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Abstract The objective of this study was to develop a

novel risk analysis approach to assess ozone exposure as a

risk factor for respiratory health. Based on the human

exposure experiment, the study first constructed the rela-

tionship between lung function decrement and respiratory

symptoms scores (ranged 0–1 corresponding to absent to

severe symptoms). This study used a toxicodynamic model

to estimate different levels of ozone exposure concentra-

tion-associated lung function decrement measured as per-

cent forced expiratory volume in 1 s (%FEV1). The

relationships between 8-h ozone exposure and %FEV1

decrement were also constructed with a concentration–

response model. The recorded time series of environmental

monitoring of ozone concentrations in Taiwan were used to

analyze the statistical indicators which may have predict-

ability in ozone-induced airway function disorders. A sta-

tistical indicator-based probabilistic risk assessment

framework was used to predict and assess the ozone-

associated respiratory symptoms scores. The results

showed that ozone-associated lung function decrement can

be detected by using information from statistical indicators.

The coefficient of variation and skewness were the com-

mon indicators which were highly correlated with %FEV1

decrement in the next 7 days. The model predictability can

be further improved by a composite statistical indicator.

There was a 50 % risk probability that mean and maximum

respiratory symptoms scores would fall within the

moderate region, 0.33–0.67, with estimates of 0.36 (95 %

confidence interval 0.27–0.45) and 0.50 (0.41–0.59),

respectively. We conclude that statistical indicators related

to variability and skewness can provide a powerful tool for

detecting ozone-induced health effects from empirical data

in specific populations.
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1 Introduction

Ozone is among the most toxic oxidant air pollutants

(Mudway and Kelly 2000). In the past decade, reported

ozone-associated adverse health effects included airway

inflammation and hyper-reactivity, exacerbations of bron-

chial asthma, and chronic obstructive pulmonary disease

(COPD) (Mudway and Kelly 2000; Neuhaus-Steinmetz et al.

2000; McConnell et al. 2002; Backus et al. 2010). Certain

individuals are particularly susceptible to this oxidant due to

the fact that ozone may stimulate the release of endogenous

mediators for airway inflammation. The inflammation fur-

ther causes recurrent episodes of airflow obstruction-induced

lung function changes. The vulnerable populations therefore

experience the respiratory symptoms such as wheezing,

breathlessness, chest tightness, and cough. Furthermore,

biological plausibility for acute and chronic ozone effects on

respiratory morbidity and mortality were evidenced by tox-

icological and human exposure studies, indicating that ozone

affects airway inflammation, pulmonary function, asthma

induction and exacerbation, and reduction of heart rate var-

iability (Park et al. 2005; National Research Council 2008;

Jerrett et al. 2009; Anenberg et al. 2010; Tank et al. 2011).
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Thus, an assessment of lung function decrement with regard

to ozone exposure is essential for protection of the health of

the public.

Mudway and Kelly (2000) indicated that even inhaling

lightly elevated ozone concentrations could result in a range

of respiratory symptoms including decreased lung function

and increased airway hyper-reactivity in 10–20 % of the

healthy population. McConnell et al. (2002) reported a

significant increase in the incidence of new asthma diag-

noses in association with heavy exercise in communities

with high levels of ambient ozone. Jerrett et al. (2009)

indicated that an increase in ozone concentration was highly

likely to pose the risk of death from respiratory causes.

Ozone-associated lung inflammation can be character-

ized by polymorphonuclear leukocyte infiltration (Mudway

and Kelly 2000). Ozone exposure also contributes to lung

injury that may directly or indirectly affect adaptive

immune responses such as T cell proliferation and response

to allergen (Jakab et al. 1995; Inoue et al. 2000; Kleeberger

et al. 2001; Depuydt et al. 2002; Fakhrzadeh et al. 2002;

Tank et al. 2011). Lung diseases, such as asthma and

COPD, have a tremendous impact on health and quality of

life worldwide. For example, COPD, the fourth-leading

cause of death in the United States, is the only major cause

of death for which the age-adjusted death rate has increased

in recent years (National Research Council 2008).

Despite the growing need to address the global impact of

ozone-associated pulmonary diseases, it remains chal-

lenging to obtain the predictability of lung function dec-

rement in a manner suitable for routine monitoring in

humans. Dynamic modeling has played a key role in esti-

mating ozone-associated lung function decrement (Freijer

et al. 2002; McDonnell et al. 2010). These models all set

out to assess the impact of different levels of ozone

exposure on cellular damage-associated airway function

effect induced by simulations with parameter values esti-

mated from various data sources.

