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Abstract
Exposure to several specific pesticides has led to an increase of Parkinson’s disease (PD) risk. However, it is difficult to quantify
the PD population risk related to certain pesticides in regions where environmental exposure data are scarce. Furthermore, the
time trend of the prevalence and incidence of PD embedded in the background relationship between PD risk and pesticide
exposures has not been well characterized. It has been convincingly identified that a key pesticide associated significantly with an
increased risk trend of PD is paraquat (PQ). Here, we present a novel, probabilistic population-based exposure-response approach
to quantify the contribution from PQ exposure to prevalence risk of PD. We found that the largest PQ exposure contributions
occurred in its positive trend during 2004–2011, with the PQ contributing nearly 21 and 24%, respectively, to the PD prevalence
rates among the age groups of 70–79 and ≥ 80 years in Taiwan.We also employed the present population riskmodel to predict the
PQ-induced PD prevalence based on the projected rates of increase in PQ exposure associated with age-specific population. The
predicted outcome can be used as an early warning signal for public health authorities. We suggest that a mechanistic under-
standing of the contribution of a specific pesticide exposure to PD risk trends is crucial to enhance our insights into the
perspective on the impacts of environmental exposure on the neurodegenerative diseases.

Keywords Parkinson’s disease . Paraquat . Pesticide . Population exposure-response function . PBPK/PD . Probabilistic risk
assessment
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Introduction

Pesticide exposure is significantly associated with incidence
and prevalence of Parkinson’s disease (PD). As the second
most common neurodegenerative disease, there are more than
10 million people worldwide living with PD (Schultz 2007;
http://www.pdf.org/en/parkinson_statistics). The onset of PD
is resulted from dysfunction of dopaminergic systems, leading
to movement disorders including loss of muscle control,
trembling, and lack of coordination (Chen et al. 2010).

Notable effects of pesticide exposures on PD have been
evidenced in laboratory experiments, epidemiological studies,
and field observations (Berry et al. 2010; Betarbet et al. 2000;
Fong et al. 2007; Kamel 2013; Lee et al. 2012; Liou et al.
1997; Menegon et al. 1998; Moisan et al. 2015; Pezzoli and
Cereda 2013; Polito et al. 2016; Tanner et al. 2011; Wan and
Lin 2016; Yang and Tiffany-Castiglioni 2008). In addition,
specific gene-pesticide interactions were also found to be sig-
nificant adverse factors for PD risks (Cannon and Greenamyre
2013; De Palma et al. 1998; Lin et al. 2011).

Several studies have indicated that PD risk is closely asso-
ciated with agricultural pesticide exposures, suggesting that a
risk assessment framework for pesticide associated PD onsets
is in urgent need (Kamel 2013; Moisan et al. 2015). Paraquat
(PQ), as one of the most widely used herbicides in the world,
has been applied to kill weeds and desiccate foliage before
harvesting crops. PQ could be exposed to field workers, gar-
deners, and transported via residues of food (Kamel 2013;
Morshed et al. 2010). The PQ-associated PD risks were dem-
onstrated to be approximately two times higher than other
classes of pesticides (Berry et al. 2010; Liou et al. 1997;
Pezzoli and Cereda 2013; Tanner et al. 2011).

The combined effects of genetic variants and environmen-
tal exposure risks on PD risk in Taiwanese population were
found to be evident, implying that gene-environment interac-
tions are closely related to PD risks (Lin et al. 2011). Tanner
et al. (2011) indicated that PD-associated oxidative stress was
resulted from PQ exposures with an odds ratio (OR) of 2.5
(95%CI 1.4–4.7). Pesticide exposure on southwestern Taiwan
is associated with increased PD risks as well (Fong et al.
2007). Liou et al. (1997) indicated that exposure to PQ played
a critical role in PD development regions of Taiwan, where
occupational PQ exposure increased PD risk with an OR of
3.22 (95% CI 2.14–4.31). On the other hand, Wang et al.
(1996) reported that the prevalence of PD was 119 (95% CI
80–169) per 100,000 population in Kinmen, Taiwan, substan-
tially higher than that in mainland China (14 per 100,000
population).

