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Abstract Dengue is a major international public health

concern and one of the most important vector-borne dis-

eases. The purpose of this article is to investigate the

association among temperature, rainfall, relative humidity,

and dengue fever by incorporating the lag effect and

examining the dominant interannual model of the modern

climate, the El Niño Southern Oscillation (ENSO), in the

southern region of Taiwan. We built a linear Poisson

regression model by including linear time treads and sta-

tistical indicators, verified with disease data in the

2004–2013 period. Here we showed that regional climatic

factors in association with the interannual climate vari-

ability expressed by the ENSO phenomenon had a signif-

icant influence on the dynamics of urban dengue fever in

southern Taiwan. The 2–4-month lag of statistical indica-

tors of regional climate factors together with the 4-month

lagged Pacific surface temperature (SST) anomaly in the

proposed Poisson regression model could capture the

regional dengue incidence patterns well. The statistical

indicators of mean and coefficient of variation of

temperature showed the greatest impact on the dengue

incidence rate. We also found that the dengue incidence

rate increased significantly with the lag effect of the war-

mer SST. The ability to forecast regional dengue incidence

in southern Taiwan could permit pretreatment of mosquito

habitats adjacent to human habitations with highly effec-

tive insecticides that would be released at the time of the

high-temperature season.

Keywords Dengue � Mosquito � Climate variability �
Interannual variation � Statistical indicator � Vector-borne

diseases

1 Introduction

Recently, Bhatt et al. (2013) estimated that there were

nearly 390 million (95 % credible interval 284–528) den-

gue infections annually in 2010 considering that up to 96

million (67–136) manifest apparently with any level of

clinical or subclinical severity. On the other hand, Asia

bore 67 (47–94) million apparent infections (*70 %) of

this burden (Bhatt et al. 2013). The high prevalence, lack of

a registered vaccine or other prophylactic measures, and

absence of specific treatment make dengue fever a grave

public health threat globally (Mackenzie et al. 2004; Kyle

and Harris 2008; Phillips 2008). The viruses and their

predominant mosquito vector, Aedes aegypti (yellow fever

mosquito), are endemic to most of the tropical and sub-

tropical regions of the world (Gubler 1998).

Southern Taiwan is located in the tropical region with

relatively high temperature and relative humidity (RH)

year round, ideal conditions for the growth of the vector of

dengue fever, the mosquito. Historical epidemics of dengue

in Taiwan were documented in Penghu Islet in 1902, 1915,
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and 1922; in the southern regions of Taiwan in 1922, 1927,

and 1931; and in island-wide Taiwan during 1942–1943

(Chen et al. 1987; King et al. 2000), whereas dengue

hemorrhagic fever cases have been taken into account since

1994 (Lei et al. 2002). The most well-known dengue out-

breaks in Taiwan have varied since 1987 in that the prev-

alence has been higher in southern Taiwan with A. aegypti

primarily distributed between southern Putai and northern

Hengchun (Lei et al. 2002). In general, dengue epidemics

have occurred in Taiwan annually for the past decade, and

the largest epidemic occurred in southern Taiwan in 2002

with 52 imported and 5,336 indigenous cases that peaked

around September–December (Centers for Disease Control

of Taiwan 2002).

There have been some suggestions of a strong link

between dengue and climate change (Patz et al. 2005;

McMichael et al. 2006). It is also widely accepted that the

distribution and dynamics of vector-borne dengue infec-

tions are particularly sensitive to climatic conditions, by

virtue of the sensitivity of the A. aegypti vectors them-

selves to variations in temperature, RH, rainfall, vapor

pressure, evaporation, and quantities and qualities of the

standing water used as breeding sites (Hales et al. 2002;

Promprou et al. 2005; Chowell and Sanchez 2006; Wu

et al. 2007; Halstead 2008; Su 2008; Thammapalo et al.

2008; Johansson et al. 2009; Yu et al. 2011; Bhatt et al.

2013). Focks and Barrera (2007) indicated that a 2 �C

increase in temperature would simultaneously lengthen the

lifespan of the mosquito and shorten the extrinsic incuba-

tion period of the dengue virus, resulting in more infected

mosquitoes for a longer period of time. Wu et al. (2007)

indicated that the weather variability such as monthly

maximum and minimum temperature, rainfall, and RH was

a meaningful and significant indicator for the increasing

occurrence of dengue fever in the Taiwan region.

Halstead (2008) and Johansson et al. (2009) indicated

that the epidemic behavior of dengue viruses was also

likely closely correlated with fluctuations in the tempera-

ture and rainfall. Chen et al. (2010) suggested that warmer

temperature with a 3-month lag and elevated humidity with

high mosquito density increased the transmission rate of

human dengue fever infection in southern Taiwan. Lamb-

rechts et al. (2011) revealed that short-term temperature

fluctuations had a significant impact on dengue virus

transmission by A. aegypti females.

Recent studies also suggested that the El Niño Southern

Oscillation (ENSO), a major source of interannual climate

variability, drives the interannual variation of dengue

incidence (Hales et al. 1996, 1999; Gagnon et al. 2001;

Kovats et al. 2003; Cazelles et al. 2005; Brunkard et al.