Recent studies addressing the risk of critical transitions

in complex dynamic systems, ranging from medicine to

climate and ecosystems, revealed that statistical indicators

can be used as the early warning signals to capture pre-

dictability and detectability (Frey et al. 2005; Venegas

et al. 2005 Carpenter and Brock 2006; Dakos et al. 2008;

Guttal and Jayaprakash 2008; Biggs et al. 2009; Scheffer

et al. 2009; Dakos et al. 2010; Drake and Griffen 2010). In

an asthma study, Venegas et al. (2005) used the coefficient

of variation as an indicator to assess the spatial heteroge-

neity of ventilation in the lung for understanding the lung

function change during an acute asthma attack. Moreover,

the coefficient of variation and skewness in lung function

measurements have been used to assess the risk of future

asthma episodes to improve the assessment and manage-

ment of asthma severity (Frey et al. 2005). In the case of

ecosystems, Drake and Griffen (2010) have shown that

early warning signals of extinction risk in deteriorating

environments can be detected by a composite indicator

comprising the coefficient of variation, skewness, auto-

correlation, and spatial correlation.

Taken together, these statistical indicators including the

coefficient of variation (Frey et al. 2005; Carpenter and

Brock 2006; Guttal and Jayaprakash 2008), skewness (Frey

et al. 2005; Guttal and Jayaprakash 2008), autocorrelation

(Dakos et al. 2008), and spatial correlation (Dakos et al.

2010, Drake and Griffen 2010) provide a powerful tool for

detecting potential changes in systems from available

measurements ranging from physiological and ecological

systems to climate processes. Due to the nonlinear feature

of ozone dynamics in the ambient environment, previous

studies have used stochastic methods to predict ozone

variations (Kim and Kumar 2005; Moral et al. 2014).

However, those studies have not investigated whether the

statistical properties embedded in ozone variation could be

associated with lung function effects.

The purpose of this study was twofold: (1) to construct a

dynamic model-based exposure–response profile describ-

ing the relationships between ozone exposure and lung

function decrement from respiratory causes and (2) to

develop a statistical indicator-based probabilistic risk

assessment framework to detect and assess the ozone-

associated lung function decrement. Our study provides a

modeling approach that allows assessment of ozone-asso-

ciated lung function decrement given that some informa-

tion is available on the pulmonary ozone toxicity in

susceptible individuals. From the prospects of health sur-

veillance of chronic respiratory diseases, we hope that the

proposed statistical indicator-based risk assessment scheme

would enable the early identification of adverse health

effects in specific populations.

2 Materials and methods

This study first collected and analyzed the human exposure

experimental data. To estimate different levels of ozone

exposure concentration-induced lung function decrement,

the toxicodynamic model was refabricated. The concen-

tration–response relationship between ozone exposure

concentration and lung function decrement was further

constructed by an empirical model. Moreover, the recorded

time series of environmental ozone concentrations in Tai-

wan were transformed into statistical indicators to examine

the predictability of ozone variability-associated airway

function disorders. Finally, the statistical indicator-based

probabilistic risk assessment framework was used to pre-

dict and assess the ozone exposure risk in percent forced

expiratory volume in 1 s (%FEV1) decrement.
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2.1 Study data

To investigate the lung function decrement caused by

ozone exposure, Schelegle et al. (2009) designed an inha-

lation experiment to observe the variations in FEV1 during

a 6.6-h ozone exposure. The valuable dataset obtained from

the exposure experiment allowed us to examine the asso-

ciation between ozone exposure and health effects.

Briefly, 31 healthy adults (16 females and 15 males)

aged 18–25 years were volunteered to challenge with the

tolerable ozone in the stainless steel chamber. The expo-

sure patterns included filtered air and four different ozone

concentrations averaging 60, 70, 80, and 87 ppb. Each

exposure pattern performed by each subject was conducted

with a mean equivalent ventilation rate of 38.7 L min-1.

The recorded FEV1 changing times were set on 1-, 2-, 3-,

4.6-, 5.6-, and 6.6-h post exposure, respectively, according

to the original experimental design. During the study per-

iod, the subjects reported respiratory symptoms including

throat tickle, cough, shortness of breath, and pain on deep

inspiration. These symptoms were ranked based on the

severity scale ranging from 0 to 40, representing absence to

presence of severe respiratory symptoms. This study fur-

ther normalized the score values to the range of 0–1 where

ranges 0–0.33, 0.33–0.67, and 0.67–1 represent mild,

moderate, and severe respiratory symptoms, respectively.

