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SUMMARY

The purpose of this paper was to determine how contact behaviour change influences the indoor
transmission of influenza A(H1N1)pdm09 among school children. We incorporated transmission
rate matrices constructed from questionnaire responses into an epidemiological model to simulate
contact behaviour change during an influenza epidemic. We constructed a dose–response model
describing the relationships between contact rate, viral load, and respiratory symptom scores
using published experimental human infection data for A(H1N1)pdm09. Findings showed that
that mean numbers of contacts were 5·66 ± 6·23 and 1·96 ± 2·76 d−1 in the 13–19 and 40–59
years age groups, respectively. We found that the basic reproduction number (R0) was <1 during
weekends in pandemic periods, implying that school closures or class suspensions are probably
an effective social distancing policy to control pandemic influenza transmission. We conclude
that human contact behaviour change is a potentially influential factor on influenza infection
rates. For substantiation of this effect, we recommend a future study with more comprehensive
control measures.

Key words: A(H1N1)pdm09, contact behaviour, contact matrix, indoor transmission, influenza,
modelling.

INTRODUCTION

After the identification of influenza A(H1N1)pdm09
virus in Mexico in April 2009, it spread rapidly
worldwide, resulting in more than 16 900 laboratory-
confirmed cases and 500–1000 deaths in over 67 coun-
tries, by mid-February 2011 [1]. The A(H1N1)pdm09
virus is presumed to spread in a spatio-temporal

pattern similar to those of previous pandemics, but
at an accelerated rate because of the frequent air travel
in modern times [2]. The epidemiology of A(H1N1)
pdm09 differs from both seasonal influenza epidemics
and previous pandemics. Initially, most cases were
clustered in households and schools; of these, more
than half of the reported cases were school children
aged between 5 and 18 years [3]. Public policy typi-
cally advocated in-home care for the ill, or school clo-
sures when there was high potential transmission
risk at school. These policies were designed to dimin-
ish the frequency of close contacts [3]. However,
human behaviour changes not only through policy
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recommendations, but also through fear of infectious
disease; social contact avoidance is a potential mech-
anism by which disease transmission may be reduced.

Recently, Fenichel et al. [4] and Ferguson [5] used
the concept of adaptive behaviour to model the trans-
mission of infectious disease in an epidemiological sys-
tem. People can be assumed to adapt their contact
patterns, and these changes feed back to alter epi-
demic dynamics [6]. Models of population dynamics
have incorporated the influence of human behaviour
on the spread of infectious diseases on behaviour-
associated contact structures, model parameters, and
individual disease-state-based behavioural changes
[6–11]. Thus, the contact behaviour for respiratory in-
fectious agents plays an indispensable role in math-
ematical modelling.

Generally, social contact patterns can be quantified
by questionnaire and survey responses to estimate
daily contact number or a transmission rate matrix
for specific populations who are at potential risk.
High rates of influenza transmission have been detected
for school children and teenagers in particular.
Wallinga et al. [12] found that school children and
young adults experienced the highest incidence of infec-
tion and contributed the most to its further spread dur-
ing the initial phase of an emerging respiratory-spread
epidemic. Moreover, an age-specific contact matrix of
daily contact number (Cij) can be estimated through
the same means to construct a more detailed trans-
mission rate matrix for disease transmission modelling.

A previous study estimated the contact behaviour in
non-pandemic periods [13]. We are not aware of studies
which assess adaptive contact patterns during epidemic
or pandemic periods. We, therefore, attempted to pro-
vide a reasonable adjusted factor of human contact be-
haviour changes which affected disease transmission.

Handel et al. [14] provided the information on the re-
lationship point between the daily contact numbers and
symptom levels of infectious individuals. They sug-
gested that a sick person might reduce the frequency
of their contacts with others, i.e. an increased symptom
score might be associated with behavioural change.
Thus, researchers can only capture the behaviour of a
susceptible individual for healthy persons who have
no intention of changing their behaviour. In order to
extend the association between contact behaviour,
symptom scores, and viral shedding, the published ex-
perimental human influenza infection data for A
(H1N1)pdm09 [15] could be used to understand the re-
lationship between its contact properties, dose (viral
load), and response (respiratory symptom scores).

