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Abstract Chronic exposure to inorganic arsenic (iAs) in the
human population is associated with various internal cancers
and other adverse outcomes. The purpose of this study was to
estimate a population-scale exposure risk attributable to iAs
consumptions by linking a stochastic physiological-based
pharmacokinetic (PBPK) model and biomonitoring data of
iAs in urine. The urinary As concentrations were obtained
from a total of 1,043 subjects living in an industrial area of
Taiwan. The results showed that the study subjects had an iAs
exposure risk of 27 % (the daily iAs intake for 27 % study
subjects exceeded the WHO-recommended value,
2.1 μg iAs day−1 kg−1 body weight). Moreover, drinking wa-
ter and cooked rice contributed to the iAs exposure risk by 10
and 41%, respectively. The predicted risks in the current study
were 4.82, 27.21, 34.69, and 64.17 %, respectively, among the
mid-range of Mexico, Taiwan (this study), Korea, and
Bangladesh reported in the literature. In conclusion, we devel-
oped a population-scale-based risk model that covered the
broad range of iAS exposure by integrating stochastic PBPK

modeling and reverse dosimetry to generate probabilistic dis-
tribution of As intake corresponding to urinary As measured
from the cohort study. The model can also be updated as new
urinary As information becomes available.

Keywords Arsenic . PBPKmodeling . Biomonitoring .

Reverse dosimetry . Probabilistic risk assessment

Introduction

The adverse effects of long-term exposure to arsenic (As) in
humans are well studied and widely recognized. There are
increasing concerns about As as everyone has some exposure
via water, food, soil, and air, causing measurable population
increases in a variety of health problems. When investigating
As exposure from drinking water or foods, the inorganic
forms of As [inorganic arsenic (iAs), the sum of arsenite
(As3+) and arsenate (As5+)], which are considered to be highly
toxic and readily bioavailable to humans, are the most serious
human health threat (El-Masri et al. 2002).

The biomonitoring evidence, considered as a whole, should
reflect variability in the population. Indeed, urinary As levels
have been used as the best biomonitoring data of As exposure
(Marchiset-Ferlay et al. 2012). The As species in urine include
As5+, As3+, monomethylarsenic acid (MMA), and
dimethylarsenic acid (DMA), reflecting exposures to iAs.
Several studies reported that the average background levels
from populations in European countries and in the USA have
been 10 μg L−1 (Buchet et al. 1996; Jensen et al. 1991). Results
for the US population from the National Health and Nutrition
Examination Survey (NHANES) suggest that the median of
urinary As species combined (the sum of iAs, MMA, and
DMA) is approximately 6 μg L−1 (Caldwell et al. 2009).
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Exposure to elevated levels of As in drinking water in
Taiwan and Argentina has resulted in 5- to 50-fold higher
concentrations of these compounds in urine (Chiou et al.
2001; Concha et al. 2006; Kavanagh et al. 1998; Smith et al.
1977; Trepka et al. 1996). Although biomonitoring data of As
in urine provide a demonstration of human exposure to iAs, it
is difficult to know how best to interpret and apply biomoni-
toring data in a risk assessment context.

Physiologically based pharmacokinetic (PBPK)models are
potentially powerful tools in quantitative risk assessments for
target tissue dose estimates, allowing the estimation of target
tissue doses through linkage of information on the external
metal exposure, the physiological parameters of humans,
and the biochemical properties of metals. Yu (1998) have ex-
tended the PBPKmodel to fit the As distribution in the human
body, considering both reductive metabolism and methyla-
tion. An age-specific PBPK model coupling a Weibull-based
dose–response function has been used to predict urinary As
metabolites from seafood-As intake and potential cancer risks
(Chen et al. 2010).

In addition to the work of predicting the internal metal
dose, a population-based exposure reconstruction using
PBPK modeling has appeared in Tan et al. (2007) and Lyons
et al. (2008). Tan et al. (2006) incorporated variability into the
population-scale exposure reconstruction of chloroform using
a combined PBPK model and Monte Carlo sampling tech-
niques, with external exposure calculated using an exposure
conversion factor (ECF) distribution. Lyons et al. (2008) used
a computational framework that integrated PBPK modeling,
Bayesian inference, and Markov chain Monte Carlo simula-
tion to obtain a population estimate of environmental chloro-
form source concentrations consistent with human biomoni-
toring data. These procedures for reconstructing an estimate of
external exposure were consistent with biomonitoring data
measured in a population, referred to as reverse dosimetry.