2.2 Time-series of ozone variability

The time-series dynamics of ozone data in Taiwan were

adopted from the Taiwan Air Quality Monitoring Network

for the period 2005–2009 (http://taqm.epa.gov.tw/taqm/en/

default.aspx). We chose two traffic stations (Fushin and

Fongshan) located at Kaohsiung City, the regions with the

worst air quality in south Taiwan (Chen et al. 2003). The

hourly monitoring data described clearly the distribution of

ozone time-series dynamics. Compared with other cities,

ozone concentrations in Kaohsiung City had higher fre-

quency to exceed the air quality standard and was likely to

harm the respiratory health of humans. The air quality

guideline was assessed based on an 8-h peak daily expo-

sure advised by World Health Organization (WHO) and

U.S. Environmental Protection Agency (USEPA) (World

Health Organization 2006; Weinhold 2008). Thus, we

evaluated the exposure conditions by the daily readings

generated from the 8-h peak ozone distributions.

2.3 Toxicodynamic modeling

A toxicologically based dynamic model developed by

Freijer et al. (2002) was used to estimate ozone-associated

lung function decrement and cellular injury/repair in lung

surface. Here we used the toxicodynamic model (Freijer

et al. 2002) incorporating the published human exposure

data (Schelegle et al. 2009) to predict the ozone-associated

exacerbations of lung function decrement. Thus our model

is a direct generalization of the toxicodynamic model in

Freijer et al. (2002).

We formulated the model as a system of ordinary dif-

ferential equations as

dCA

dt
¼ pA � ðpA þ sA þ _DÞCA; ð1Þ

dCB

dt
¼ pBð1� CAðt � sÞÞ � pBCB; ð2Þ

dF

dt
¼ að1� CA � CBÞ _D� kFF; ð3Þ

where CA and CB are the cover ratio of the naive (type A)

and oxidant-protective (type B) cells in the lung surface,

respectively, F is the percent decrease in FEV1 comparing

with ozone non-exposure scenario, pA and pB are the nat-

ural turnover rate for naive and oxidants protective cells

(h-1), respectively, _D is the ozone dose rate (mg h-1), s is

the oxidants protective cells production delay time (h), a is

the sensitization rate (mg-1), and kF is the desensitization

rate (h-1). The ozone dose rate ( _D) can be obtained by

multiplying ozone concentration (mg m-3), inhalation rate

(m3 h-1), and ozone reactive fraction of lung tissue (Ger-

rity and McDonnell 1989).

Due to the delay time in the production of type B cells,

the present ozone exposure-based toxicodynamic model

(Eq. 3) can be rewritten as follows under the short-term

exposure scenario based on the human exposure experi-

mental data,

dF

dt
¼ að1� CAÞ _D� kFF; ð4Þ

and the analytical solution of F is given by

FðtÞ

¼ ae�ðaþbÞð�1þbÞð�ekFtkFþ eðkFþbÞtkþ ebtb� eðkFþbÞtbÞ
abða�bÞ ;

ð5Þ

where b is equal to pA þ sA
_D. Furthermore, the calculated

ozone dose rates were set in different levels in the study

period.

2.4 Statistical indicators

Drake and Griffen (2010) constructed a reliable research

framework to predict and even forecast the ozone-associ-

ated exacerbations of lung function decrement. The prin-

ciple of the research algorithm in this study was to integrate

statistical indicators to improve predictability of the future

events by historical time-series datasets. There are five
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statistical indicators including standard deviation (SD),

coefficient of variation (CV), skewness, coefficient of

autocorrelation (CA), and coefficient of spatial correlation

(CS).

The SD can be calculated as the sample standard

deviation,

SD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n� 1

X

n

i¼1

ðxi � �xÞ2
s

; ð6Þ

where n is sample size and �x is sample mean. The CV can

be calculated as the ratio of the sample standard deviation

and sample mean as CV = SD/�x.

The sample skewness can be calculated by using the

estimator g1,

g1 ¼
m3

m
3=2
2

; ð7Þ

where m2 is the sample variance SD2 and m3 is the sample

third central moment as,

m3 ¼
1

n

X

n

i¼1

ðxi � �xÞ3: ð8Þ

The CA corresponding to each sampling date can be cal-

culated through the Pearson correlation coefficient

(r) between the ozone concentrations at present and sub-

sequent sampling times t and t ? Dt over all samples as,

r ¼
Pn

i¼2 ðxi � �xÞðxi�1 � �xÞ
Pn

i¼1 ðxi � �xÞ2
: ð9Þ

Here we calculated the CA with 1 day lag. On the other

hand, CS at each sampling date can be calculated by

Spearman’s rank correlation coefficient between two

monitoring stations in the same time.