In this study, we focused on how to quantify, if not impos-
sible, the contribution of airborne PQ exposure to PD risk. We
tried to develop metrics and methodologies to assess the long-
term impact of airborne PQ exposure on PD burden. A phys-
iologically based pharmacokinetic (PBPK) model was

developed to estimate PD dose in the brain after inhalation/
deposition of aerosolized PD droplets. We further developed a
population dose-response-based probabilistic risk model to
assess the contribution of PQ exposure to the age-specific
prevalence of PD. A sensitivity analysis was also performed
to assess the contributions of model parameters.

Materials and methods

Study data and population

To assess PD risk based on an integrated probabilistic ap-
proach, this study initiated with problem formulation consti-
tuted of PQ use, exposure, and associated individual- and
population-based adverse health effects followed by exposure
analysis, dose-response analysis, and risk characterization in
specific age groups. The PD risk assessment framework in-
cludes data reanalysis and computational algorithms based on
airborne PQ exposure (Supplementary Fig. S1).

Agricultural land area in Taiwan is approximately 22% of
the total land area ranging from 8.1 to 8.3 × 103 km2 in the
period from 2005 to 2011 (Council of Agriculture 2014). PQ
(24% w/w) ranks the second and third in sales volume (25%)
and amounts (17%) in non-selective herbicides, respectively,
of 1.82 × 106 kg and ~5 million US dollars, in 2013 (Fang
2014).

Taking into account PD-related medical claims included in
the Taiwan National Health Insurance (NHI) database diag-
nosed based on the International Classification of Disease, 9th
Revision, Clinical Modification (ICD-9-CM) code 332.0, the
age-sex-standardized incidence and prevalence rates ranged
from 28.8 to 36.6 per 100,000 person-years and 84.8 to
299.3 per 100,000 population, respectively, in the period
2002–2011 (Liu et al. 2016). Collectively, in Taiwan, the av-
erage age-standardized prevalence of PD was 85 per 100,000
population in 2004 and 148 per 100,000 population in 2011,
with a ~8% yearly increase, whereas the average age-
standardized incidence of PD decreased steadily from 35 per
100,000 population in 2005 to 29 per 100,000 population in
2011 (Liu et al. 2016).

PQ exposure could pose substantial threats to individual as
well as to population for development of neurodegenerative
PD. We therefore focused on assessing PD risks probabilisti-
cally in five age groups for individual and population of <50,
50–59, 60–69, 70–79, and ≥80 years.

Exposure model: PQ-human PBPK modeling

A PBPK model allows us to quantitatively describe the
bioaccumulations in tissue/organs of concern in particular hu-
man bodies. There are seven compartments of interest in the
PBPK model including the blood, lung, brain, gastrointestinal
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(GI) tract, liver, kidney, and rest of the body (Supplementary
Fig. S2). Physiological and physicochemical parameters in-
cluding blood and tissue/organ volume (V), body weight
(BW), density of tissue/organs, (D) blood-tissue/organ ex-
change rate (Q), uptake/elimination rate constant (k), and
tissue/organ partition coefficient (P) were defined as a body
burden ratio by estimating the whole PQ burden in blood
partitioning at specific tissue/organs based on published hu-
man and animal experimental studies. Given intake of air-
borne PQ, absorption, distribution, metabolism, as well as
excretion of each tissue/organ in human body of specific age
can be expressed mathematically and dynamically with first-
order ordinary differential equations (Supplementary
Table S1).

Briefly, air-sprayed PQ that suspends to become airborne
PQ poses substantial threats to spray operators and residents
through exposure routes of inhalation and skin contact (neg-
ligible). Based on an experimental study, air-sprayed PQ with
specific use amount (A, kg km−2) can be properly transformed
into corresponding airborne PQ concentration (C, μg m−3) by
a linear equation of C = 0.14A + 0.04 (Morshed et al. 2010).
Since PQ is a known potential factor for PD development, we
thus merely estimated PQ burden in brain of certain age
groups by implementing the PBPK model and treated it prob-
abilistically with the Monte Carlo (MC) simulation methodol-
ogy for further dose-response analysis.

