 2pr nA = 44 0.26994

B BB + BO q2 + 2qr nB = 27 0.16564

AB AB 2pq nAB = 4 0.02454

O OO r2 nO = 88 0.53988

OA B AB2 2 2
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r = 1 – p – q

n = {nA, nB, nAB, nO}

Likelihood: example 2 (ABO blood groups)Likelihood: example 2 (ABO blood groups)

MLEs: p=0.1605, q=0.1004, r= 1–p –q = 0.7392, ! = –175.448
The 95% likelihood (confidence) region can be constructed by 
cutting the surface at !=–175.448–2.995=–178.443.
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Example 3: MLE of distance under JC69

The sequence distance is d = 3λt, the expected 
number of substitutions per site.  This is related to 
the proportion of different sites p by 

3 4
4 3[1 exp( )]p d= − −

A G

T C

Jukes, T. H., and C. R. Cantor. 1969. Evolution of protein molecules. Pp. 21-123 in
H. N. Munro, ed. Mammalian protein metabolism. Academic Press, New York.

JC69 model of substitution
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λ∆t is the probability that given nucleotide T, it will change into
C a very short time ∆t later.

pTC(t) is the probability that given nucleotide T, it will change 
into C time t later.



Transition probability 
under JC69

(i) Suppose a very long sequence 
has T at every site and suppose 
all sites in the sequence evolve 
for a time period t.  Then {pTT(t), 
pTC(t), pTA(t), pTG(t)} will give the 
proportions of nucleotides T, C, 
A, and G in the sequence.

(ii) Whatever the starting 
nucleotide compositions, the 
proportions will approach ¼
when t → ∞.

(iii) If the nucleotides are in 
proportions (¼, ¼, ¼, ¼), the 
proportions won’t change 
anymore.  The chain is said to be 
stationary or in equilibrium.
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Example 3: MLE of distance under JC69

Data: x = 10 out of n = 100 sites are different.  
Distance d = 3λt, related to the proportion of different 
sites p by 
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Data: 
x = 10 differences 
n = 100 sites

Likelihood calculation on tree
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Site 1 2 3 4 5 ... i ...         n
Sequence 1 C T C A T ... G ... G T A A T
Sequence 2 C T A G T ... G ... C T A G T
Sequence 3 C T A G T ... C ... G T A G T
Sequence 4 C C A A C ... T ... C C A A T
Probability p1p2 ... pi ... pn
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The probability of each site is a sum over all 
possible ancestral states

pi = Pr             + Pr  + Pr              + … + Pr             .
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Likelihood calculation on tree: summary
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To sum up, the log likelihood ! is a sum of the log probabilities over 
all sites.  The probability at each site pi is a sum over all ancestral 
reconstructions.  For each ancestral reconstruction, the probability is 
a product of the transition probabilities over branches.

! is a function of the branch lengths t0, t1, t2, t3, t4 (and substitution 
parameters, if any).  We estimate them by maximizing !.  The 
optimum ! corresponding to the MLEs of parameters is the score for 
the tree.  We repeat this process for all possible trees.  The 
maximum likelihood tree is the one with the highest score.



Likelihood calculation on tree

Felsenstein (1981 Journal of Molecular Evolution 17:368-376) 
described an algorithm (pruning or peeling algorithm) that makes the 
likelihood calculation feasible.

To find the maximum likelihood estimates 
(MLEs), numerical optimization (nonlinear 
programming) algorithms are often necessary.

Ancestral reconstruction

pi = Pr             + Pr  + Pr              + … + Pr             .
G G TC

T
T

G G TC

T
C

G G TC

T
A

G G TC

G
G

The assignment of states to the internal nodes of the tree (such as TT, 
TC, …) is called an ancestral reconstruction.  The probability of 
each site pi is a sum over all possible reconstructions.
After the parameters are estimated, the contribution of a 
reconstruction to pi gives the posterior probability for the 
reconstruction.  

This likelihood (empirical Bayes method of ancestral reconstruction 
has 2 advantages over parsimony reconstruction: 

(1) It uses branch lengths and relative rates.  
(2) It provides a measure of accuracy.

(Yang et al. 1995. Genetics 141:1641-1650)

Ancestral reconstruction can be used to 
“restore” extinct proteins and to study 
their biochemical properties.