2.5 Composite standardized indices

Given absence of appropriate control group, a composite

statistical indicator was used to provide an earlier and more

accurate detection of the events (Drake and Griffen 2010).

Since appropriate control groups are not typically available

in the real world, Drake and Griffen (2010) introduced a

method by rescaling each indicator on each sampling date

by subtracting the running average from the start of the

series and dividing by the running SD. Thus, this com-

posite indicator (S) required no information about a control

group and can be calculated as the sum of the standardized

deviations of each statistical indicator from its long-run

average.

Taking CV as an example, the standardized difference at

time t can be written as

ŵt ¼
wt � 1

n

Pt
k¼1 wk

sdðwjÞ
; ð10Þ

where j is the pooled time calculated over all sampling

time (j 2 1,2,3, …,t) and sdðwjÞ is the pooled SD in the

progressive duration.

We then integrated these five distinct standardized

indicators and determined the major related factors which

can forecast the future ozone-associated events of lung

function exacerbations as,

S ¼ v̂t þ ŵt þ x̂t þ ŷt þ ẑt; ð11Þ

where v̂t, ŵt, x̂t, ŷt, and ẑt represent the standardized SD,

CV, CA, skewness, and CS, respectively. In this study, we

calculated the monthly ozone monitoring data to forecast

upcoming events. The composite indicator S can be used to

predict the possible health effect in the next days. Here we

used Pearson correlation analysis to determine the most

correlated composite indicators.

2.6 Probabilistic risk model

We incorporated concentration–response analysis and sta-

tistical indicators to assess the risk for ozone-associated

respiratory symptoms. To construct the concentration–

response relationship, the 4-parameter nonlinear model was

used to fit the study data (Hill 1910),

RðxÞ ¼ Rmin þ
Rmax � Rmin

1þ E50
x

� �nH
; ð12Þ

where R(x) is the lung function response caused by a

specific ozone concentration x, Rmin and Rmax, are the

minimum and maximum responses, respectively, and E50

is the effective ozone concentration x causing 50 % of the

maximum response, and nH is the fitted Hill coefficient.

Risk characterization is the phase of risk assessment

where the results of the ozone-associated lung function

decrement and quantitative effect assessments are inte-

grated to provide an estimate of risk. Applying the Hill-

based dose–response model in Eq. (12), the cumulative

distribution function (cdf) of the predicted normalized

symptoms scores (SS) for a given %FEV1 decrement can

be expressed as the conditional cdf as P(SS|FEV1).

Thus, followed by the Bayesian inference, the exacer-

bations risk of respiratory symptoms (the posterior proba-

bility) can be calculated as the product of P(FEV1) (the

prior probability) and the conditional probability of

P(SS|FEV1) (the likelihood). It results in a joint probability

function or an exceedence profile, which describes the

probability of exceeding particular symptoms scores asso-

ciated with lung function decrement. This can be expressed

mathematically as a probabilistic risk model,

Stoch Environ Res Risk Assess

123



PðRSSÞ ¼ PðFEV1Þ � PðSSjFEV1Þ; ð13Þ

where P(RSS) represents the exacerbations risk of respira-

tory symptoms caused by ozone-associated lung function

decrement and P(FEV1) is the probability density function

of statistical indicators-based forecasted %FEV1 decrement

in the specific stage. The exceedence risk profile can be

obtained by 1 - P(RSS).

The probabilistic risk profiles can offer the reliable

information to understand the expected risk. Each point on

the risk curve represents both the probability that the

respiratory system will be injured and also that the fre-

quency with which that level of effect would be exceeded.

Furthermore, the x-axis of the risk curve can be interpreted

as a magnitude of effect (i.e., SS), and the y-axis can be

interpreted as the probability that at least that magnitude of

exacerbation effect will occur.