2008; Tipayamongkholgul et al. 2009; Hu et al. 2010;

Earnest et al. 2012). The Southern Oscillation Index (SOI)

is the most commonly used index for the ENSO

phenomena. This index compares the normalized atmo-

spheric pressure difference between Darwin in Australia

and Tahiti in the Southern Pacific, and it is expressed as a

standardized deviation from the norm. Strong negative

anomalies are associated with the El Niño event. During

ENSO events, there are significant changes in the amount

and intensity of rainfall in the tropics, especially over

Southeast Asia and northern South America (Dai and

Wigley 2000). In southern Taiwan, the correlations

between local dengue fever and the ENSO have been

demonstrated through time series analysis (Lai 2011; Yu

et al. 2011).

Recent studies addressing the risk of critical transitions

in complex dynamic systems, ranging from climate to

ecosystems, revealed that statistical indicators can be used

as early warning signals to capture the predictability and

detectability (Carpenter and Brock 2006; Livina and Len-

ton 2007; Dakos et al. 2008; Guttal and Jayaprakash 2008;

Biggs et al. 2009; Scheffer et al. 2009; Takimoto 2009;

Dakos et al. 2010; Drake and Griffen 2010; Lenton 2011).

The leading indicators representing generic early warning

signals in the climate system and ecosystem processes

include the coefficient of variation (Martinerie et al. 1998;

Carpenter and Brock 2006; Guttal and Jayaprakash 2008),

skewness (Guttal and Jayaprakash 2008; Takimoto 2009),

autocorrelation (Dakos et al. 2008; Takimoto 2009), spatial

correlation (Dakos et al. 2010), and a composite index

comprising all previous statistical signatures (Drake and

Griffen 2010).

The coefficient of variation is a measurement of dis-

persion for a set of samples that can reflect the system

stability and vulnerability in a dynamic process (Carpenter

and Brock 2006). Skewness is a measurement of asym-

metry that can also be seen as an indicator for judging the

resilience of a dynamic system (Guttal and Jayaprakash

2008). Kurtosis is a measurement of peakedness and has

similar properties as skewness (Joanes and Gill 1998). In

cross-correlation of a signal, autocorrelation can reflect the

self-similarity in a data set, and the spatial correlation can

receive a signal gain for two time-dependent state variables

(Dakos et al. 2008, 2010).

Although it has been suggested that weather conditions

are correlated with dengue infections, the consistency in

respect to their interactions (e.g., positive or negative

relation) has not been demonstrated. Additionally, a tradi-

tional epidemiology study is not well suited for capturing

and understanding variance or extreme events. Until

recently, it was still difficult to identify the relationship

between regional and global climate and dengue fever

outbreaks in any particular epidemic region. The purpose

of this article was to investigate the association between

regional climate variables, including temperature, RH, and

rainfall, and dengue fever by incorporating the lag effect

Stoch Environ Res Risk Assess

123



and examining the dominant interannual model of the

modern climate, the ENSO, based on the data from Ka-

ohsiung in southern Taiwan where the disease was endemic

in the 2004–2013 period. We built a linear generalized

model by including linear time trends and statistical indi-

cators by considering different hypotheses for the roles of

environmental driving variables and the inherent disease

dynamics in producing the interannual variability of den-

gue incidence.

We thought that time-varying climatic conditions were

associated with dengue incidence. The statistical properties

of climatic variables can be seen as the leading indicators

to predict dengue incidence. Therefore, these statistical

properties embedded in time-dependent climate variables

can be further tested. The concept of dengue prediction was

based on previous studies that used a statistical indicator as

an early warning signal for critical transitions. This study

supposed that statistical indicators can be seen as the

leading indicators and can further be used to predict dengue

incidence. Thus, the indicators can be seen as risk warning

signals to predict dengue incidence. Since climatic vari-

ables and ENSO have been confirmed as factors that affect

the dengue epidemic, there may be some impact factors in

these time-varying fluctuations.

2 Methods

2.1 Background

The main focus of dengue fever epidemic activity in Tai-

wan is Kaohsiung. Moreover, the epicenter of the 2002

dengue epidemic was Kaohsiung. Kaohsiung, a typical

tropical city, is situated on the southwestern coast of Tai-

wan (22�480N–23�470N, 120�1760E–121�050E). Moreover,

Kaohsiung is a densely populated region (nearly 2.78

million persons within a total area of 3,000 km2) with very

high suitability for dengue transmission. In Kaohsiung, the

average temperatures (SD) during spring (March to May),

summer (June to August), fall (September to November),

and winter (December to February) were 25.38 (0.12),

28.85 (0.03), 26.64 (0.10), and 20.59 (0.08) �C in the

2005–2010 period, respectively, with the relative humidity

(RH) ranging from 77 to 83 %. The lowest and highest

accumulative rainfall occurred in the winter (0.5 mm) and

summer (2,137 mm) (Taiwan Central Weather Bureau,

http://www.cwb.gov.tw/eng/index.htm).