A population-based estimate of exposure should take into
account the intrinsic variability in the population, both in the
modeling of the distribution and metabolism of the chemical
in the human body and in the description of the exposure
conditions. Therefore, the quantification of the between-
person variability in a population is an important issue in risk
assessment for building a robust statistical linkage between
urinary concentrations and the intake of a chemical. In this
study, Taiwanese populations were examined to determine
the sources and extent of exposure to total As (tAs) and iAs.

The purpose of this study was to estimate a population-
scale exposure risk attributable to iAs consumptions by
linking a stochastic PBPK model and biomonitoring data of
iAs in urine. The estimation of the sources of contribution to
iAs exposure risk and comparison of the iAs exposure risk of
diverse populations corresponding to a predefined urinary As
concentration from published studies in different countries
were also included.

Materials and methods

Sample populations

To represent a group with chronic low-to-moderate-dose ex-
posure for Taiwanese people, we assembled a sample popula-
tion of 1,043 residents from 16 townships of Changhua
County in Taiwan. These townships are in an area where en-
vironmental As contamination has occurred (Wang et al.
2007). Urinary As concentrations in Changhua residents have
been reported previously (Chen et al. 2011a). Prior to data
collection, informed consent was obtained from each partici-
pant. The study protocol and informed consent form were
reviewed and approved by the Human Subjects Review
Board of National Health Research Institutes in Taiwan.

Exposure assessment

Urinary As concentrations were measured by an ELAN 6100
inductively coupled plasma mass spectrometer (ICP-MS,
Perkin Elmer, Shelton, CT). Generally, ICP-MS has better
sensitivity with lower limits of detection than atomic absorp-
tion spectrometry (McLean et al. 1998). Quality assurance and
control were conducted with simultaneous analysis of samples
of the reference urine which contained reference material
(SRM 2670). Urine samples with As concentrations
<0.05 μg L−1 limit of detection (LOD) were assigned the

LOD divided by
ffiffiffi
2

p
.

Estimates of dietary As exposures

For oral-route exposure, cooked rice and drinking water were
selected to assess the source of ingested As. We collected
water from the present drinking water source of each family
and from a container in a house. Water samples were
transported to the laboratory and then 1 % v/v nitric acid was
added to the samples, which were kept in a dark container at
4 °C until analyzed. On the other hand, we collected rice
samples by the duplicated portion sampling method (Pal
et al. 2009).We randomly selected 106 families from the study
cohort as the respondents who submitted their cooked rice for
one day. Cooked rice was collected in a separate plastic bag
and weighed. Furthermore, the individual average consump-
tion rate for drinking water and cooked rice in the study cohort
was calculated based on the answers to questionnaires. To
determine the direct water and cooked rice intake, subjects
were asked to report how many cups of water or bowls of
cooked rice they consumed in a day. At the first visit, the
cup/bowl used for drinking water/cooked rice was identified
and the capacity of the cup and bowl was measured. These
results are presented in ESM Table S2.
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Dietary chronic exposure to iAs was assessed at the popu-
lation level by multiplying the distribution of daily consump-
tion of cooked rice and drinking water with the corresponding
distribution of estimated iAs, summing up the population in-
takes through the diet. By dividing the total iAs exposure
predicted from the biomonitoring data, the contributions to
iAs intake of cooked rice, drinking water, and others (the rest
of the foods, except rice and water) were estimated.

Computerized simulation model of population As
exposure

As shown in Fig. 1a, a stochastic PBPK model was used to
simulate the population iAs exposure based on a modified
version of the seven-compartment PBPK model from our pre-
vious paper (Chen et al. 2010). Briefly, the structure of the
existing PBPKmodel for arsenic was taken as a generic model
framework used in conjunction with Monte Carlo analysis to
incorporate the variability of physiological parameters and
human pharmacokinetics (Fig. 1b). Among the physiological
and pharmacokinetic parameters, cardiac output, tissue vol-
ume, and blood flow to tissues were assigned normal distribu-
tions; partition coefficients and metabolic parameters were
assigned log-normal distributions (Delic et al. 2000).