2.7 Uncertainty and data analysis

Uncertainty is a key component in risk assessment. In order

to quantify the uncertainty and its impact on the estimation

of expected risk, a Monte Carlo (MC) technique that can

simulate the distribution of fitted parameters was imple-

mented. A MC simulation was performed with 10,000

iterations to generate 2.5- and 97.5-percentiles as the 95 %

confidence interval (CI) for all fitted models. The MC

simulation was performed by using the Crystal Ball�

software (Version 2000.2, Decisionerring, Inc., Denver,

CO, USA). Optimal statistical models were selected on the

basis of least squares criterion from a set of generalized

linear and nonlinear models provided by TableCurve 2D

packages (AISN Software Inc., Mapleton, OR, USA). The

correlation analyses were performed by using Statisitca

(Version 6.0, Statsoft Inc., Tulsa, OK, USA). The Berkeley

Madonna (Version 8.3.9, Berkeley Madonna Inc., Berke-

ley, CA, USA) was employed to simulate the toxicody-

namic model.

3 Results

3.1 Ozone-associated lung function decrement

Figure 1a, b shows the dynamics of concentration-specific

symptoms scores and %FEV1 decrement varied with ozone

levels ranging from 60 to 87 ppb. Here the time-course of

symptoms scores (Fig. 1a) and %FEV1 decrement (Fig. 1b)

in the ozone exposure experiment were coupled to con-

struct a concentration–response profile describing the

relationships between normalized symptoms scores and

%FEV1 decrement (Fig. 1c). We found that the Hill model

can well describe the relationship between %FEV1

decrement and symptoms scores (nH = 1.2, r2 = 0.89,

p \ 0.001) in that the maximum symptoms scores can

reach 0.99 with an effective %FEV1 decrement of 13.44 %

(95 % CI 10.2–16.7) that causes 50 % maximum response

(Fig. 1c).

To estimate the exacerbations risk of lung function during

8-h ozone exposure, the concentration-specific time-course of

%FEV1 decrement data based on Schelegle et al. (2009) were

used to simulate the progression of lung function changes

(Fig. 2a–d). Table 1 summarizes the estimated model

parameter values used for predicting ozone-associated lung

function decrement and cellular injury. Our results showed

that the fitted dynamic models could well illustrate the adverse

FEV1 progression during 8-h exposure (Fig. 2a–d).

Figure 2a–d demonstrates that after 8-h exposure, FEV1

decreased 5.7, 7.3, 9.0, and 10.2 % under ozone exposure

doses of 60, 70, 80, and 87 ppb, respectively. Figure 2e

shows an apparent agreement correlation between all the

observed and predicted %FEV1 decrements in the whole

calibration group (r2 = 0.73).
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Given the estimated %FEV1 decrement for 8-h ozone

exposure, the concentration–response relationships of

continuous ozone exposure and %FEV1 decrement during

the 8-h exposure can be constructed (Fig. 3). Our result

indicated that the Hill model adequately fitted with the data

(r2 = 0.99, p \ 0.001). The fitted parameters revealed that

the maximum %FEV1 decrement can reach to 32.6 %. The

EC50 estimate was 129.7 ppb (95 % CI 115.9–143.8). The

fitted nH was 2, indicating that the ozone exposure dose can

significantly cause acute lung function exacerbations.

3.2 Dynamics of statistical indicators

Based on the fitted %FEV1 decrement-daily 8-h ozone

exposure relations (Fig. 3), the time-series of daily 8-h

mean ozone concentration in Fusing and Fongshan

(Fig. 4a, c) can then be converted into %FEV1 decrement

time-series dynamics in the period 2005–2009 (Fig. 4b, d).

We found that the time-series of observed 8-h mean ozone

concentrations ranged from 2.7 to 121.7 ppb at two study

stations (Fig. 4a, c).

To compose the indicators, we first calculated five sta-

tistical indicators that have potential predictability to

indicate the embedded trends and properties in ozone time-

series dynamics (Fig. 4e–i). Results showed that five

indicators all present non-stationary processes during

observed periods. The CV of ozone time-series data ranged

from 0.20 to 0.83, indicating high dispersion among each

dataset (Fig. 4f). Similarly, high dispersion was also found

in CA over time ranging from -0.22 to 0.87 (Fig. 4g). The

results also showed that skewness experienced seasonality

with an extreme value occurring in summer (Fig. 4h). On

the other hand, CS had an average of 0.88, revealing high

correlation between two stations (Fig. 4i).