The most well-known susceptible-infected-recovery
(SIR) model is a basic and potentially powerful
model in mathematical modelling of infectious dis-
eases [16]. The key epidemiological parameter of
basic reproduction number (R0) was also estimated
for a comparison between adjusted and unadjusted
behavioural changes. R0 essentially determines the
rate of spread of an epidemic and how intensive a pol-
icy will need to be control the epidemic. When R0 > 1,
it implies that the epidemic is spreading within a
population, whereas R0 < 1 means that the disease is
dying out [17]. We estimated R0 in order to compare
adjusted and unadjusted behavioural changes.

Taken together, the objective of the present study
was to determine the changes of human contact be-
haviour that affect the indoor transmission of A
(H1N1)pdm09 in school children. This work outlines
a practical tool to determine how to implement con-
trol measures during epidemic periods by taking into
account important contact behaviours and experimen-
tal human influenza infection data.

MATERIALS AND METHODS

The framework along with the computational algor-
ithm employed in the present study is shown in
Figure 1. Based on survey data [13] and an experimen-
tal human study [15], we performed a (mathematical)
modelling of the indoor transmission of A(H1N1)
pdm09 in social contact structures.

Estimation of age-specific social contact behaviour

This study used data from our previous survey [17],
which focused on school children in junior high school
(grades 7–9; children aged 13–15 years). Questionnaires
were completed only after the participants and their
parents (or legal guardian) supplied written informed
consent. The results of the questionnaires and the
study were fully anonymous. In brief, a total of 404
questionnaires (202 participants) were given to junior
high-school students. The effective sample size was
274 questionnaires with a 67% response rate. The sur-
vey data collected was for gender, household size,
health status, and contact duration and frequency for
each individual. The period investigated by the survey
was for 1 week, separated into to weekdays and
weekend. The contact populations investigated were
classified into three age groups (0–12, 13–39, 540
years). Baseline information of the survey is provided
elsewhere [13]. Table 1 provides essential information
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of sampling data along with contact numbers. The
mean numbers of contact for grades 7–9 ranged from
9·44 ± 8·68 (mean ± S.D.) to 11·18 ± 7·98 per person
day−1, with similar contact behaviour between school
grades. Statistical analysis showed that contact num-
bers did not differ among the three grades (P< 0·05)
(Wilcoxon’s rank sum test).

We used a matrix to describe the contact frequency
for school children interacting with different age
groups. The simplified matrix of contact number
(Cij) can be arranged as

Cij =
C11 C12 C13

C21 C22 C23

C31 C32 C33

⎛
⎝

⎞
⎠, (1)

where, i1,2,3 = specific age in school grades 7–9 (1: 13
years; 2: 14 years; 3: 15 years); j1,2,3 = specific age
group contacted by school children (1: 0–12 years; 2:
13–39 years; 3: 540 years).

Relationship of pandemic H1N1 viral titre to
respiratory symptom score

A published study, assessing the comparative epidemi-
ology of pandemic and seasonal influenza A [15] pro-
vided information on viral titre data based on RT–
PCR assay and culture throughout the course of ill-
ness for pandemic and seasonal influenza, especially
for teenagers (<15 years). There were 24 index patients
aged 0–15 years (48% of all index patients). The daily

behaviour

Fig. 1. Schematic showing research framework and flowchart used in this study.
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viral titres (tissue-culture infectious dose, log TCID50

ml−1) at day 0 (time of onset of acute respiratory ill-
ness) to day 10 were re-analysed.

Mean symptom scores were calculated from a com-
posite of three groups of signs and symptoms of
influenza – systemic, upper respiratory, and lower res-
piratory – and each ranged from 0 to 1, with higher
scores indicating greater severity of symptoms [14].
The A(H1N1)pdm09 virus titre and symptom score
dataset was analysed using Didger 4 software
(Didger® v. 4·2, Golden Software Inc., USA). This
study integrated the daily-based viral titre of children
with daily symptom score relationship of A(H1N1)
pdm09 to match the age groups in the questionnaire.