All physiological parameter distributions were fitted
from the epidemiological data in the Taiwan cohort study
and tested by the statistical method (Kolmogorov–Smirnov
test). These parameters used in PBPK should be reliable
because of the random sampling from measurement data.
All distributions were truncated at 1.96 times the standard
deviation (SD) above and below the mean to exclude
physiologically irrational values. The incorporation of var-
iability permitted stochastic characterization of the popula-
tion distribution of arsenic concentrations in urine
(Fig. 1c). Equations and most of the parameter values
describing the model’s structure and symbols are given
in ESM Tables S3, S4, and S5.

The PBPK model was validated with data from the
NHANES data on the general US population exposure to
As, as detailed elsewhere by Caldwell et al. (2009). To com-
pare the modeled and observed results, the best fit was evalu-
ated using root mean squared error (RMSE), calculated from

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

n¼1 Cm;n−Cs;n

� �q
2=N , where N denotes the

number of measurements, Cm,n is the measurement data, and
Cs,n is the simulation result corresponding to data point n.

Reverse dosimetry

To estimate the population As exposure based on the mea-
sured biomonitoring data of As in urine, the stochastic
PBPK model for As was used to predict the distribution of
As concentrations in urine given 1 unit of iAs intake. The

output distribution was then inverted to obtain a distribution
of an ECF in a unit of (μg iAs intake)/(μg L−1 tAs in urine),
where the product of the ECF distribution with an observed
urinary As concentration provided probabilistic distribution of
As intake corresponding to urinary tAs (the sum of As3+,
As5+, MMA, and DMA) measured from the cohort study. A
detailed description of the ECF approach and the validation of
ECF are described in the ESM Fig. S1 and S2.

Risk characterization

The probabilistic exposure modeling offers a complete de-
scription of the exposure in the human population taking the
variation between individuals into account. The probabilistic
risk assessment allows two routes. One is to compare the
(probabilistic) limit value with the probabilistic exposure esti-
mate. The other is to estimate the possible health effects in the
human population at a given level of exposure (Woodruff et al.
2007; NRC 2009). In this study, we used PBPKmodeling and
Monte Carlo simulation to reconstruct the iAs exposure dis-
tribution in the Taiwanese population based on the human
biomonitoring data.

As shown in Fig. 1c, we used the ECF and urinary tAs
concentration distributions to estimate the iAs exposure risk
of the population group. In this study, the ECF was used as the
conditional probability. Therefore, the relationship between 1-
unit iAs intake and urinary tAs concentrations can be
expressed as P(iAsintake|tAsurine). The tAs concentrations in
urine measured from our cohort study can be expressed as
the probabilistic distribution. The population-scale iAs expo-
sure can be calculated as the probability density functions of
|tAsurinemultiplied by the conditional probabilities of ECF. To
assess the iAs exposure risk, the population-scale iAs expo-
sure distribution was used for comparison to the tolerable
daily intake (TDI), 2.1 μg iAs day−1 kg−1, recommended by
the World Health Organization (WHO) in 1989 (WHO 1989).

P iAsintakeð Þ ¼ P tAsurineð Þ � P iAsintake tAsurinejð Þ ð1Þ
P RiAsð Þ ¼ P iAsintake > TDIð Þ; ð2Þ

where P(RiAs) represents the human As exposure risk estimat-
ed as the probability that the daily intake estimated from this
study exceeds the TDI.

Results

Validation of the PBPK model

The evaluated PBPK models were performed in conjunction
with Monte Carlo simulation to incorporate variability regard-
ing the physiological parameters, pharmacokinetics, and ex-
posure patterns (ESM Tables S2 and S3) to predict the
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distributions of As3+, As5+, MMA, and DMA concentrations
in urine. From the Monte Carlo analysis, 10,000 predictions
were obtained for each tAs exposure pattern from the
NHANES data. The tAs concentration in urine from the
PBPK predict ion had a geometric mean (gm) of
17.57 μg L−1 (95 % confidence interval (CI), 14.84–20.60)
for the entire simulated population (Table 1). On the other
hand, the urinary DMA concentration had a gm of 5.4
(4.68–6.50).