Hill-based individual dose-response model

The in vitro bioassays in dopaminergic SH-SY5Y cell viability
were applied as a biomarker to construct the individual-based
dose-response profile (Yang and Tiffany-Castiglioni 2008). The
SH-SY5Y cells were treated with 0.05–1 mM PQ for 48 h, and
cell viability was determined by intracellular protease activity of
amino-fluorocoumarin (AFC) fluorescence released from the
glycyl-phenylalanyl-amino-fluorocoumarin (GF-AFC) (Yang
and Tiffany-Castiglioni 2008).

The relationship of PQ concentration-dependent inhibition
of dopaminergic cell viability can be constructed mechanisti-
cally by a Hill model and expressed mathematically as a con-
ditional probability function as,

P I jDð Þ ¼ Imin þ 1−Imin

1þ ID50
D

� �n ; ð1Þ

where P(I|D) is the conditional probability revealing inhibi-
tion effects on dopaminergic cell viability (I) given certain
dose of PQ exposure (D, mM), ID50 is the causal PQ dose
demonstrating half maximum inhibition effects on dopaminer-
gic cell viability (mM), Imin is minimum inhibition of cell
viability (incremental ratio compared to untreated control),
and n stands for the Hill coefficient in which n > 1 indicates
a positive cooperativity and ultrasensitive to exposed toxicant.

PAF-based population dose-response model

To estimate PQ exposure-associated population attributable
fraction (PAF) for PD, we first estimated two key elements
relative risk (RR) and proportion of PD cases given PQ expo-
sure (θ) based on an epidemiological case-control study (Liou
et al. 1997). Briefly, Liou et al. (1997) recruited 120 patients
with PD and 240 hospital control subjects matched with age
and sex of PD patients from the National Taiwan University
Hospital. Among recruits of PD and controlled group, there
were 31 and 22 people being exposed to PQ, respectively.

This study thus estimated RR, θ, as well as corresponding
PAF and PQ use amount probabilistically through a MC sim-
ulation as,

Φ PAFjAð Þ ¼ Φ PAF ¼ RR−1ð Þθ=RRð Þ � Φ Að Þ; ð2Þ
where Φ(PAF|A) is conditional probability in a cumulative
distribution function (CDF) by jointing CDFs of population
attributable PD fraction (Φ(PAF)) with certain amount of PQ
in use (Φ(A)). A three-parameter Hill model can then be ap-
propriately applied to fit with extracted percentiles (2.5th, 5th,
25th, 50th, 75th, 95th, and 97.5th) of Φ(PAF) and Φ(A) as,

P PAFjAð Þ ¼ PAFmax

1þ FA50
A

� �n F
; ð3Þ

in that PAFmax stands for maximum PAF, FA50 characterizes
half maximum PAF posed by particular air-sprayed PQ use
amount A (kg km−2), and nF is the Hill coefficient revealing
the slope of A-PAF dose-response relationship.

Predictive risk threshold model

To protect spray operators or residents from potentially ad-
verse effects posed by airborne PQ exposure, this study im-
plemented Weibull cumulative model to estimate threshold
burden in brain. Specifically, given constructed Hill-based
dose-response relationship of PQ exposure and inhibition ef-
fect on dopaminergic cell viability, PQ burden in brain causing
10% inhibition effect (ID10) can be estimated and treated
probabilistically to obtain its CDF as Φ(ID10).

This study then implemented a three-parameter Weibull
model fitting to percentile values (2.5th, 25th, 50th, 75th,
and 97.5th) extracted from Φ(ID10) to estimate threshold of
PQ burden in brain not causing >10% inhibition effect as,

Φ ID10ð Þ ¼ 1−exp −
D−γ
α

� �β
" #

; D > γ > 0; α > 0; β > 0

( )

;ð4Þ

where γ is the location parameter representing the
threshold value that must be smaller than D, α repre-
sents scale parameter that has effect of distribution as
change on the abscissa scale, and β stands for slope
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parameter that determines the shape of cumulative dis-
tribution curve.