This study calculated total symptom score (TSS) as
the summation of systemic, upper respiratory, and

lower respiratory symptom scores, and expressed it
as a function of volunteers’ nasal influenza viral titre
(V). Table Curve 2D software v. 5·01 (Systat
Software Inc., USA) was used to perform curve
fitting. Functional equations were fitted to determine
the best-fitting correlation.

Estimation of normalized contact rate

Handel et al. [14] previously described a mapping
technique that incorporates behaviour and viral
load. They assumed that a sick person might reduce
their frequency of contact with other persons; in gen-
eral terms, an increasing symptom score changes
behaviour. Handel et al. [14] also expressed the nor-
malized contact rates (w) as a function of viral load
(V) as. w= 1/(1+TSS(V). In the present study, we pre-
dicted the time-dependent normalized contact rate by
a fitted virus dynamic model.

The nonlinear regression models were fitted to the
experimental viral shedding data. The optimal fitted
model was able to describe well the distributions of
viral shedding dynamics. Based on these good fits,
we employed response surface methodology to explore
the relationship between viral titre, TSS, and normal-
ized contact rate. Table Curve 3D software v. 4·0
(Systat Software Inc.) was used to perform the
model-fitting techniques.

Transmission rate estimation

To assess the age-specific transmission rate in junior
high-school students, we adopted the concept of an in-
fectious contact rate, which is a function of social mix-
ing patterns and transmission probabilities for a given
social contact [15]. The infectious contact rate equals
the number of daily contacts multiplied by the trans-
mission probability; the probabilities of an infected in-
dividual transmitting to a susceptible contact were
estimated to be in the range of 0·025–0·087 [18].

To understand the behaviour of decreasing contact
presumed to be exhibited by the infected children, we
compared normalized contact rates vs. time for
infected individuals in terms of the area under the
curve (AUC). In this plot, the maximum normalized
contact rate is equal to 1; this corresponds to normal
contact behaviour. The quantification of normal con-
tact behaviour can be seen as a rectangular area.

The AUC of the normalized contact rate was intro-
duced to quantify the contact behaviour change under
influenza infection. Next, we calculated the adjusted

Table 1. Characteristics of sampling data (mean ± S.D.)*

No. of
participants (%)

No. of contacts
(per person d−1)*

Gender
Male 65 (47·45) 10·35 (8·59)
Female 72 (52·55) 9·99 (7·68)

School grade
Grade 7 41 (29·93) 11·18 (7·98)
Grade 8 44 (32·12) 10·03 (7·54)
Grade 9 52 (37·96) 9·44 (8·68)

Household size
2 1 (0·73) 4·5 (n.a.)
3 13 (9·49) 7·35 (5·66)
4 65 (47·45) 11·15 (8·93)
5 29 (21·17) 10·94 (6·92)
>5 29 (21·17) 9·07 (8·1)

Day of the week
Monday 23 (16·79) 11·70 (9·49)
Tuesday 27 (19·71) 10·63 (7·00)
Wednesday 26 (18·98) 11·65 (9·05)
Thursday 34 (24·82) 13·32 (6·85)
Friday 27 (19·71) 12·82 (10·14)
Saturday 62 (45·26) 8·46 (10·41)
Sunday 75 (54·74) 8·20 (5·49)

Health status†

Health 225 (82·12) 10·55 (8·62)
1 symptom 30 (10·95) 7·10 (3·66)
2 symptoms 16 (5·84) 11·44 (5·72)
5 3 symptoms 3 (1·09) 4·67 (2·89)

n.a., Not available.
* Total sample size of questionnaire = 404, and effective
sample size = 274. Thirty-nine questionnaires were not
returned, 49 included incomplete data (lacking sampling
date or basic individual information) and 42 questionnaires
were only completed for one of the two days required.
†Health: cough, runny nose, headache, sneezing, fever.
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factor (p) by AUC over the rectangular area, which
can modify the actual contact number for susceptible
children after influenza infection.