Overall, the predicted distributions of tAs and DMA
concentrations in urine by the simulation of the general
US population from a PBPK model agreed well with
the measured distributions from the NHANES data
(r2 = 0.86 and 0.89, respectively). Each RMSE value
was less than 1 SD from the experimental data
(Table 1), indicating that the PBPK model simulation
values were in good agreement with the experimentally
determined concentration profiles of tAs and DMA in
urine after As exposure.

Risk characterization

Figure 2 shows the resulting curves of the mean and the 95 %
CI for predicted arsenic species (As3+, As5+, MMA, and DMA)
concentrations in urine. The wide 95 % CI bounds in Fig. 2
result from combined variability of the parameters describing
the physiological, exposure scenario, and pharmacokinetics in
the population. We applied the predictions of arsenic species
using a PBPK model incorporating Monte Carlo simulation
(Fig. 2a–d) to establish the probability density function (PDF)
for As3+, As5+, MMA, and DMA (e–h in Fig. 2).

We inverted these PDFs of the arsenic species in urine
predicted from model prediction to generate the iAs ECF dis-
tribution, a reference value for iAs exposure, and to recon-
struct the exposure to populations with measured urinary tAs
concentrations (Fig. 3). In constructing the iAs ECF distribu-
tion based on these PDFs of the arsenic species, we assumed
that the arsenic species concentrations in urine represented the
exposure to iAs. Therefore, we reconstructed the exposure

Partition coefficient 

a 
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As distribution in food 
or drinking water 

Body

Liver

Kidney

Blood 
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dosimetry approach 

Exposure conversion 
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Fig. 1 Schematic showing the
framework of the proposed
population-based PBPK model
and reverse dosimetry for arsenic
exposure risk assessment
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distribution of the whole population exposed to tAs corre-
sponding to that urine level by estimating the product of tAs
ECF distribution with an observed urinary tAs concentration
(b in Fig. 3).

We probabilistically estimated the population As exposure
risk based on the respective TDIs and the prediction of iAs
exposure distribution (Fig. 3, inset b). The results showed that
this study cohort had an iAs exposure risk of 20 % (the daily

Table 1 Measured and predicted arsenic concentrations in urine (in micrograms per liter)

Geometric mean (95 % CI) Selected percentile (95 % CI)

5th 10th 25th 50th 75th 90th 95th RMSEc

Measured arsenic concentrations (NHANES data)a

tAs 8.30 (7.19–9.57) – 2.10 4.10 7.70 16.00 37.40 65.40
DMA 3.71 (3.33–4.14) – – 2.00 3.90 6.00 11.00 16.00

Predicted arsenic concentrations (PBPK model)b

As3+ 0.6 (0.02–0.10) 0.08 0.09 0.13 0.50 0.75 1.05 1.12 –
As5+ 0.7 (0.06–0.15) 0.07 0.06 0.15 0.18 1.13 1.72 1.83 –
MMA 1.50 (1.27–1.76) 0.30 0.49 0.18 0.45 3.42 3.06 4.75 –
DMA 5.54 (4.68–6.50) 1.66 2.12 3.02 4.43 11.42 13.40 17.23 2.74
tAs 17.57 (14.84–20.60) 2.11 2.76 3.48 5.56 16.72 19.23 24.93 17.95

a Data adopted from Caldwell et al. (2009)
b Value estimated from the PBPK model

c Root mean squared error computed from RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

n¼1 Cm;n−Cs;n

� �q
2=N
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iAs intake for 20 % study subjects exceeded the WHO-
recommended value, 2.1 μg iAs day−1 kg−1 body weight).
Moreover, we used the measured distributions of urinary tAs
to convert them into the daily iAs intake levels by reverse
dosimetry (Table 2). The values of iAs intake were 0.08–
0.62, 0.26–2.10, 0.47–3.52, 0.72–5.34, 1.57–12.40, and 2.1–
16.38 μg day−1 kg−1 corresponding to the 2.5th, 25th, 50th,
75th, 95th, and 97.5th percentiles, respectively (Table 2).
Based on the TDI that was employed as the benchmark of
the health risk of iAs exposure, the iAs exposure risk was
lower than the safe levels as long as the urinary tAs concen-
trations were not higher than 18.79μg L−1 in this study cohort.