After calculating the statistical indicators, we standard-

ized the statistical indicators to investigate the correlations

among each other (Table 2). The results showed that

standardized CV (ŵt) had a relatively high correlation with
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Table 1 Initial conditions and model parameter values used in this

study

Symbol Meaning Unit Value

Variable

CA(0) Initial contribution proportion of

type A cell

1

CB(0) Initial contribution proportion of

type B cell

0

F(0) %FEV1 decrement before exposure 0

_D Ozone dose rate mg h-1 Varieda

Parameter

pA Nature turnover rate for type A cell h-1 3 9 10-3b

sA Oxidative decay constant mg-1 0.6c

pB Nature turnover rate for type B cell h-1 0.038b

a Sensitization rate mg-1 18c

kF Desensitization rate h-1 0.42c

s Delay time of type B cell production h 24b

a Ozone dose rates were estimated to be 0.247, 0.287, 0.329, and

0.358 mg for exposure ozone concentrations of 60, 70, 80, and

87 ppb, respectively
b Adopted from Freijer et al. (2002)
c Fitted from human experiment data
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skewness (ŷt) (r = 0.687, p \ 0.0001). To examine the

forecasting capability for standardized indicators, we used

a dynamics-based predictive model to transform the daily

8-h maximum ozone concentration to %FEV1 decrement.

We also found that ŵt had better correlation with the next

7-day mean %FEV1 decrements (r = -0.515, p \ 0.0001)

(Table 2). Thus, based on Pearson correlation analysis, the

mean %FEV1 decrements in the next 7 days can be

assessed by one composite indicator S1 = ŵt ? ŷt, whereas

the other one composite indicator S2 = ŵt ? x̂t ? ŷt ? ẑt

can be used to detect the maximum %FEV1 decrements in

the next 7 days (Table 2).

3.3 Composite indicator-based risk estimates

Our results showed that mean and maximum %FEV1

decrement in the next 7 days had an apparent good asso-

ciation with the composite indicators of S1 (r = -0.571,

p \ 0.001) and S2 (r = -0.554, p \ 0.001), respectively

(Figs. 5a, 6a). These support the concept of using the
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Table 2 Relative contributions of standardized statistical indicators to lung function decrement based on Pearson correlation coefficient (r)

v̂t ŵt x̂t ŷt ẑt Fmean
a FMAX

b

v̂t 1.000 0.324* 0.129 -0.253 0.266 0.067 -0.106

ŵt 1.000 0.205 0.687*** -0.107 -0.515*** -0.511***

x̂t 1.000 0.718 -0.150 -0.294 -0.233

ŷt 1.000 -0.341* -0.532*** -0.358*

ẑt 1.000 0.0478 -0.130

Fmean 1.000 0.811***

FMAX 1.000

Symbol meanings: v̂t: std standard deviation; ŵt: std coefficient of variation; x̂t: std coefficient of autocorrelation; ŷt: std skewness; ẑt: std spatial

correlation

* p \ 0.05, ** p \ 0.01, *** p \ 0.0001
a Mean %FEV1 decrement in the next 7 days (%)
b Maximum %FEV1 decrement in the next 7 days (%)
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composite indictors as a proxy in the future events of

%FEV1 decrement. Thus, S1- and S2-based risk estimates

can then be calculated by the proposed probabilistic risk

model (Eq. 13), respectively. Here we delineated ozone-

associated respiratory symptoms elevation into three stages

based on composite indicators in the range of -1 to 1.

Thus, the calculated data for ozone concentration-based

composite indicator can be rated uniformly (Figs. 5a, 6a).

Given the stage-specific FEV1 pdf (Figs. 5c, g, e, 6c, g, e)

and constructed concentration–response profile (Fig. 1c),

the normalized symptoms scores at certain exceedance risk

can be estimated based on composite indicators of S1 and S2,

respectively (Figs. 5b, d, f, 6b, d, f; Table 3). Table 3

indicates that there was a 50 % probability for the mean

symptoms scores exceeding 0.17 (95 % CI 0.08–0.27), 0.30

(0.21–0.39), and 0.36 (0.27–0.45) at stages I, II, and III,

respectively. On the other hand, it is most likely that (80 %

probability) the maximum symptoms scores will exceed

0.29 (0.20–0.39), 0.39 (0.30–0.48), and 0.48 (0.39–0.58),

respectively, at stages I, II, and III (Table 3).

4 Discussion

4.1 Toxicodynamic modeling

In this study, we have developed a novel risk analysis

approach which incorporated statistical indicators and

probabilistic risk assessment to detect and assess the

impact of ozone exposure on respiratory lung function
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decrement. Here, we used a Hill model to construct the

relationship among lung function, respiratory symptoms

and continuous ozone exposure because it is the biologi-

cally based concentration–response model (Goutelle et al.