Pauling, L. and E. Zuckerkandl.  1963.  Chemical paleogenetics: 
molecular "restoration studies" of extinct forms of life.  Acta Chem. 
Scand. 17:S9-S16

Chang, et al. 2002. Synthetic gene technology: applications to ancestral 
gene reconstruction and structure-function studies of receptors. Methods 
Enzymol. 343:274-294.

Ugalde, et al.  2004.  Evolution of coral pigments recreated. Science 
305:1433

Example. ape trees for 896-bp mtDNA under K80

κ = 11.4
! = –2270.5

κ = 10.7
! = –2278.6

κ = 11.1
! = –2280.6
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(Data from Brown et al. 1982. J. Mol. Evol. 18:225-239)



Likelihood versus parsimony

• ML takes into account all ancestral state reconstructions while MP 
uses the most parsimonious reconstructions.

• ML weights changes differently if they occur on branches of 
different lengths while MP ignores branch lengths.

• ML weights different kinds of changes differently (such as 
transitions and transversions) while MP uses equal weighting 
(except for weighted parsimony).

• All assumptions under ML are explicit while the assumptions 
underlying MP are poorly understood.

• ML is more efficient and flexible for estimating parameters and 
testing hypothesis when the tree is known.

• ML is computationally much more expensive than MP.

Time reversibility
Almost all models used in molecular phylogenetics, are time 
reversible.  The Markov chain is said to be time reversible if and 
only if 

πiqij = πjqji, for all i ≠ j.

which is the same requirement as 

πipij(t) = πjpji(t), for all i ≠ j.
A G

T C

• The amount of flow from T to C equals the amount of flow from C to T: 
πTqTCt = πCqCTt, where πTqTCt is the expected number of changes or 
“flow” from T to C over any time t. 

• Reversibility does not mean symmetrical substitution rates.

• Reversibility is a mathematical convenience (Yang 1994).

An implication of reversibility 
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An implication of reversibility 
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The probability of seeing T and C at the site (or any other pair of 
nucleotides) is the same whether 
(a) the two sequences diverged from a common ancestor and have 
evolved over times (distances) t1 and t2 along the two lineages or 
(b) sequence 1 evolved over time t = t1 + t2 to become sequence 2, or 
(c) wherever the root of the tree is.

Under time-reversible models and without 
assuming the molecular clock (constant rate 
over time), distance and likelihood methods 
cannot identify rooted trees.  Only unrooted
trees are estimated.

Nucleotide substitution models:Nucleotide substitution models:
K80K80
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Both JC69 and K80 assume symmetrical substitution rates and equal 
equilibrium base frequencies (¼).

Kimura, M. 1980. A simple method for estimating evolutionary rate of base substitution through 
comparative studies of nucleotide sequences. J. Mol. Evol. 16:111-120.



HKY85 HKY85 GTR (REV)GTR (REV)
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Hasegawa, M., T. Yano, and H. Kishino. 1984. A new molecular clock of mitochondrial DNA and the 
evolution of Hominoids. Proc. Japan Acad. B. 60:95-98.

Hasegawa, M., H. Kishino, and T. Yano. 1985. Dating the human-ape splitting by a molecular clock 
of mitochondrial DNA. J. Mol. Evol. 22:160-174.

Tavaré, S. 1986. Some probabilistic and statistical problems on the analysis  of DNA sequences. 
Lectures in Mathematics in the Life Sciences 17:57-86.

Yang, Z. 1994. Estimating the pattern of nucleotide substitution. J. Mol. Evol. 39:105-111.

Likelihood models:Likelihood models:
rate variation among sitesrate variation among sites

(Yang, Z. 1996. Trends Ecol. Evol. 11:367-372)

Rate variation among sites

• Gamma (Yang, Z. 1993. 
Molecular Biology and Evolution
10:1396-1401)

• Discrete-gamma (Yang, Z. 1994. 
Journal of Molecular Evolution
39:306-314)

Models like HKY85+G, 
GTR+G, or REV+G, using 
discrete gamma are in 
PHYLIP: dnaml & proml, 
PAUP4*, 
PAML: baseml & codeml,
MrBayes.

Different rates for genes or site partitions
(such as codon positions)

(Yang Z. 1996. Maximum-likelihood models for combined 
analyses of multiple sequence data. J Mol Evol 42:587-596)

The site-partition models allow different rates, 
transition/transversion rate ratios, base compositions etc. for 
different site partitions (such as genes or codon positions).  
They should be useful in combined analysis of many genes.