Wedefined a parameter, p, which expresses the adjust-
ment factor for contact behaviour change for the infected
population. p can be estimated from AUC based on the
normalized contact rate vs. time curve [19, 20]. p ranges
from 0 to 1, corresponding to a low to high level of beha-
vioural change in response to a pandemic threat.

In this study, we applied the concept from Nichol
et al. [16] to re-interpret the algorithm of the trans-
mission rate (β) as:

β = C × p× q, (2)

where C is the mean contact number for school children
in each grade (contacts per day), p is the adjustment fac-
tor that can reflect a reduced contact ratio for an infected
individual (−), andq is the transmissionprobability from
an infected person given one contact (−) (Fig. 1e).

We further constructed the transmission rate
matrix, which can be seen as a ‘who acquires infection
from whom’ (WAIFW) matrix [21]. The transmission
rate matrix (βij) aligns with the integrated contact
number matrix above, and can be written as

βij =
β11 β12 β13
β21 β22 β23
β31 β32 β33

⎛
⎝

⎞
⎠. (3)

Model of infection dynamics

TheSIRmodel is a simple andbasicmathematicalmodel
of infectious disease [17]. To explore the impact of con-
tact behaviour on epidemiological processes during the
pandemic period, this study used an SIR model embed-
ding normalized contact rate (w) and transmission rate
matrix (βij) to represent pandemic modelling

We defined a population size N in a given area, and
divided N into three compartments: susceptible, S;
infected and infectious, I; and recovered with immun-
ity R [4]. We further integrated each element in the
transmission rate matrix by calculating the dominant
eigenvalue, which can represent the dominant trans-
mission rate (βM) for the whole population under the
social contact structure.

The SIR model can provide a basic description of
the transmission dynamics by using a simple parame-
terized set of ordinary differential equations,

dS
dt

= − βMSI
N

, (4)

dI
dt

= βMSI
N

− νI , (5)

dR
dt

= νI , (6)

where βM is the transmission rate, and νis the rate at
which an infectious individual recovers per unit time.

We assumed that the population size of school chil-
dren was N= 34 individuals and the initial I(t= 0) = 1.
R0 took the classic form R0 = βM/ν [4].

RESULTS

Age-specific social contacts

Only the covariates of household size (P < 0·05), sur-
vey date (P < 0·0001), and health status of participants
(P < 0·05) showed significant difference within each
group. The mean numbers of contacts were 4·27 ±
0·64 d−1 and 9·63 ± 1·21 d−1 during the weekend
and weekday periods, respectively, and the highest
contact frequency was in the 13–39 years age group
(Fig. 2).

Estimated adjusted fraction by viral shedding and
symptom scores

Figure 3a shows the optimal fitted model for viral
shedding data (r2 = 0·80). To mimic viral shedding
dynamics, we integrated time-dependent symptoms
after influenza illness onset. Our results showed that
TSS peaked at ∼2·1 at day 1 after illness onset
(Fig. 3b).

Table 2 summarizes the optimized fitted equation
that best describe the dose–response relationship
between symptom scores and viral shedding with
fitted parameter values for systematic, upper and
lower respiratory, and total symptom scores. The
exponential function best describes the trends for
viral shedding dynamics. Results showed that sys-
temic score and TSS yielded the best predictability
for viral shedding, with r2 = 0·93 and 0·77, respect-
ively (Fig. 4a, b).

We further constructed a response surface to de-
scribe the relationship between viral titre, TSS, and
normalized contact rate (Fig. 4c). Virus shedding of
0–5 logTCID50 ml−1 allows for TSS within 0·6–2·0
and a reduction of normalized contact rate from
0·62 to 0·33 (Fig. 4c). Based on the viral shedding
dynamics, we can predict the contact behaviour
change for an infected individual. Figure 5 shows
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the time-dependent normalized contact rate from 0 to
5 days after illness onset. In this period, the normal-
ized contact rates were increasing from 0·41 to 0·63.
The adjusted fraction (p) could then be calculated
based on the mean ratio of AUC and rectangular
area (0·519, 95% CI 0·455–0·659).