Estimates of dietary iAs exposure

Figure 4 (part a) shows the distribution of iAs daily intake in
this study cohort, which had an iAs exposure risk of 20 %
based on the TDI recommended by WHO. In the iAs exposure
risk, the probabilistic estimation for iAs exposure from rice,
drinking water, and others is presented in Fig. 4 (part b). The
major contributors to iAs exposure risks by dietary iAs intake

were others (49 %), rice (41 %), and water (10 %), respectively
(c in Fig. 4).

iAs exposure risk assessment in diverse population

To estimate the As exposure risk from various populations of
different countries, we applied reverse dosimetry approach to
estimate the cumulative distribution functions of iAs daily
intakes corresponding to average urinary tAs concentrations
of 50 μg L−1 (standard), 65.4 μg L−1 (Mexico), 106 μg L−1

(this study), 127.3 μg L−1 (Korea), and 263.7 μg L−1

(Bangladesh; Fig. 5). The curves show that the dietary iAs
intakes exceeding the TDIs recommend by WHO were from
the populations from this study, Korea, and Bangladesh,
whereas the calculated iAs intakes corresponding to urinary
tAs concentrations of standard and Mexico were in the safe
level (a in Fig. 5). The predicted exceedance risks (the per-
centage of exceeding TDI) showed 0.04, 4.82, 27.21, 34.69,
and 64.17 % for a standard level with four study cohorts in
Mexico, Taiwan (this study), Korea, and Bangladesh, respec-
tively (b in Fig. 5).

Discussion

Linkage of biomonitoring data and iAs exposure risk

Human biomonitoring data represent a measurement of inter-
nal dose from all exposure routes (inhalation, dermal, and
oral) and sources of exposure, providing an effective tool for
assessing population exposure. It is increasingly being collect-
ed in the USA, Bangladesh, and other countries in large-scale
field studies. These studies found that many chemicals are
detected in the human body at very low levels; it is interesting
to estimate the health effects of these chemicals by a dose-per-
body-weight basis in a population and ask what we can do
about these exposures. Based on the actual human exposure
data and parameter values reported in the literature, our sto-
chastic PBPK model generated a range of results that include
human biomonitoring data of urinary As from a Taiwanese
population. The application of PBPK modeling and reverse
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Fig. 3 a Estimated exposure conversion factor (ECF) of iAs (lower) that
are consistent with 10,000 hypothetical urine concentrations in one-unit
iAs intake. Insert b shows the probabilistic distribution of iAs intake
generated from the measured urinary tAs (right) concentration multiplied
by ECF

Table 2 Inorganic arsenic intake
distribution and estimated risk
from the measured concentration
of total arsenic in human urine

Percentile tAs concentration (μg L−1) iAs intake (μg kg−1 day−1) Risk

2.5th 14.91 0.08–0.62 NRa

25th 18.79 0.26–2.10 NRa

50th 42.46 0.47–3.52 0.21

75th 74.12 0.72–5.34 0.62

95th 130.03 1.57–12.40 0.99

97.5th 212.78 2.10–16.38 1

aNR represents no risk (inorganic arsenic intake is within the safe arsenic intake value of 2.1 μg kg−1 day−1 )
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dosimetry in the present study offers a linkage between bio-
monitoring data and As exposure risks in human populations.

