A novel photoreactor for separating hydrogen and oxygen in photocatalytic water splitting

Authors: Szu-Chun Yu, Cheng-Wie Chang, Kai-Chien Hsu, Jeffrey C. S. Wu

Organizer: Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan

*Email: cswu@ntu.edu.tw

Abstract

H₂ and O₂ were produced in a twin reactor with two compartments divided by a Nafion membrane. Ce³⁺ and Ce⁴⁺ are adopted as redox mediator, which transferred the electron and holes between H₂-evolving catalyst (Pt/SrTiO₃:Rh) and O₂ evolving catalyst (BiVO₄). The optimal pH in the twin reactor was 1. Water splitting under Ce³⁺/Ce⁴⁺ equilibrium concentrations between two compartments gave the highest initial and average H₂ generation rates, 1.21 and 1.45 μmol/g-hr, respectively. Our results indicates that the rate limiting step falls on the catalyst itself rather than the diffusion resistance of Ce³⁺/Ce⁴⁺ by Nafion membrane. H₂ and O₂ were separated in water splitting thus preventing backward reaction.

Introduction

Hydrogen has been considered to be one of the potential energy sources because it is energy efficient, clean, and abundant in nature. A better way to produce cleaner hydrogen is by the so-called 'photocatalytic water splitting' which can utilize sunlight to decompose water into hydrogen and oxygen with the aid of photocatalyst. The H₂ photocatalyst and O₂ photocatalyst are separated in two vessels and are divided by a Nafion membrane. Redox mediators are used to balance the electrons and holes on two sides of the Nafion membrane in order to sustain the reaction. Therefore, the reverse reaction of H₂ and O₂ in a single reactor can be avoided and the photocatalytic efficiency is improved. The cost of separation is also saved.

Experimental

The H₂ catalyst, Pt/SrTiO₃:Rh, was prepared by a sol-gel method. The O₂ catalyst was BiVO₄. Figure 1 shows the schematics of twin photoreactor. First, 0.15 gram of Pt/SrTiO₃:Rh and 0.15 gram of BiVO₄ was added in 180 mL of 2mM Ce₂(SO₄)₃ and Ce(SO₄)₂ solution respectively. Two compartments was divided by a Ce⁴⁺ pretreated Nafion membrane. The reaction was under 300W Xe lamp irradiation for 6 hr and the H₂ and O₂ evolved were collected respectively and analyzed by GC. The visible light intensity at 1.76 mW/cm².

![Figure 1: Schematics of twin photoreactor](image)

Results and Discussion

1. Characteristics of photocatalyst

 The H₂ catalyst, Pt/SrTiO₃:Rh, the absorption band at 450~600nm proves that Rh has been doped into SrTiO₃ and therefore band position has blue shift. The band gap of the Pt/SrTiO₃:Rh calculated from UV result is 2.31eV, which is narrower than that of SrTiO₃, 3.26eV. Fig2 shows the XRD result of Pt/SrTiO₃:Rh and BiVO₄ (monoclinic). The diffraction peaks of the loaded Pt and the doped Rh are absent due to the trace amount presented in the catalysts. Fig3 shows the SEM of Pt/SrTiO₃:Rh and BiVO₄. The round and plate-like morphology is observed and the particle size ranges from 0.7μm to 2μm. Pt/SrTiO₃:Rh is observed to have round and cubic shape and its

Catalyst Laboratory of National Taiwan University
particle size is around 50nm to 100nm. The specific surface area of BiVO₄ is 1.24 m²/g, while that of Pt/SrTiO₃ is 6.49 m²/g.

2. Photocatalytic water splitting

As shown in Figure 4, the initial H₂ and O₂ generation rate are 1.21 and 0.67 μmol/g-hr, respectively. The average H₂ and O₂ generation rate under equilibrium concentration are 1.45 and 0.71 μmol/g-hr, respectively. The photo quantum efficiency for H₂ production under equilibrium Ce³⁺/Ce⁴⁺ concentration is calculated to be 0.445%.

Summary

The twin reactor system can produce H₂ and O₂ separately with visible light driven photocatalysts, that can eliminate the potential explosion of H₂/O₂ mixture for industrial production. Furthermore, the twin reactor gave higher H₂ generation rate than that in the single reactor, which is the result by preventing holes/electrons recombination and backward reaction.