2.2 Study data

Time-series data of monthly confirmed dengue cases in

Kaohsiung in the 2004–2013 period were obtained from the

Centers for Disease Control of Taiwan (http://www.cdc.

gov.tw/english/index.aspx). This study calculated the den-

gue incidence rate (per 100,000 population) by monthly

confirmed dengue cases, including both inpatients and

outpatients over the year-end resident population numbers

in Kaohsiung. The resident population data were adopted

from Department of Statistics, Ministry of the Interior,

Taiwan (http://www.moi.gov.tw/stat/english/index.asp).

The daily mean meteorological data for temperature,

rainfall, and RH in the 2004–2013 period were adopted

from the observations of eight monitoring stations of the

Taiwan Environmental Protection Agency (http://www.

epa.gov.tw/en/index.aspx). Of the eight monitoring sta-

tions, four are located in Kaohsiung City, including
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Fig. 1 Time series of the sea surface temperature anomaly (SSTA)

indices for a Niño 1 ? 2, b Niño 3, c Niño 3.4, and d Niño 4 and e the

Southern Oscillation Index (SOI) in the 2004–2013 period,

respectively

Stoch Environ Res Risk Assess

123

http://www.cwb.gov.tw/eng/index.htm
http://www.cdc.gov.tw/english/index.aspx
http://www.cdc.gov.tw/english/index.aspx
http://www.moi.gov.tw/stat/english/index.asp
http://www.epa.gov.tw/en/index.aspx
http://www.epa.gov.tw/en/index.aspx


Nanzih, Zuoying, Cianjin, and Siaogang, whereas the

others are in Linyuan, Meinong, Renwu, and Daliao in

Kaohsiung County.

We used the SOI and sea surface temperature anomaly

(SSTA) as proxies for ENSO variability adopted from the

openly available databases of the National Oceanic and

Atmospheric Administration (http://www.cpc.ncep.noaa.

gov/data/indices). We utilized monthly means of four

SSTA indices: (1) Niño 1 ? 2 (90�W–80�W, 10�S–EQ),

(2) Niño 3 (150�W–90�W, 5�S–5�N), (3) Niño 3.4

(170�W–120�W, 5�S–5�N), and (4) Niño 4 (160�E–

150�W, 5�S–5�N) in the 2004–2013 period (Fig. 1). These

indices measure the sea surface temperature (SST) in dif-

ferent locations in the Pacific Ocean, with Niño 1 ? 2

measured furthest east and Niño 4 measured furthest west.

These four indices differ in both the magnitude and timing

of their variations, but are correlated with one another.

2.3 Statistical analyses

In this study, six statistical indicators including the mean,

coefficient of variation (CV), skewness, coefficient of

autocorrelation (CA), coefficient of spatial correlation

(CS), and kurtosis were used. The CV can be calculated as

the ratio of the sample standard deviation (sd) and sample

mean (�x) as: CV = sd/�x. The sample skewness can be

calculated by using the estimator g1 ¼ m3=m
3=2
2 where m2

is the sample variance sd2 and m3 is the sample third

central moment. The CA corresponding to each sampling

date can be calculated as the Pearson correlation coefficient

(r) between the meteorological data at subsequent sampling

times t and t ? Dt over all samples. Here we calculated the

CA at 1 month lag. On the other hand, this study used CS to

examine the spatial correlation of the meteorological data

between Kaohsiung City and County. The CS of each

month can be calculated by Spearman’s rank correlation

coefficient between meteorological data at two areas.

Kurtosis describes the shape in a random variable proba-

bility distribution that can be calculated as m4/sd4 where m4

is the sample fourth central moment.

Spearman’s rank correlation tests were performed to

examine the correlation between climate variables and

dengue incidence rate and further to investigate the lagged

effects with a lag of 0–4 months of leading indicators for

meteorological and ENSO data in Kaohsiung in the

2004–2012 period.

Given the evidence for the roles of seasonality, meteo-

rological factors characterized by statistical indicators, and

the ENSO, we used a Poisson regression model to assess the

characteristics of the dengue fever epidemic in Kaohsiung

in the 2004–2012 period. The model was fitted to the data to

estimate dengue fever trends and can be written as:

YðtÞ ¼ exp b0 þ b1t þ b2t2 þ b3 sin
2pt

12

� ��

þb4 cos
2pt

12

� �
þ b5LTemp;t�n þ b6LRain;t�n

þb7LRH;t�n þ b8SOIt�n þ b9SSTAt�n

�
; ð1Þ

where Y(t) represents the expected dengue incidence rate

at time t, b0 stands for the intercept, b1 and b2 stand for

the coefficients for the linear and quadratic time trend, b3

and b4 stand for the coefficients for seasonality, b5

through b7 represent the coefficients for statistical indi-

cators of temperature (�C), rainfall (mm), and RH (%),

respectively, and b8 and b9 represent the coefficients for

SOI and SSTA. The term in the subscript represents the

n-month lag time.

Equation (1) is one simple expression of generalized

linear models that do not require prior knowledge of the

shape of the response function. To ensure robustness, the

model was tested by validating dynamic dengue incidence

time series in 2013 based on data of dengue incidences,

meteorological factors, and the ENSO in the 2004–2012

period.