Likelihood implementations of such models are rather primitive. 
Paup has so-called site-specific rate model, which allows the 
rates (but not other parameters) to be different among site 
partitions.

MrBayes uses the link and unlink command to implement flexible 
models, which allow some parameters of the evolutionary 
process to be different among site partitions and others to be 
the same.

Amino acid and codon substitution models

• Models of amino acid and codon substitutions: calculations are 
the same as under nucleotide models except that matrices are 
larger (20×20 or 61×61 instead of 4 × 4) and there are more 
combinations of ancestral states.

• It is important to account for variable rates for amino acid 
models.  

Good empirical amino acid models include dayhoff+G, JTT+G, 
WAG+G, mtREV+G, mtmam+G.

Adachi & Hasegawa 1996. Journal of Molecular Evolution 42:459-468.
Dayhoff, M. O., R. M. Schwartz, and B. C. Orcutt. 1978. Pp. 345-352. Atlas of protein 

sequence and structure, Vol 5, Suppl. 3. National Biomedical Research 
Foundation, Washington D. C.

Jones, et al. 1992. CABIOS 8:275-282.
Whelan & Goldman. 2001. Molecular Biology and Evolution 18:691-699.
Yang, et al. 1998. Mol. Biol. Evol. 15:1600-1611

Empirical amino acid substitution models



CodonCodon substitution modelssubstitution models

Goldman & Yang. 1994. Mol. Biol. Evol 11:725-736
Muse & Gaut. 1994. Mol. Biol. Evol 11:715-724

PhePhe F TTTF TTT

TTCTTC

LeuLeu L TTAL TTA

TTGTTG

Ser S TCTSer S TCT

TCCTCC

TCATCA

TCGTCG

Tyr Y TATTyr Y TAT

TACTAC

*** * TAA*** * TAA

TAGTAG

CysCys C TGTC TGT

TGCTGC

*** * TGA*** * TGA

TrpTrp W TGGW TGG

LeuLeu L CTTL CTT

CTCCTC

CTACTA

CTGCTG

Pro P Pro P CCTCCT

CCCCCC

CCACCA

CCGCCG

His H CATHis H CAT

CACCAC

GlnGln Q CAAQ CAA

CAGCAG

ArgArg R CGTR CGT

CGCCGC

CGACGA

CGGCGG

ThrThr T ACTT ACT

ACCACC

ACAACA

ACGACG

ThrThr T ACTT ACT

ACCACC

ACAACA

ACGACG

AsnAsn N AATN AAT

AACAAC

Lys K AAALys K AAA

AAGAAG

Ser S AGTSer S AGT

AGCAGC

Arg R AGAArg R AGA

AGGAGG

Val V GTTVal V GTT

GTCGTC

GTAGTA

GTGGTG

Ala A GCTAla A GCT

GCCGCC

GCAGCA

GCGGCG

Asp D GATAsp D GAT

GACGAC

GluGlu E GAAE GAA

GAGGAG

GlyGly G GGTG GGT

GGCGGC

GGAGGA

GGGGGG

Codon substitution models

• Codon models are natural for studying the selective pressure on 
the protein.  Synonymous and nonsynymous rates can be compared 
to detect adaptive molecular evolution.

• Branch models can be used to test for positive selection on lineages 
on the tree

• Site models can be used to test for positive selection affecting 
individual sites

• Branch-site models attempt to detect positive selection affecting a 
few sites on a specific lineage.

Yang, Z. 2002. Inference of selection from multiple species alignments. Curr. Opinion 
Genet. Devel. 12:688-694.

Yang, Z., and J. P. Bielawski. 2000. Statistical methods for detecting molecular 
adaptation. Trends Ecol. Evol. 15:496-503.

Yang Z. 2007. PAML 4: Phylogenetic Analysis by Maximum Likelihood. Mol Biol Evol
24:1586-1591.

LRT & model selection 
(LRT, AIC, BIC, ModelTest)

Model vs. hypothesis

A model represents the background knowledge we 
take for granted in an analysis.  It is usually not our 
focus of analysis, but the sensitivity (robustness) of 
our analysis to model assumptions is a concern.

A hypothesis represents a biological theory, which 
we are interested in testing.

We often use “model” to refer to “hypothesis” (as in 
null model and alternative model), but it is useful 
to make distinction.