2008). We showed that the Hill-based dose–response

model can well describe the relationships between %FEV1

decrement and respiratory symptoms under the continuous

ozone exposure.

On the other hand, we adopted a toxicodynamic model

to predict ozone induced %FEV1 decrement under different

exposure concentrations (Freijer et al. 2002). Freijer et al.

(2002) considered the cell coverage mechanisms on the

epithelium repair process of lung. However, in the model

prediction of lung function changes, the adopted human

experimental data was only performed in 6.6 h. We

therefore assumed that the %FEV1 decrement between

each date can be seen as a dependent process because it is

difficult, if not impossible, to simulate ozone effects in the

long-term exposure. Based on Freijer et al. (2002), the type

B cells will be reactivated after the delay time of 24 h.

Therefore, this study ignored the type B cell in the dynamic

model. Furthermore, the model parameters in the toxico-

dynamic model capture the biological characteristics for

epithelial cells and the physiological characteristics for

lung function. To distinguish the different levels of ozone

exposure that can cause lung function exacerbations,

Freijer et al. (2002) suggested using lung function sensiti-

zation rate (a) and desensitization rate (kF) which can be

deduced from human exposure experiments.

However, there are some limitations in the toxicody-

namic model incorporating with human exposure experi-

ment. First, this study had only 4 exposure experimental

datasets to generate the model prediction (Schelegle et al.

2009). The limited datasets may cause some errors in

model predictions. Nevertheless, this study confirmed that

the lung function decrement effects below 60 ppb can be

well predicted by toxicodynamic and Hill model due to

adequate fitting to human exposure experimental data.

Second, the human experiment precisely defined patterns

of exposure protocol, such as health status and exercise

levels of participants. This well-controlled setting may

have limits attempting to correspond to the real-world

conditions. Third, the predictive values of lung function

changes after continuous ozone exposure were simulated

and extrapolated by the toxicodynamic model. Thus, the

modeling approach laid out here may be extended in var-

ious directions. Moreover, other types of population het-

erogeneity can be taken into account, such as age-

dependency and specific at-risk groups. Nevertheless, this

study only focused on the daily maximum 8-h O3 con-

centrations corresponding to the regulation for public

health in time-series data analysis. Besides, the events of

continuously high ozone concentration exposure-induced

%FEV1 decrements in a day were not considered in this

study.

4.2 Statistical indicators-based risk model

Our study found that standardized statistical indicators of

CV and skewness had better correlations with mean

%FEV1 decrement in the next 7 days. These results were

also consistent with the asthma studies of Venegas et al.

(2005) and Frey et al. (2005). Venegas et al. (2005) used

CV as an indicator to capture the magnitude of change in a

self-organized pattern of bronchoconstriction in human

lungs in order to detect dangerous respiratory failure. Frey

et al. (2005) used CV and skewness to assess the risk of

lung function severity in asthmatics. In our study, no sig-

nificant correlations were found among lung function

decrement and statistical indicators of SD, CA, and CS.

The results also revealed that there were weak correlations

between lung function exacerbations and individual indi-

cators. Thus, we incorporated standardized indicators of

CA and CS into S1 as a new composite S2 for detecting the

maximum %FEV1 decrement to further improve the pre-

dictability and detectability of lung function exacerbations.

Generally, the ozone concentrations are usually detected

in low levels in ambient air. Based on the correlation

analysis, the results found that high variability of ambient

ozone had potential ability to give warning on the occur-

rence of high-level ozone in the next days. The increas-

ingly positive skew of ozone concentration had similar

function as variability that can reflect the increase in

ozone-associated lung function decrement effect. There-

fore, there are negative relationships between composite

indicators and %FEV1 decrement. If the ambient ozone

concentrations appeared highly variable in the past

1 month, it may implicate that the ozone-associated

%FEV1 decrement will increase in the next 7 days.