Statistica� software (version 6.0, StatSoft, Tulsa, OK,

USA) was used to perform Spearman’s rank correlation tests

and other related statistical analyses. The Poisson regression

model was used in the open-source language R (version

2.11.1, The R Foundation for Statistical Computing, Vienna,

Austria). The Akaike information criterion (AIC) was also

used to assess model fit and can be expressed as

n 9 ln(residual sum of squares/n) ? 2 k where n is the

number of observations and k is the number of parameters.

3 Results

3.1 Time series of dengue fever and statistical

indicators of climate

Figure 2a shows the time series of the dengue fever inci-

dence rate, mean temperature, rainfall, and RH in the

2004–2013 period. The mean and maximum monthly

dengue incidence rates were 2.27 and 21.67 per 100,000

population in Kaohsiung in the 2004–2013 period. On the

other hand, the mean monthly temperature was 25.31 �C

with the highest temperature being 31.01 �C in July and

lowest temperature being 15.98 �C in January, whereas the

mean monthly RH was 73.88 % with the highest rainfall

being 1235.18 mm in August. Generally, dengue incidence

rates increased with increasing temperature and rainfall

(Fig. 2a).

Figure 2b–p shows the analysis results of statistical

indicators for CV, skewness, kurtosis, CA, and CS,
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respectively. The results showed that the statistical indi-

cators for the CV of temperature (Fig. 2l) and RH (Fig. 2b)

were all less than 0.1, indicating temperature and RH had a

higher consistency. The CV of temperature is higher in

winter (December–February) and lower in summer (June–

August). This study also found that the CV of temperature

showed seasonality and increased as the temperature

decreased. Rainfall had higher CV values (Fig. 2g), dem-

onstrating that rainfall data had higher dispersion. More-

over, the autocorrelation of rainfall showed a random

distribution (Fig. 2j). Negative and positive correlations

were both found in the CS for all climate variables (Fig. 2f,
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k, p), indicating that a difference in meteorological trends

existed between Kouhsiung City and Kouhsiung County.

3.2 Cross-correlation analysis

The interactions among climate variables, seasonality, and

ENSO in the 2004–2012 period are listed in Table S1. The

result showed that there was no significant collinearity

(q[ 0.8) among all seasonality and statistical indicators of

temperature, rainfall, and RH. However, the SSTA (Niño

3.4) had obvious interactions in SSTA (Niño 3) (q = 0.89)

and SSTA (Niño 4) (q = 0.94).

Table 1 summarizes the correlations between the den-

gue fever incidence rate and statistical indicators of

meteorological data during 2004–2012 by Spearman’s rank

correlation tests, which varied with 0–4-month lag times.

The results indicated that the correlations of mean for

temperature and rainfall had significant 2-, 3-, and 4-month

lag effects (q[ 0.5, P \ 0.001). The CV of temperature

with 3 (q = -0.563, P \ 0.001) and 4 (q = -0.509,

P \ 0.001) month lags showed a significant influence on

dengue incidence, whereas a significant correlation of CV

for rainfall was found in 4-month lag (q = 0.604,

P \ 0.001). The correlations for RH showed that the mean

had 2 (q = 0.525, P \ 0.001) and 3 (q = 0.537,

P \ 0.001) month lag effects. However, the correlations of

skewness, CS, CA, and kurtosis for all climate variables

were less than 0.5. Overall, the statistical indicators of

Table 1 Spearman’s

correlation coefficient (q) for

the relationship between

statistical indicators of climate

variables and dengue incidence

varied with 0–4-month lag times

Boldface indicates that the

leading indicators with q[ 0.5

were selected in the Poisson

regression model

CV coefficient of variation, CS

coefficient of spatial correlation,

CA coefficient of

autocorrelation

* P \ 0.05, ** P \ 0.01, ***

P \ 0.001

Time lag (month) Statistical indicators

Mean, �x CV, v̂t Skewness,ŵt CS, x̂t CA, ŷt Kurtosis, ẑt

Temperature

0 0.031 0.012 0.077 -0.233* 0.028 0.023

1 0.425*** -0.264** 0.050 -0.161 -0.078 0.061

2 0.684*** -0.445*** 0.019 -0.065 -0.235* 0.003

3 0.796*** 20.563*** 0.033 -0.008 -0.198* 0.001

4 0.696*** 20.509*** –0.042 0.011 -0.090 -0.020

Rainfall

0 -0.020 -0.020 0.040 0.048 0.179 0.015

1 0.295** -0.140 0.043 0.101 0.188* 0.029

2 0.589*** -0.278** 0.012 0.174 0.230* 0.073

3 0.678*** -0.289** -0.041 0.190* 0.197* -0.016

4 0.617*** 0.604*** -0.335*** -0.003 -0.023 -0.070

Relative humidity

0 0.199* 0.230* 0.244** 0.097 0.156 0.039

1 0.407*** 0.115 0.330*** -0.018 0.231* -0.162

2 0.525*** 0.054 0.278** -0.029 0.191* -0.344***

3 0.537*** -0.060 0.197* -0.053 0.126 -0.400***

4 0.356*** -0.066 -0.121 0.136 -0.430*** 0.141

Table 2 Spearman’s correlation coefficient (q) for the dengue incidence rate between the Southern Oscillation Index (SOI) and sea surface

temperature anomaly (SSTA) varied with 0–4-month lag times

Time lag

(months)