In this model, we addressed uncertainties and variability in
our PBPKmodel for simulating population-scale As exposures
by introducing such inter-individual differences as the inputs in
the model using Monte Carlo sampling, leading to a robust
probability distribution for the population PBPK modeling.
Our results showed that iAs intakes in the Taiwanese popula-
tion varied from 0.08 to 16.39 μg kg−1 day−1. From a conser-
vative point of view, it shows that 27 % of this population had
intakes higher than the TDI recommend by WHO
(2.1 μg iAs day−1 kg−1 body weight). Indeed, previous studies
have indicated high As levels measured by an agriculture soil
survey (Chang et al. 1999) and the thousands of metal-related
industries (http://www.moeaidb.gov.tw/Fidbweb/index.jsp) in
our study area. In this way, natural As exposures occur
through various routes and sources. Several studies have

reported the association of iAs exposure and an increased risk
of metabolic syndrome (Wang et al. 2007) and renal dysfunc-
tion (Chen et al. 2011a) in this population. Our model success-
fully describes the probabilistic distribution for population As
exposure, providing an example of the utility of human bio-
monitoring data to predict populat ion-scale risk
characterization.

As daily intake from dietary route

The issue of the impact of body burden versus oral intake on
the concentrations of iAs in foods needs to be discussed. As is
a naturally occurring element in soil and water and all plants
take up As. It has been found in most of the 65 rice products,
particularly iAs (Tao and Bolger 1999), in the USA. Rice
absorbs As from soil or water much more effectively than
other plants because it is one of the only major crops grown
in water-flooded conditions. Under such conditions, it allows
As to be more easily taken up by its roots and stored in the
grains. According to a study in a US population, rice contrib-
utes 17 % of dietary exposure to iAs behind fruits and fruit
juices at 18 %, and vegetables at 24 % (Xue et al. 2010). In
Asia, cooking rice is a major source of iAs exposure owing to
the dietary habits. A recent study of more than 18,000 people
in Bangladesh established a link between rice consumption
and arsenic exposure and toxicity, pointing out that steamed
rice consumption was positively associated with urinary total
arsenic and skin lesion prevalence (Melkonian et al. 2013).

In the present study, the iAs exposure risk from rice con-
sumption was 41 %, whereas that from drinking water was
only 10%. Not surprisingly, the daily intake of As via cooking
rice (ranging from 9.7 to 31.4 μg day−1) was higher than that
of drinking water (ranging from 4.3 to 20.8 μg day−1) in the
study population. In addition, the subjects lived in a non-
arsenic-endemic area in Taiwan that is supplied with arsenic-
safe water (<10 μg L−1). Therefore, the iAs exposure risks
may primarily be through cooking rice or other routes. Our
results were consistent with the report inWest Bengal supplied
with arsenic-safe water (<50 μg L−1) by Mazumder et al.
(2014). They found that daily As intake from diet was found
to be significantly positively associated with urinary arsenic
level, but no significant association was found with arsenic
dose from water.

On the other hand, the highest contribution to iAs exposure
risks in this Taiwanese population was from others, implicat-
ing other sources of iAs exposure aside from cooking rice and
drinking water. Seafood consumption has an important role in
arsenic exposure, especially in Asian countries, because of the
higher seafood intake than in Europe and the USA (Kim and
Lee 2011). Several studies have reported overall health risk
arising from the ingestion of different types of fish and shell-
fish (Chen et al. 2010; Liang et al. 2011). Furthermore, our
study area was located in the nearby area of a thermal power
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plant. Previous studies indicated that average high seasonal
concentrations of arsenic were found in PM2.5 (Chen et al.
2013) and total suspended particles (Fang et al. 2011). These
sources of arsenic exposure possibly provide the high contri-
bution to iAs exposure in our study populations.

Human As exposure risk in diverse population

We used data sets of 2,557 participants in a US population
from the National Health and Nutrition Examination Survey
during the period 2003–2004 for validation of this model
(Table 2). Although there was a similar distribution in the
population-based validation data and model predictions, the
levels of As in urine were slightly different. This is not wholly
unexpected in a population-based study because values are
usually mean values and because such a cohort is subject to
great inter- and intra-individual differences. Similarly, the
mean values and ranges of tAs and DMA in urine in this
validation data are of limited use because the diet and physi-
ological attributes differ. However, they are able to validate
the ranges and mean values of our simulation.