Risk models

Based on the Bayesian inference, the PQ-induced PD risk
models can be obtained through jointing prior probabilities
of PQ burden in brain and PQ use amount (denoted as P(D)
and P(A)) predicted byMC simulations with conditional prob-
abilities P(I|D) and P(PAF|A) (i.e., likelihoods), resulting in a
joint probability (i.e., posterior probabilities) that can be math-
ematically expressed as,

R Ið Þ ¼ P I jDð Þ � P Dð Þ; ð5Þ
R PAFð Þ ¼ P PAFjAð Þ � P Að Þ; ð6Þ
where R(I) indicates PQ exposure-induced inhibition of dopa-
minergic cell viability and R(PAF) characterizes population
attributable PD given certain amount of PQ use.

Additionally, PAF of PD could be transformed into popu-
lation attributable risk (PAR) of PD to assess population ex-
ceedance risk by multiplying PAF with annual PD prevalence
rates given by Liu et al. (2016). Notably, P(D) in Eq. (5) could
be predicted through a series of jointing processes as P(D) =
P(D|C) × P(C| A) × P(A) and the PBPK model in that P(D|C)
and P(C|A) represent PQ dose in brain given certain inhaled
PQ level and inhaled PQ level given specific air-sprayed PQ
use amount, respectively.

Uncertainty and sensitivity analyses

We used the TableCurve 2D (Version 5.01, AISN Software
Inc., Mapleton, OR, USA) optimal fit to the published in vitro
experimental, epidemiological, and investigated data to deter-
mine the governing dose-response relationships. We
employed MATLAB® (Version 8.1.0.604, The MathWorks,
Inc., Natick, MA, USA) to perform PBPK simulations for
tissue/organs of interest. We used the Crystal Ball software
(Version 2000.2, Decisioneering, Inc., Denver, CO, USA) to
perform MC simulation in that 10,000 iterations were
exercised to ensure the stability of estimations.

A MC simulation technique was implemented to generate
2.5th, 5th, 25th, 50th, 75th, 95th, and 97.5th percentiles for
quantifying the uncertainty of parameters associated with
computational models including the PBPK model, the dose-
response relationships, and the probabilistic PD risk models.
We used Kolmogorov-Smirnov goodness-of-fit statistics to
detect the optimal distributions of fitted parameters.
Moreover, this study employed a one-way sensitivity analysis
to assess the contribution of 10% change in each critical pa-
rameter used in the PBPKmodel including uptake/elimination
rate constants and tissue/organs partition coefficients at one
time to the simulation outcomes.

Results

Quantitative analysis of PQ exposure concentration

Based on available data for PQ sales volume and agricultural
land area in Taiwan region, annual PQ use amounts were
estimated ranging from 153 to 305 kg km−2 in the period from
2005 to 2011. The PQ use estimate can be well described by a
lognormal (LN) distribution with a geometric mean (gm) of
252 kg km−2 and a geometric standard deviation (gsd) of 1.23,
denoted as LN(252 kg km−2, 1.23) (Table 1, Fig. 1b). On the
other hand, linearly transformed airborne PQ concentration
based on specific PQ use amount can be appropriately de-
scribed as well with a LN distribution as LN(35.47 μg m−3,
1.21) (Fig. 1a).

Exposure analysis: age-specific PQ dose in brain

Figure 2a displays a simplified PBPK model demonstrating
PQ circulation and distribution in the human body. The phys-
iological parameters as well as uptake/elimination rate con-
stants and partition coefficients associated with PBPK simu-
lation were shown in Supplementary Tables S2 and S3.

Considering a lifetime PQ exposure scenario, our results
showed that PQ burden in brain accumulated gradually with
increments in age; however, PQ burden increased asymptoti-
cally as age approached 50 years (Fig. 2b). Comparing life-
time exposure years of 80 with 50, PQ accumulation in people
aged 80 years was 10% higher than those aged 50 years with
estimates ranging approximately from 282 to 742 and 257 to
675 μM, respectively (Fig. 2b).

Furthermore, people ≥50 years including 50–59, 60–69,
70–79, and ≥80 years had significantly higher PQ exposure
risks with PQ burden estimates of 424.79 (95% CI 260.13–
684.71), 441.17 (274.56–708.63), 446.42 (274.50–730.66),
and 455.20 (283.02–745.95), respectively, compared to youn-
ger people <50 years with estimates of 231.19 (79.98–674.02)
μM (Fig. 2c).