SOI SSTA

Niño 1 ? 2 (90�W–80�W,

10�S–EQa)b
Niño 3 (150�W–90�W,

5�S–5�N)

Niño 4 (160�E–150�W,

5�S–5�N)

Niño 3.4 (170�W–120�W,

5�S–5�N)

0 0.072 -0.016 0.032 0.042 0.029

1 0.044 0.063 0.152 0.134 0.077

2 -0.085 0.154 0.229* 0.174 0.077

3 -0.133 0.248** 0.274** 0.175 0.045

4 -0.080 0.326*** 0.249** 0.130 -0.002

a Equator
b Geographic coordinate system

* P \ 0.05, ** P \ 0.01, *** P \ 0.001
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mean and CV of regional climate variables were strongly

correlated with dengue epidemics in Kaohsiung.

Spearman’s rank correlation analysis indicated a posi-

tive trend in the 4-month lag of SSTA (Niño 1 ? 2)

(q = 0.326, P \ 0.001) in Kaohsiung in the 2004–2012

period (Table 2). The results also revealed that the dengue

incidence rate is marginally significant together with effect

of ENSO, implying that the dengue incidence rate

increased with effect of the ENSO. Nevertheless, no strong

association existed between the dengue incidence rate and

SOI with 0–4-month lag times (q\ 0.5, P [ 0.05)

(Table 2).

3.3 Poisson regression analysis

Based on the interactions among analysis of the climate

variables, seasonality, and ENSO (Table S1) and the cross-

correlation analysis with time lag (Tables 1, 2), we con-

sidered the climate factors with Spearman’s correlation

coefficient q[ 0.5 for the Poisson regression model to

capture the dengue incidence trends. However, the ENSO

variable with the highest q value was selected in the

Poisson regression model.

Although we found strong collinearity in Niño 3.4

between Niño 3 and Niño 4 (Table S1), the correlations

among dengue incidence rate, Niño 3, Niño 3.4, and Niño 4

were less than 0.5 (Table 2). Thus, a total of 12 statistical

indicators were chosen in the Poisson regression model

(Table 3, Eq. T1) in that five indicators were temperature

including 2-, 3-, and 4-month lags of the mean as well as 3-

and 4-month lags of the CV. The four indicators selected

from rainfall were 2-, 3-, and 4-month lags of the mean and

a 4-month lag of the CV. The other three indicators were

mean RH with 2- and 3-month lags as well as a 4-month

lag of the SSTA (Niño 1 ? 2).

In the Poisson regression model selection procedure, we

used Eq. (T1) as the reference model and deleted the most

insignificant variables one by one based on the P value to

obtain other models. A model with the lowest AIC value

was selected. Table 3 indicates that the Poisson regression

model of Eq. (T4) gave the best model fit as judged by the

AIC. Equation (T4) had the lowest AIC value of 18.9 and

could significantly estimate the dengue incidence trends in

Table 3 Poisson regression models used in this study

Poisson regression modela r2 AIC

YðtÞ ¼ exp

b0 þ b1t þ b2t2 þ b3 sinð2pt=12Þ þ b4 cosð2pt=12Þ
þ b5 �xTemp;t�2 þ b6 �xTemp;t�3 þ b7 �xTemp;t�4 þ b8v̂Temp;t�3

þ b9v̂Temp;t�4 þ b10 �xRain;t�2 þ b11 �xRain;t�3 þ b12 �xRain;t�4

þ b13v̂Rain;t�4 þ b14 �xRH;t�2 þ b15 �xRH;t�3 þ b16SSTA1þ2;t�4

2
66664

3
77775

0.861 24.68 (T1)

YðtÞ ¼ exp

b0 þ b1t þ b2t2 þ b3sinð2pt=12Þ þ b4 �xTemp;t�2

þ b5 �xTemp;t�3 þ b6 �xTemp;t�4 þ b7v̂Temp;t�3 þ b8v̂Temp;t�4

þ b9 �xRain;t�2 þ b10 �xRain;t�3 þ b11 �xRain;t�4 þ b12v̂Rain;t�4

þ b13 �xRH;t�2 þ b14 �xRH;t�3 þ b15SSTA1þ2;t�4

2
66664

3
77775

0.861 21.62 (T2)

YðtÞ ¼ exp

b0 þ b1t þ b2t2 þ b3sinð2pt=12Þ þ b4 �xTemp;t�2

þ b5 �xTemp;t�3 þ b6 �xTemp;t�4 þ b7v̂Temp;t�3

þ b8v̂Temp;t�4 þ b9 �xRain;t�3 þ b10 �xRain;t�4 þ b11v̂Rain;t�4

þ b12 �xRH;t�2 þ b13 �xRH;t�3 þ b14SSTA1þ2;t�4

2
66664

3
77775

0.861 19.75 (T3)