Table 3 Estimated mean and maximum normalized symptoms

scores at exceedance risks 0.2, 0.5, and 0.8 based on composite

indicators of S1 and S2, respectively, for ozone-associated respiratory

symptoms elevation stages I (mild), II (moderate), and III (severe)

Symptoms Exceedance risk

Stage 0.8 0.5 0.2

Composite indicator S1

I 0.16 (0.07–0.25)a 0.17 (0.08–0.27) 0.20 (0.10–0.29)

II 0.27 (0.18–0.36) 0.30 (0.21–0.39) 0.34 (0.24–0.43)

III 0.34 (0.25–0.43) 0.36 (0.27–0.45) 0.38 (0.28–0.47)

Composite indicator S2

I 0.29 (0.20–0.39) 0.33 (0.24–0.42) 0.37 (0.27–0.46)

II 0.39 (0.30–0.48) 0.42 (0.33–0.51) 0.45 (0.36–0.54)

III 0.48 (0.39–0.58) 0.50 (0.41–0.59) 0.51 (0.42–0.61)

a Median (95 % CI)
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Similarly, the increasing positive skew of ozone concen-

tration can also reflect the increasing ozone-associated

respiratory effects in the days after. The composite indi-

cators had the best predictability for %FEV1 decrement in

the next 7 days in our analysis. However, the correlation

shows a decreasing trend when we consider a longer pre-

dicted period.

We also found that the probability of symptoms scores

may fall into the worst stage if the composite indicators

were less than -1, indicating that there was a 50 % risk

probability for mean and maximum symptoms scores

exceeding 0.38 and 0.50, respectively. McDonnell et al.

(2010) have built an exposure–response model and proved

that ozone may cause different levels of effect in the life-

time exposure. Therefore, it may be important to identify

the age-specific adverse health effects by the toxicody-

namic model-based risk assessment scheme in the future

studies.

4.3 Implications

This study implicated that ozone exposure is a major risk

factor for causing respiratory symptoms and lung function

decrement. In addition, lung function is the robust marker

to assess the adverse health effects posed by air pollution

among general populations. We suggested that the risk of

ozone-associated lung function decrement can be revealed

by generic statistical indicators. The statistical indicators

can give early warning on the possible respiratory effects

caused by air pollution in the future. The new insight of

this study concept can be used to improve the risk pre-

diction in public health.

Recent studies indicated that traffic-related air pollution

caused the onset of chronic pulmonary diseases in sus-

ceptible populations and even induced more severe respi-

ratory illnesses (Chen et al. 2008; Balmes 2009). Currently,

most epidemiological studies used statistical analyses such

as the auto-regressive integrated moving average (ARIMA)

to correlate environmental triggers and lung function-

related diseases (Chen et al. 2006). In our case, for

example, if we focused on a particular region with heavy

air pollutions, we could scan data on time-series dynamics

and spatial patterns of statistical indicators to detect which

air pollutants may be a critical trigger in causing abnormal

lung function. Subsequently, certain control measures

could be targeted specifically at those major air pollutants.

The proposed probabilistic risk assessment framework

could also link to a multidimensional approach including a

combination of several clinical and physiological parame-

ters such as symptoms, behavioral factors, lung function,

and inflammatory markers which would be useful for

detecting the future burden of respiratory-related illness

that would result from air pollutants (Park et al. 2005;

Anenberg et al. 2010; Tank et al. 2011). Therefore, sta-

tistical indicators are potentially powerful tools for assist-

ing the scenario planning and forecasting those of

increasing importance to environmental management and

policy’s decision-making.

This study found that composite statistical indicators

can improve the predictability and detectability for ozone

induced lung function decrement and respiratory symp-

toms. Our results revealed that the toxicodynamic model

incorporating the statistical indicators-based risk assess-

ment approach can be applied to human health exposure

risk in the future. We hope that the proposed probabi-

listic risk assessment scheme can be used to (i) forecast

the possible hazard under ozone exposure, (ii) reveal

epidemiological phenomena caused by environmental

stimuli, (iii) provide a novel method in risk assessment,

and (iv) improve the risk estimates of lung function

diseases as researches on chronic ozone exposure and

illness continue growing globally. The study result also

corresponded with our previous study which found that

statistical indicators in fluctuating air pollution can be

used to warn the risk of respiratory disease (Hsieh and

Liao 2013).

The main conclusion from the work presented here is

that ozone-associated lung function decrement can be

assessed and detected by the information obtained from

specific statistical indicators of critical lung function

decreasing after the onset of environmental ozone exposure

measured as daily 8-h exposure. Most importantly, we

conclude that statistical indicators related to variability or

skewness provide a powerful tool for empirical studies of

environmental epidemiology or other complex systems

(Scheffer et al. 2009; Drake and Griffen 2010). However,

the perspective of identifying statistical indicators and

exploring the possibilities and limitations of this emerging

field are challenging, as the approach may provide an

independent way to assess the risk of abnormal dynamic

patterns of diseases in specific populations.
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