Individual dose-response analysis/risk threshold
estimate

With baseline inhibition effect of dopaminergic cell via-
bility taken into account, three-parameter Hill model was
found adequately elucidating the PQ exposure-induced
dose-response profile. In particular, baseline inhibition ef-
fect Imin was estimated to be 0.06 ± 0.05 (mean ± SE), and
ID50 and Hill coefficient n estimates were 0.48 ± 0.25 mM
and 1.68 ± 0.89, respectively (r2 = 0.89; p < 0.001)
(Fig. 3a). Figure 3a also indicates that given 1 mM PQ
exposure in brain would give rise to 79% (95% CI 66–92)
inhibition effect on dopaminergic cell viability.
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On the other hand, based on the established dose-response
relationship between PQ and its induced inhibition effect (Fig.
3a), ID10 can be estimated as 0.075 (95% CI 0.030–
0.182) mM (Fig. 3b). Our results indicated that the Weibull
threshold model could best define the CDF of ID10 with PQ
threshold in brain (γ) estimated to be 0.024 ± 0.004 mM along
with associated parameters α and β of 0.063 ± 0.004 and
1.670 ± 0.162, respectively (r2 = 0.99; p < 0.001) (Fig. 3c).

Population excess risk analysis

Based on the case-control study, proportion (θ) for PQ-
induced PD was nearly 26% and the corresponding RR can
be well depicted by a LN distribution (LN(3.22, 1.16)) with an
estimate of 3.22 (95% CI 2.42–4.31) (Fig. 4a). On the other
hand, PAF for PQ-exposed PD can therefore be estimated

properly by a LN distribution as well with gm of 0.18, gsd of
1.06, and 95% CI estimates of 0.15–0.20, respectively (Fig. 4b).

Table 1 PQ-related observations based on agricultural pesticide application practices and epidemiological data used to estimate PQ use and probability
attributable risk (PAR) of PD induced by PQ use

Year PQ amount (ton)a Agricultural land area
(ha)b

PQ use
(kg km−2)

PD prevalence rate (per 100,000 population)c

50–59 years 60–69 years 70–79 years ≥ 80 years

2004 2685 – – 63.0 303.3 814.6 857.8
2005 2203 833,176 264 73.8 360.5 1007.5 1145.4
2006 1908 829,527 230 79.5 392.8 1142.1 1342.1
2007 2440 825,947 295 86.5 417.9 1235.1 1562.4
2008 2508 822,364 305 90.7 426.6 1300.8 1690.4
2009 2105 815,462 258 93.5 432.3 1347.3 1809.8
2010 1245 813,126 153 94.8 429.5 1379.5 1953.6
2011 2403 808,294 297 96.8 410.4 1406.0 2076.6
Mean
(SD)

2187 (453) 821,128 (9141) 258
(53)

84.8
(11.8)

396.7
(44.6)

1204.1 (205.8) 1554.8 (416.4)

a Adopted from Fang (2014)
b Adopted from the Council of Agriculture (2014)
c Adopted from Liu et al. (2016)
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Through MC simulations, this study estimated both CDFs
of PQ use amount and PAF (Φ(A) and Φ(PAF)) with mini-
mum–maximum estimates ranging from 57 to 434 kg km−2

and 0.13–0.21, respectively. Furthermore, a three-parameter
Hill model was found best demonstrating the relationships
between Φ(A) and Φ(PAF) with a maximum PAF (PAFmax)
estimate of 0.238 ± 0.004, PQ use amount contributing to half
maximum PAF (FA50) of 109.695 ± 1.278 kg km

−2, and a Hill
coefficient (nF) of 1.321 ± 0.059 (r2 = 0.99; p < 0.001) (Fig.
4c). Figure 4c also reveals that under the worst case scenario,
PQ exposure would induce approximately 23% PD cases.