YðtÞ ¼ exp

b0 þ b1t þ b2t2 þ b3sinð2pt=12Þ þ b4 �xTemp;t�2 þ b5 �xTemp;t�3

þ b6 �xTemp;t�4 þ b7v̂Temp;t�3 þ b8v̂Temp;t�4 þ b9 �xRain;t�3

þ b10 �xRain;t�4 þ b11v̂Rain;t�4 þ b12 �xRH;t�3 þ b13SSTA1þ2;t�4

2
64

3
75

0.860 18.90 (T4)

YðtÞ ¼ exp

b0 þ b1t þ b2t2 þ b3sinð2pt=12Þ þ b4 �xTemp;t�2

þ b5 �xTemp;t�3 þ b6 �xTemp;t�4 þ b7v̂Temp;t�4 þ b8 �xRain;t�3

þ b9 �xRain;t�4 þ b10v̂Rain;t�4 þ b11 �xRH;t�3 þ b12SSTA1þ2;t�4

2
64

3
75

0.860 19.36 (T5)

The best fitting model is highlighted in bold

AIC Akaike information criterion
a Y(t) is the expected dengue incidence rate; b0 is the intercept; b1 and b2 are the coefficients for the linear time trend and quadratic time trend; b3

and b4 are the coefficients for seasonality; b5 through b16 represents the fitted coefficients for various statistical indicators; Temp is the

temperature; RH is the relative humidity; SSTA1?2 is the sea surface temperature anomaly (Niño 1 ? 2); �x is the mean; v̂ is the coefficient of

variation; t - 2, t - 3, and t - 4 in the subscript represent the 2-, 3-, and 4-month time-lag, respectively
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Kaohsiung in the 2004–2012 period (r2 = 0.86,

AIC = 18.9). The fitted coefficients of the Poisson

regression model are listed in Table 4. To assess the pre-

diction performance of the present model, the Poisson

regression model (Eq. T4) was tested by validating the

time-series dynamics of dengue incidence in 2013 based on

data from 2004 to 2012. Figure 3 shows that our predic-

tions with 95 % CIs could capture the observed data in

Kaohsiung during 2013.

The individual impact of factors on the dengue inci-

dence rate in Kaohsiung using sensitivity analysis is

illustrated in Fig. 4. In addition to the time trends of t and

t2, we found that the mean temperature with a 2-month lag

(P \ 0.001) and the CV of temperature with a 4-month lag

(P \ 0.001) were the most significant factors for the den-

gue incidence rate in Kaohsiung. Although the SSTA (Niño

1 ? 2) showed a weak association with dengue incidence

(q = 0.326, Table 2), the SSTA (Niño 1 ? 2) was still an

indispensable factor for capturing dengue incidence pat-

terns (Table 3, Eq. T4). We also found that a large and

significant increase in the dengue incidence rate was

strongly associated with the lag effects of warmer SSTA

(Niño 1 ? 2) values occurring respectively in 2008, 2009,

2011, and 2012 (Fig. 3).

4 Discussion

4.1 Dengue fever trends with climate variability

Our study showed that the regional climatic factors of

temperature, rainfall, and RH in association with the

interannual climate variability expressed by the ENSO

phenomenon had a significant influence on the dynamics of

urban dengue fever in southern Taiwan. We revealed that a

2–4-month lag of the mean and CV of regional climatic

factors together with the 4-month lag SSTA (Niño 1 ? 2)

could significantly capture the dengue incidence trends in

Kaohsiung in the 2004–2012 period. We have also shown

that (1) the mean with a 2-month lag and CV with a

4-month lag for temperature were the most significant

factors in relation to dengue fever in Kaohsiung in the

2004–2012 period, (2) 4-month lagged SSTA (Niño 1 ? 2)

was an indispensable factor for capturing dengue incidence

patterns, and (3) the dengue incidence rate increased with

the effect of the ENSO.

Hales et al. (1996) revealed that dengue fever epidemics

were moderately strong positively correlated with the SOI

(q = 0.58, P = 0.002). Gagnon et al. (2001) showed a

strong link between dengue incidence and the ENSO in

French Guiana, Indonesia, Colombia, and Surinam. Ca-

zelles et al. (2005) pointed out a strong association between

the monthly dengue incidence and El Niño 2–3-year peri-

odic mode in Thailand. Brunkard et al. (2008) found that

for the SST increase, every 1 �C (El Niño region 3.4) could

result in a 19.4 % increase in 18-week lagged dengue

incidence in the Texas-Mexico border region.