SIR dynamic modelling

According to the matrix for contact numbers, we
further estimated the transmission rates during the
weekday and weekend periods. The transmission
rates on weekdays were estimated as the matrix:

βij =
0.087 0.415 0.075
0.042 0.388 0.050
0.035 0.323 0.091

⎛
⎝

⎞
⎠.

The transmission rates on the weekend were calcu-
lated as:

βij =
0.083 0.166 0.148
0.042 0.142 0.119
0.029 0.192 0.107

⎛
⎝

⎞
⎠.

Results showed that the adjusted contact behaviour-
based transmission rate (βM) was estimated to be 0·389
[95% confidence interval (CI) 0·261–0·534] on week-
days and 0·259 (95% CI 0·168–0·355) on the weekend,
respectively. In addition, we calculated the recovery
rate (ν) as 0·199 (95% CI 0·159–0·269). Table 3 sum-
marizes the results of model parameterization.

To predict the population dynamics of influenza
transmission in the classroom, we incorporated the
estimated probability distributions of parameters for
dominant transmission rates into the population dy-
namics model (Fig. 6). In 50-day simulations, the pro-
portions of time-dependent infected vs. total number
showed the greatest differences between adjusted and
unadjusted behaviour groups. The dynamics of
behaviour-adjusted populations were investigated by
tier percentile of the dominant transmission rates of
0·25, 0·32, 0·36, 0·41, and 0·52 d−1 (2·5, 25, 50, 75,
and 97·5 percentiles, respectively). Our results indi-
cated that the peak infected population could be
reduced by 38–69% by incorporating different levels
of contact behaviour change (Fig. 6c).

To investigate contact behaviour change-induced
influenza transmission decreases in school children,
we calculated the distribution of R0 under different sce-
narios (Table 3). The results showed that contact be-
haviour change for an infected population can truly
reduce R0, with estimates for adjusted contact behav-
iour change of 1·854 (95% CI 1·146–2·781) and 0·860
(95% CI 0·617–1·174) on weekdays and the weekend,
respectively, based on the probability distributions of
dominant transmission and recovery rates. The results
revealed that the social contact structure during the
weekend may ease the disease-spreading potential in
school children, i.e. the R0 value may be <1. Yet, the
disease will spread rapidly under an unadjusted contact
scenario, for which the mean R0 estimates were 3·3 and
2·2 on weekdays and the weekend, respectively.

DISCUSSION

Social contact among school children

Contact processes and age-specific transmission rates
among populations for respiratory-spread infectious
agents play an important role in the spread of

(a)

(b)

Fig. 2. Contact frequency estimation across three estimated
contact age groups (0–12, 13–39, 540 years) by quest-
ionnaire among school children for (a) the weekend and
(b) weekdays, respectively, during March 2010.
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disease, and thus necessitate the need for mathemat-
ical modelling. The transmission rate matrix is a
classic method for expressing the transmission rate be-
tween age groups [12, 21]; however, early research

could only assume contact patterns for modelling a
priori. Thus, the strength of the present study lies in
the fact that we provided real daily contact numbers
for school children between and within each age
group.

Based on the survey data of contact behaviour, our
results found that the mean number of contacts for
school-going young adults in the 13–19 years age
group was higher than for the adult group. McCaw
et al. [22] indicated that for all encounters, the contact
number varied for each age group, ranging between 1
d−1 (70–79 years age group) and 22 d−1 (40–49 age
group). In addition, Mikolajczyk et al. [23] conducted
a questionnaire in a primary school in Germany and
indicated that the mean number of contacts was
25·1 ± 16·5 d−1 (min–max: 0–78) for children and
7·5 ± 5·0 d−1 (min–max: 1–47) for adults. Therefore,
the afore-mentioned results implicate that influenza
control strategies should focus on school children
within the same age group.

(a)

(b)

Fig. 3. (a) Fitted time-dependent viral titres and (b) symptom scores including systemic, upper respiratory, lower respiratory
and total symptom scores which were adopted from Cowling et al. [15].