Risk characterization

Figure 5a demonstrates an estimated exceedance risk
curve of inhibition effect on dopaminergic cell viability
for age group-specific individuals exposed to PQ.
Aforementioned simulated results indicate that with in-
creases in exposure age, the accumulated PQ doses in
brain increase as well, which in turn induce more

significant neurodegenerative responses (i.e., reduced
dopaminergic cell viability). As a result, people aged
≥80 years have severer neurodegenerative response than
people younger than 50 years. It is likely (i.e., 50% risk
probability) for people aged <50, 50–59, 60–69, 70–79,
and ≥80 years to have inhibition effects on dopaminer-
gic cell viability of 27.4% (95% CI 16.4–38.4), 48.4
(36.7–60.2), 49.7 (37.8–61.6), 50.4 (38.4–62.5), and
51.0 (38.9–63.1), respectively (Fig. 5a).

In quantifying PQ exposure-induced PD risks for different
aged populations (i.e., PAR), we multiplied the probability
distribution of PQ use (Fig. 1b) with its related established
dose-response relationship between PQ use and PAF (Fig.
4c) as well as adopted annual prevalence rates of PD
(Table 1), we can obtain PQ exposure-associated PARs in
the period from 2004 to 2011 for people aged 50–59, 60–69,
70–79, and ≥80 years (Fig. 5b). In general, annual PARs dis-
play a positive trend for all age groups. Similar to individual
neurodegenerative risk, people aged ≥80 years were found
possessing the highest PARs in 2011 of 369 (95% CI 314–
412) followed by 70–79, 60–69, and 50–59 years with PARs,
respectively, estimated to be 250 (213–279), 73 (62–81), and
17 (15–19) per 100,000 population (Fig. 5b).
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Sensitivity analysis for critical PBPK parameters

This study considered key PBPK parameters including
uptake/elimination rate constants and partition coefficients to
assess its individual contribution to overall PQ-PBPK model
(Fig. 6). In uptake phases, uptake rate and partition coefficient
for lungs (kLu and PLu) contributed positively and most sig-
nificantly to whole body concentration from the PBPK model
with contribution proportions of 0.87 and 0.73, respectively.
Partition coefficient for rest of the body (PRB) contributed
negatively yet most significantly to whole body concentration
with a proportion of −0.96. On the other hand, in elimination
phases, feces and urine (kF and kU) contributed negatively
with proportions of −0.74 and −0.61, respectively. The parti-
tion coefficient for brain (PBr) did not influence much on the
PBPK model with contribution less than 10%, yet, it is detri-
mental to the human health (Fig. 6).

Discussion

In this paper, we estimated the PD prevalence rate attributable
to airborne PQ exposure in Taiwan in the period from 2004 to
2011. We integrated advanced probabilistic risk models with

an improved exposure-response function of PAF (NRC 2009)
appraised with country-level population and health data. Our
risk model is capable of characterizing airborne PQ exposure
and PD risk with pesticide applications among different age
groups on a regional scale. Our estimates of PD prevalence
associated with exposure of PQ use in agricultural pesticide
pollution provide some valuable results for protecting public
health on a regional scale.

We estimate that airborne PQ from agricultural pesticide
application practices contributes significantly to increase in
PD risks. We found that the largest PQ exposure contributions
occurred in its positive trend during 2004–2011, with the PQ
contributing nearly 21 and 24%, respectively, to the PD prev-
alence rates among the age groups of 70–79 and ≥ 80 years in
Taiwan. We also indicated that PQ exposure contributes near-
ly 17% to PD prevalence for the transition of PD prevalence
rate from positive to negative during 2009–2011 for age group
70–79 years. This finding implicates that the importance of
life stage and time frame for exposure ranges from 70 to
79 years. Our finding indicates that the increase rate of PQ
application in rural regions is highly likely to pose PD risk for
elderly ages >70 years in the near future. Our risk model
enables to predict PQ-induced PD prevalence based on the
projected rates of increase in PQ exposure associated with
age-specific population. This prediction may be used as an
early warning signal for public health agencies.