Tipayamongkholgul et al. (2009) indicated that the

ENSO played an important role in driving dengue epi-

demics across the regions of Thailand. The western Pacific,

Singapore, and Thailand all show positive trends in the

association between dengue fever and El Niño (Tipay-

amongkholgul et al. 2009; Earnest et al. 2012). Earnest

et al. (2012) further found that the weekly mean

Table 4 Fitting coefficients in the Poisson regression model of

Eq. (T4)

Parameter Fitted coefficient

Intercept -23.830 ± 4.036a***

t 0.107 ± 0.018***

t2 -0.001 ± 0.0001***

sin(2pt/12) 1.065 ± 0.383**

�xTemp;t�2 0.549 ± 0.123***

�xTemp;t�3 0.169 ± 0.141

�xTemp;t�4 0.245 ± 0.096*

v̂Temp;t�3 3.976 ± 5.817

v̂Temp;t�4 23.150 ± 6.376***

�xRain;t�3 0.00031 ± 0.00028

�xRain;t�4 0.00032 ± 0.00027

v̂Rain;t�4 -0.390 ± 0.449

�xRH;t�3 -0.078 ± 0.045

SSTA1þ2;t�4 -0.055 ± 0.076

Temp is the temperature; RH is the relative humidity; SSTA1?2 is the

sea surface temperature anomaly (Niño 1 ? 2); �x is the mean; v̂ is the

coefficient of variation; t - 2, t - 3, and t - 4 in subscript represent

the 2-, 3-, and 4-month time lag, respectively
a Mean ± SE

* P \ 0.05, **P \ 0.01, ***P \ 0.001
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Fig. 3 Validated time series of the monthly dengue incidence rate in

2013 by the Poisson regression model based on data in the 2004–2012

period
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temperature and RH together with the SOI were strongly

and independently correlated with dengue incidence.

However, Johansson et al. (2009) found no systematic link

between the multi-annual dengue incidence and ENSO in

Puerto Rico, Mexico, and Thailand.

The effect of El Niño on dengue epidemics is probably

due to a warming effect on the local temperature, which in

turn reinforces the replication of the dengue virus and the

biting rate of the mosquito vector, A. aegypti (Watts et al.

1987; Scott et al. 2000). We indicated that recent dengue

outbreaks occurring in the densely populated urban settings

of southern Taiwan during 2006 and 2009 were strongly

associated with a warmer SSTA (Niño 3). Thus, our study

suggests that an increase in regional temperature mediates

the influence of the ENSO on the dengue incidence rate.

Higher ambient temperature would lead to higher water

temperatures in shallow bodies of water, such as ponds and

rivers, in the estuary of Kaohsiung City.

This suggests that A. aegypti has adapted well to urban

settings in Taiwan, as it has in much of the tropics, sub-

tropics, and temperate regions of the world, after its origin

in sylvan Africa in the absence of human populations

(Christophers 1960). This also implicates that A. aegypti

has adapted to regional climate conditions in southern

Taiwan with the highest temperature of 30.42 �C in July

and mean monthly RH of 73.29 % with the highest rainfall

of 1,229.3 mm in August. Thus, in southern Taiwan the

occurrence of the majority of dengue incidences during

elevated temperature and warmer SSTA (Niño 1 ? 2)

periods strongly suggests that temperature alone was a

major driving factor in urban transmission by A. aegypti. In

addition to the mean temperature, we also found that the

CV of temperature could also be an early warning signal

for dengue outbreaks. The variation in the amplitude of

temperature fluctuations had a significant association with

the strength of dengue transmission and risk of mosquito-

borne disease (Lambrechts et al. 2011). Mosquitoes lived

longer and were more likely to become infected under

moderate temperature fluctuations, which is typical of the

higher dengue virus transmission than under large tem-

perature fluctuations.

However, the rainfall and RH are also important factors

in the spread of dengue fever. Wiwanitkit (2006) revealed

the possible influence of rainfall on the prevalence of

dengue. The influences of changes in rainfall, larval habi-

tat, and vector population may increase during the period

of low rainfall to create a new habitat for vector-borne

pathogens and increase adult survival; nevertheless, excess

rainfall can eliminate the larval habitat by flooding (Gubler

et al. 2001; Chen et al. 2010). Moreover, RH affects the

longevity, mating, dispersal, feeding behavior, and ovipo-

sition of mosquitoes (McMichael et al. 1996; Bi et al.

2007).

4.2 Limitations and implications

Our study only focused on the impact of climate variability

and seasonality on the dynamics of urban dengue fever.

Our study did not consider older patients, secondary den-

gue infection, diabetes, and the mosquito density index

(Figueeiredo et al. 2010; Lin et al. 2010). Dengue inci-

dence in Kaohsiung was found predominantly in those aged

0 0.1 0.2 0.3 0.4 0.5 0.6

Intercept
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sin(2πt /12)
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421 −+ t,SSTA
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4−tTemp,x

3−tTemp,x
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4, −tRHν̂

< 0.001

< 0.001

< 0.001

0.259

0.471

Fig. 4 Sensitivity analysis

showed significant factors (P

value) for the the dengue

incidence rate (symbol meaning:

Temp is the temperature, RH is

the relative humidity, SSTA1?2

is the sea surface temperature

anomaly (Niño 1 ? 2), �x is the

mean, and v̂ is the coefficient

of variation; t - 2, t - 3, and

t - 4 in the subscript represent

the 2-, 3-, and 4-month time lag,

respectively)
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55–64 and older. The average annual incidence rates were

36.3 (21.9) per 100,000 population and 30.6 (21.3) per

100,000 population among those aged 55–64 and

[64 years old, respectively; in the 2005–2010 period,

there was a 1.3–1.6 times higher than average incidence of

22.8 (13.3) at the same time. Our Poisson regression model

did not take into account the dengue virus serotypes and

geographical-environmental and socioeconomic variation

factors in order to assess the dengue fever epidemics in

Taiwan. The Dengue virus serotypes are non-climate-

related factors that could partly influence the increase in

dengue cases (Hii et al. 2012). The major dengue virus

serotypes in Kaohsiung were attributed to serotypes 2

(73.3 %) and 3 (22.7 %) in the 1998–2007 period (Tsai

et al. 2009).