Likelihood ratio test for comparing two 
nested models

If the more general (alternative) model H1 has p parameters with log 

likelihood !1, and the simpler (null) model H0 has q parameters with 

log likelihood !0.  Then twice the log likelihood difference, 2∆! = 2(!1
– !0), can be compared with the χ2 distribution with d.f. = p – q to 
test whether the simpler model is rejected.

Likelihood ratio test

0.1

kiwi fruit

black pepper

rice

agave
garlic

cabbage

cotton

cucumber
walnut

sunflower

tomato
tobacco

Log likelihood values for models fitted to the 

data of rbcL genes from 12 fruits & vegetables

Model p ! MLEs

JC69 21 −6,262.01
K80 22 −6,113.86 κ = 3.561
HKY85 25 −6,101.76 κ = 3.620

JC69+G5 22 −5,937.80 α = 0.182
K80+G5 23 −5,775.40 κ = 4.191, α = 0.175
HKY85+G5 26 −5,764.26 κ = 4.296, α = 0.175

To compare JC69 against K80, one compares 

2∆! = 2(!1 – !0) = 2×148.15 = 296.3, with p < 1%.



Likelihood ratio test of the clock
The no-clock model involves 2n – 3 parameters (the branch lengths 
in the unrooted tree), while the clock model involves n – 1 
parameters (the ages of the internal nodes).  Twice the log 
likelihood difference is thus compared with the chi square 
distribution with d.f. = n – 2 to test the clock.
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H1: no clock: p= 2n –3=7

743

54

21

bbb
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t0

t2 t3
t4

D

n –2 = 3 constraints H0: clock: q= n – 1 = 4

AIC = –2! + 2p
BIC = –2! + p log(n)

Comparison of models for the mitochondrial protein sequences from 7 apes

Cao, Y., et al. 1998. Conflict among individual mitochondrial proteins in resolving the 
phylogeny of eutherian orders. J. Mol. Evol. 47:307-322.

Model p ! LRT AIC BIC

DAYHOFF 11 −15,766.72 31,555.44 31,622.66
JTT 11 −15,332.90 30,687.80 30,755.02
MTMAM 11 −14,558.59 29,139.18 29,206.40
DAYHOFF+Γ5 12 −15,618.32 296.80 31,260.64 31,333.97
JTT+ Γ5 12 −15,192.69 280.42 30,409.38 30,482.71
MTMAM+Γ5 12 −14,411.90 293.38 28,847.80 28,921.13

p: number of parameters 
n: sample size (number of sites)

Model selection and ModelTest

MODELTEST is a program for selecting the model of nucleotide 
substitution that best fits your data.  The program chooses 
among 56 models, and implements three different model 
selection frameworks: hierarchical likelihood ratio tests 
(hLRTs), Akaike information criterion (AIC), and Bayesian 
information criterion (BIC).  The program also implements the 
assessment of model uncertainty and tools for model 
averaging and calculation of parameter importance, using the 
AIC or the BIC.

Posada, D., and K. A. Crandall. 1998. MODELTEST: testing the 
model of DNA substitution.  Bioinformatics 14:817-818.

What if you donWhat if you don’’t want to use t want to use ModelTestModelTest as the as the 
referees/editors tell you to?referees/editors tell you to?

We note that in the literature, simple-minded use of LRT and AIC for model  

selection (Posada and Crandall, 1998) almost invariably led to overly 

complex models such as GTR+I+G.  We warn against such a practice, as 

such parameter-rich models may not produce more reliable phylogenies. 

Besides the fit of the model to data, one should also consider the biological 

interpretations of the models and the robustness of the analysis to model 

assumptions...

Ren, F., H. Tanaka, and Z. Yang. 2005. An empirical examination of 
the utility of codon-substitution models in phylogeny reconstruction. 

Systematic Biology 54:808-818.

ML phylogenetic programs

Phylip: dnaml, dnamlk, proml (Felsenstein)

Molphy: nucml, protml (Adachi and Hasegawa 1996)

paup (Swofford)

paml (baseml & codeml) (Yang)

phyml (Guindon & Gascuel)

Raxml (Stamatakis)

Books on statistics & likelihood

DeGroot, M. H., and M. J. Schervish. 2002. Probability and Statistics. Addison-

Wesley, Boston, USA.

Edwards AWF. 1992. Likelihood. John Hopkins University Press, London.

Yang, Z. 2006.  Computational Molecular Evolution. Oxford University Press.  

Chapters 4.