A good agreement between model prediction and data
helps us to further estimate the human As exposure risks in
diverse populations. From our model simulation, the
Taiwanese participants in this study had 27 % iAs exposure
risks, higher than that estimated in Mexico (5 %), but below
that in Bangladesh (64 %) and Korea (35 %). As expected, the
highest iAs intake was in the Bangladesh population because
As contamination of water in tube wells has been well studied
and recognized (Chen et al. 2011b; Sohel et al. 2009; Vahter
et al. 2006). In the Korean cohort, foodstuffs containing As
were consumed on a daily basis, including rice, seaweed, and
shellfish. Rice consumption (163 g day−1) may be a significant
source of iAs exposure within this community (Cleland et al.
2009). This is probably a reflection that iAs exposure is de-
pendent on a specific population’s lifestyle, location, and die-
tary behaviors. Similar analyses can be made if other param-
eters are known for a certain population. Additionally, this
model can be expanded to places with population-scale bio-
monitoring information that can be compared to exposure-
based quantities such as a reference dose (RfD).

Limitations and implications

A population-based estimate of exposure should be consid-
ered in risk assessments, either to help in the determination
of the particular adverse effect seen in a specific population or
to support the establishment of acceptable levels for
population-scale exposures. The characterization and interpre-
tation of uncertainty and variability on the computation mod-
el, both in the modeling of deposition of the chemical in the
body and in the description of exposure conditions, becomes
more important. Here, we presented a systematic framework

for population-basedmeasurement of urinary tAs levels on the
basis of daily iAs intake from dietary exposure. Our model
provides insight on human variability for risk assessment.
Moreover, the strengths of our study were using probabilistic
distribution of questionnaire-based or literature-based physio-
logical and pharmacokinetic parameters to predict iAs expo-
sure risks from diverse sources of exposure in a population.

The accuracy of the results is limited by the approximate
nature of the model and the quality of the experimental data.
Our model combined PBPK and the reverse dosimetry ap-
proach to consider the population-scale physiological and
pharmacokinetic parameters. Uncertainties in these parame-
ters may cause model predictions as wide as or wider than
the range of concentrations measured in a population.
Additionally, several factors, including smoking, sex, food
habits, and socioeconomic status, might affect the predictions
of this model. This suggests that the limiting factors in im-
proving the predictions of models lie more on understanding
the inputs of the existing parameters than in increasing the
complexity of the model by adding tissue compartments.

From a conservative point of view, we assumed that urinary
inorganic and organic arsenic metabolites are both trans-
formed from the iAs in drinking water, foods, and others.
Therefore, we used urinary total tAs (iAs +MMA+DMA)
data to calculate the iAs exposure in a population through
the ECF method. Although it is a study limitation, we can
estimate a conservative iAs exposure risk in the Taiwanese
population based on such assumption.

Although the method presented here is attempted to be a
tool to reconstruct iAs exposure from biomonitoring data,
there are no corresponding iAs intake data available. For ex-
ample, we only considered iAs intake in rice and drinking
water consumption at the single dietary exposure. Risk assess-
ment of exposure to iAs may be underestimated. Therefore,
comparison of the results with such data would greatly assist
in raising the accuracy of the model, and such results could be
validated with other studies. Further research is needed to
estimate other food resources, such as seafood, vegetables,
fruits, and meat.

Conclusions

We developed a population-based risk model that covered
urinary tAs levels and daily iAs intake exposure by integrating
stochastic PBPK modeling and reverse dosimetry informa-
tion. Four major findings could be concluded from this study:
(1) the mean dietary exposure to iAs of Taiwanese people was
0.47–3.52 μg kg−1 day−1, with 95th percentile of 1.57–
12.40 μg kg−1 day−1; (2) the estimated iAs exposure risk
was 27 % higher than that estimated in Mexico (5 %), but
below that in Bangladesh (64 %) and Korea (35 %); (3) rice,
being the staple food of Taiwanese, is estimated as a major
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contributor of dietary exposure to iAs (41%); and (4) the other
sources of iAs contributed 49 % of iAs exposure risk, indicat-
ing that the other routes of iAs exposure, including seafood,
vegetable, and inhalation, may also be important in the
Taiwanese population. The specific risk model we developed
in the present study can provide superior predictive power for
leading causes of mortality of iAs exposure compared with a
range of alternative model forms.
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