Reiter et al. (2003) indicated that people with high

socioeconomic levels usually use more air conditioning;

this could effectively reduce their contact with vector

mosquitoes, and the low temperature and dry environment

could inhibit their survival and transmission rates. On the

other hand, international travel, such as commercial ships

and air travel, has a potential influence on the distribution

of vectors (Kyle and Harris 2008). Kaohsiung is the largest

international port in Taiwan. Moreover, changes in popu-

lation density, travel, dengue vaccination, and new dengue

virus strains are important factors that lead to the occur-

rence of new dengue epidemics and need to be considered

(Shepard et al. 2004; Wilder-Smith and Gubler 2008;

Earnest et al. 2012). The linkage of dengue, climate

changes, and socio-environmental factors on dengue

transmission should be considered seriously. Future work

will examine the relative importance of the various sero-

types and geographical and socio-environmental factors to

dengue incidence.

This study showed that the predicted dengue incidence

rates were highly coherent with the observed data, indi-

cating the proposed model was capable of forecasting the

disease. We also showed that our model was capable of

predicting the large dengue outbreaks that occurred in the

2005–2012 period, and this capacity had a relevant impli-

cation for public health. Therefore, the predictors in this

study may allow an opportunity to anticipate outbreaks

using model-based forecasts. Therefore, we find that our

lagged Poisson model may make a dengue early warning

system practically operational. Our results also suggest that

more efforts to forecast climate variability are likely to

prove valuable for early warnings for dengue.

Hu et al. (2010) suggested that a SOI-based epidemic

forecasting system could provide a predictive tool for

dengue fever surveillance, prediction, and risk manage-

ment in Queensland, Australia. Our analysis suggests that

the Pacific SST anomalies and 2–4-month lags of statistical

indicators of temperature, rainfall, and RH can capture and

predict regional dengue outbreaks well. Tsai et al. (2012)

also indicated that the mosquito population increased about

7 days after a bout of rain in Taiwan. Therefore, the ability

to forecast regional dengue incidence in southern Taiwan

can permit pretreatment of mosquito habitats adjacent to

human-inhabited areas with highly effective insecticides

that will be released in the high-temperature season.

There are some related activities that may occur in

addition to the environmental variables during these peri-

ods of global and local climate change: (1) increased

temperature and extended seasonality of mosquito activity

could signify an expansion in the range of dengue virus

vectors, (2) climate change could also facilitate the intro-

duction or reintroduction of new vectors and diseases, (3)

mosquito populations may decline during the summer

because of decreased precipitation, increased evaporation,

and immature mortality at high temperatures, (4) mosqui-

toes that rely on more permanent water sources may be less

affected by drying conditions and thereby gain a larger role

as disease vectors, and (5) local area microclimate, sea-

sonality, and surrounding vegetation can also influence

mosquito species composition.

Although these results provide an important new

understanding of the potential effects of climate change

on dengue virus vector ecology, they have some impor-

tant limitations: (1) suitable validation data are not

available, (2) there are a lack of long-term and contin-

uous mosquito surveillance data, (3) mosquito response

to climate variables may change in time and between

places as a result of evolutionary pressures, and (4)

limited test data from mosquito trapping and inaccuracies

in climate change projections are limited. Our model also

does not account for species interactions or for the

effects of human interventions, such as pesticide use,

water storage, or large-scale irrigation. Therefore, it is

difficult, if not impossible, to incorporate above-men-

tioned items into our analysis scheme. However, in

future work, it is necessary to advance validation and

develop location-specific predictions of mosquito popu-

lation dynamics to improve the integration of model

output and mosquito observations.

In conclusion, this study showed that dengue fever

outbreaks in southern Taiwan can be explained by regional

temperature-, rainfall-, RH-, and ENSO-driven changes.

Our Poisson regression model results also demonstrated

that there was a 2–4-month time gap between regional

climate factors and the dengue incidence rate. Thus, we

suggest that there is a need for public health authorities to

take advantage of climate observations and analyses in

times of climate variability on a monthly basis. Our lagged

Poisson model also can alert public health authorities to the

need to introduce mitigation planning at the month of

increasing temperature and decreasing temperature
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variation, including pretreatment of mosquito habitats by a

mixed control strategy of adulticide and larvicide methods

(Burattini et al. 2008), vaccination, and public awareness in

the region to prevent or minimize the emergence and re-

emergence of dengue fever. Moreover, because strong

ENSO events, which have a broad influence, may be pre-

dictable up to 1–2 years in advance (Chen et al. 2004), use

of our findings may improve regional preparedness for

dengue epidemics and other vector-borne disease

transmission.
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