Table 2. Fitted exponential equation parameters for
viral shedding dynamics and relationship of viral
shedding and symptom scores

k1
(mean ± S.E.)

k2
(mean ± S.E.) r2

Viral shedding dynamics*
4·41 ± 0·69 0·31 ± 0·10 0·80

Viral shedding – symptom scores†
Systemic 0·01 ± 0·01 7·10 ± 1·74 0·93
Upper respiratory 0·45 ± 0·07 0·62 ± 0·34 0·54
Lower respiratory 0·73 ± 0·02 0·02 ± 0·07 0·03
Total 1·34 ± 0·12 0·61 ± 0·19 0·77

* Exponential function: V(t) = k1exp[−k2t].
†Exponential function: SS(V) = k1exp[k2log(V)].
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Contact behaviour response influenced by
self-awareness of symptoms

Human social contact and disease-associated beha-
vioural change play an important role in the spread
of diseases, and understanding them can help to re-
inforce the necessity of other control strategy efforts.
Funk et al. [7] indicated that disease states of indivi-
duals can change contact behaviour, and this could
potentially modify model parameters and contact fre-
quency. This conclusion led us to employ an adjusted
contact ratio parameter for the infected population in
the present study.

Indeed, contact rates may also be reduced by symp-
tomology. Hayden et al. [24] and Fritz et al. [25]
found that the time-course of TSS exhibited similar

trends to virus dynamics after experimental influenza
infection, Handel et al. [14] elaborated that exponen-
tial functions were capable of describing the relation-
ship between viral titre and TSS. In light of this, we
introduced exponential functions into our model,
which best fit the relationship between viral titre and
TSS and systemic symptom scores. A point of concern
was that model reliability may be affected negatively
by uncertainty surrounding the adjusted contact
ratio. However, Handel et al. showed that normalized
contact rate could be compared against symptom
strength to reveal the reduction in contact.

Based on this conclusion, we decided to investigate
the relationship between viral titre, TSS, and normal-
ized contact rate. We were able to reduce the

(a)

(b)

(c)

Fig. 4. Best-fitted models describing the dose–response relationship between symptom scores and viral shedding for (a)
systematic and (b) total symptom scores, respectively. (c) A response surface describing the relationship between viral
titres, total symptom scores, and normalized contact rates.
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uncertainty of adjusted fractions by using virus dy-
namics-associated normalized contact rates. We used
the AUC ratio to calculate the probability distribution
of adjusted fractions during the infectious period. The
adjusted fractions indicated that the infected popu-
lation decreases by about 50%, paralleling diminished
contact frequency with other people. This supports the
notion that our study can effectively link behavioural
dynamics to emerging epidemiological models.

Funk et al. [7] indicated that behavioural change
could be associated with infectious disease dynamics.
It can exert effects on (i) the disease state of the indi-
vidual, (ii) the parameters of transmission rate and
recovery rate, and (iii) the contact structure and fre-
quency as they pertain to the spread of a disease. In
our study, the adjusted fractions further affected the
transmission rate and influenced the population dy-
namics. When the adjusted fractions were not taken

Fig. 5. Time-dependent normalized contact rate with 95% confidence intervals from days 0 to 5 since illness onset.

Table 3. Summary of estimated parameters with influenza infection-associated contact behavioural change for
pandemic H1N1 2009

Behavioural change, mean (95% CI)

Estimated parameters Unadjusted Adjusted

Recovery rate, ν (d−1)* 0·199 (0·159–0·269)
Transmission probability, q† 0·056 (0·036–0·076)
AUC for normalized contact rate dynamic 5‡ 2·597 (2·277–3·297)
Adjusted fractions for infected population, p 1 0·519 (0·455–0·659)
Dominant transmission rate, βM (d−1)§

Weekday 0·697 (0·486–0·909) 0·389 (0·261–0·534)
Weekend 0·465 (0·324–0·606) 0·259 (0·168–0·355)

Basic reproduction number, R0¶
Weekday 3·327 (2·146–4·856) 1·854 (1·146–2·781)
Weekend 2·217 (1·416–3·231) 0·860 (0·617–1·174)