Except from PQ exposure, environmental factors such as
pesticides (e.g., rotenone and maneb), insecticides
(MPTP/MPP+ and MCP) (Braungart et al. 2004; Jadiya and
Nazir 2012; Pu and Le 2008), and heavy metals (e.g., Mn2+,
Al3+, Hg2+) may also contribute to the prevalence of PD
(Negga et al. 2012; Settivari et al. 2009; Tanner et al. 2011;
VanDuyn et al. 2010, 2013; Wang et al. 2011; Weisskopf et al.
2010). Moreover, genetic and environmental sources are two
main factors that are ascribed to contribute to the loss of
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dopaminergic neurons and the onset of PD (Dutheil et al.
2010; Thomas and Beal 2011). While approximately 10–
20% of the PD cases are documented as genetic causes, the
majority of the PD cases are idiopathic PD (Dawson et al.
2010; Lees et al. 2009). Therefore, an intensive and thorough
examination of potential factors for onsets of PD is essentially
requested.

Our analysis has several limitations. There were larger un-
certainties in the PAF for PQ occurring in the exposure range
of nearly 20–100 kg km−2. This is due in part to limited avail-
able information of PD prevalence regarding agricultural PQ
use. Moreover, there were also rare studies related to PQ-
induced PD risk. The poorly characterized uncertainties about
the relative toxicity of various agricultural pesticide ingredi-
ents and pesticide mixtures limit clarification of the exposure
sources (Dexter and Jenner 2013; Minnema et al. 2014;
Mostafalou and Abdollahi 2013). Furthermore, our model is
not able to identify the importance between duration and in-
tensity of PQ exposure (Morshed et al. 2010). Thus, more
mechanistic studies are needed to identify essential aspects
of the effects of environmental exposures on the neurodegen-
erative diseases.

Our neurotoxicity risk assessment was based on PQ-induced
apoptosis in human SH-SY5Y cells (Yang and Tiffany-
Castiglioni 2008). The SH-SY5Y cell line, as one of the repre-
sentative in vitro models for PD research, represents
dopaminergic-specific neuro-degeneration and possesses many
characteristics of dopaminergic neurons such as the dopamine
transporter, tyrosine hydroxylase, and dopamine-beta-
hydroxylase (Xie et al. 2010). Though SH-SY5Y cell has var-
ious advantages such as the efficiency in drug screening, lim-
itations including its dependence upon the culture conditions
that could influence the toxicant-induced cytotoxicity should
be taken into consideration (Falkenburger and Schulz 2006).
Thus, an improved in vitro dose-response relationship is need-
ed. In addition to the endpoint selected in this study, other
chronic effects induced by PQ in vivo systems such as the
impairment in mobility and degeneration of dopaminergic neu-
rons could be taken into consideration and compared with the
in vitro dose-response profiles (Allen et al. 2014; Bortolotto
et al. 2014; Cicchetti et al. 2005; Shukla et al. 2016).

Despite the limitations, this study has some merits. We
have pointed out that time trends in the prevalence and inci-
dence of PD are embedded in the background relationship
between PD risk and pesticide exposures. A key pesticide,
PQ, was quantitatively evaluated to be significantly associated
with an increased risk trend for PD. We used a novel, proba-
bilistic PAF-based exposure-response approach to quantify
the contribution from PQ exposure to prevalence risk of PD.
Our population risk model can help predict PQ-induced PD
prevalence on the basis of projected available data. This pre-
diction may be used as an early warning signal for public
health agencies. Thus, understanding and quantifying the

contribution of a specific pesticide exposure to PD risk trends
are necessary to improve our insights into the perspective on
the influence of environmental exposures on neurodegenera-
tive diseases (Tshala-Katumbay et al. 2015).

Conclusion

Our findings provide insight into the time trends in the prev-
alence of PD. Our results should inform how we respond to
pesticide-associated environmental exposures and can guide
how we understand the consequence of future relationships
between the prevalence of PD and pesticide exposure.
Although pesticide-associated exposure is clearly not the only
factor that affects PD risk trends, our quantitative approach
reveals that it is a major factor. More broadly, we suggest that
a mechanistic approach to explore the pesticide exposure-
associated PD risk trends is an urgent need that enhances our
insights into the perspective on the impacts of pesticide expo-
sure on the neurodegenerative diseases.
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