CI, Confidence interval; AUC, area under the curve.
* Estimated based on reported mean duration of viral shedding from Bhattarai et al. [36] for pandemic influenza: 5·02 d (95%
CI 3·73–6·29).
†Adopted from Nichol et al. [15].
‡Calculated whole rectangular area in Figure 5.
§ βM= calculated maximum eigenvalue from transmission rate matrix.
¶R0 = βM/ν.
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into account, the disease spread rapidly. Indeed, under
the worst cases, the mean R0 was estimated as high
as 3 for an infected population without behaviour
change. Yet the inclusion of behaviour change inter-
vention in our model allowed the infected individual
to decrease the spread of disease. It should be noted
that contact behaviour change of an infected popu-
lation was unable to completely negate disease trans-
mission on weekdays due to the distribution of R0

being >1.
It is important to mention Brauer’s [26] suggestion

that a susceptible population may decrease their con-
tact frequency with an infected group. The major rea-
son for this is assumed to be fear of disease infection
[6]. We only quantify the contact behaviour change

for the infected population in our study due to existing
difficulties in accurately modelling the behaviour
change for the susceptible population; however, we in-
tend to focus on constructing a complete framework
to quantify the contact behaviour and structure during
the period of emerging infectious disease in future
studies.

Implications for control strategy

In consideration of contact behaviour change in the
infected population, we can also determine the disease
control efficacy for class suspension strategy by com-
paring the R0 in weekdays and the weekend. We
found that R0 < 1 in the weekend, implying that
school closures or class suspensions are probably an
effective social distancing policy to control the trans-
mission of pandemic influenza [8, 27]. School closure
is also the best control strategy among non-
pharmaceutical interventions, since this can reduce
the contact frequency and disease spread among
school children [28–30].

In Taiwan, the so-called ‘3–2–5 intervention policy’
for class suspension was implemented to control disease
transmission among all students aged <18 years during
the A(H1N1)pdm09 pandemic period [31]. It stipulated
that if three students in the same class were confirmed
A(H1N1)pdm09 within 2 days, the class should be sus-
pended for 5 days. Since the school-based vaccination
programme started on 16 November 2009, and a
74·7% coverage rate for A(H1N1)pdm09 vaccination
in students aged 7–18 years in Taipei City, the rule
for class suspension has been expanded from 3–2–5
alone to include the ‘8–14 intervention policy’. This
removes the obligation for class suspension if >80%
of the students in a class have been vaccinated for
more than 14 days. Along with the school-based immu-
nization programme, the 3–2–5 intervention policy
combined with the 8–14 policy was able to mitigate
and suppress the rapid spread of the disease.

Although some benefits can be expected from the
above-mentioned policies, there are still problems
with respect to the best time that policies should be
enforced or the plausible economic impacts of such
decisions [32]. Borse et al. [33] indicated that school
closure could cause different levels of economic im-
pact on households in New York City. Furthermore,
class suspensions or school closures alone may not in-
hibit the pandemic completely, and may need to be
combined with other public health strategies to
make disease control more efficient [34, 35]. Due to

(a)

(c)

(e)

(b)

(d)

(f)

Fig. 6. Population dynamics modelling of influenza trans-
mission in school children with adjusted (a, c, e) and un-
adjusted (b, d, f) behaviour change for susceptible, infected,
and recovered individuals, respectively.
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a lack of recommendations regarding a class suspen-
sion threshold during the influenza epidemic, we
could estimate a potential closure threshold by con-
sidering influenza characteristics. We can also model
control efficiency of class suspension in conjunction
with other public health interventions, and consider
additional parameters such as the proportion of infec-
tious individuals in class.

In conclusion, our study provides a better understand-
ing for knowing how contact behaviour change can af-
fect disease transmission dynamics in school children.
In previous research, we conducted a questionnaire sur-
vey in order to quantify the daily contact numbers of
various groups of school children. In this study, we
furthered our knowledge of contact numbers and behav-
iour by successfully applying the questionnaire-derived
transmission rate matrix to simulate contact behaviour
changes during an influenza epidemic. Such a linkage
facilitates the incorporationof human contact behaviour
to mathematical transmission models for respiratory-
spread infectious diseases that transmit from person to
person via the environment.
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