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ORIGINAL PAPER

Assessing risk perception and behavioral responses to influenza
epidemics: linking information theory to probabilistic risk
modeling

Chung-Min Liao • Shu-Han You

� Springer-Verlag Berlin Heidelberg 2013

Abstract Risk perception plays a crucial role in shaping

health-related behaviors in a variety of infectious disease

control settings. The purpose of this study was to assess

risk perception and behavioral changes in response to

influenza epidemics. We present a risk perception assess-

ment model that uses information theory linking with a

probabilistic risk model to investigate the interplay

between risk perception spread and health behavioral

changes for an influenza outbreak. Building on human

influenza data, we predicted risk perception spread as the

amount of risk information. A negative feedback-based

information model was used to explore whether health

behavioral changes can increase the control effectiveness.

Finally, a probabilistic risk assessment framework was

used to predict influenza infection risk based on maximal

information-derived risk perception. We found that (i) an

individual who perceived more accurate knowledge of

influenza can substantially increase the amount of mutual

risk perception information, (ii) an intervening network

over which individuals communicate overlap can be more

effective in risk perception transfer, (iii) collective indi-

vidual responses can increase risk perception information

transferred, but may be limited by contact numbers of

infectious individuals, and (iv) higher mutual risk percep-

tion information gains lower infection risk probability. We

also revealed that when people increased information about

the benefits of vaccination and antiviral drug used, future

infections could significantly be prevented. We suggest that

increasing mutual risk perception information through a

negative feedback mechanism plays an important role in

adaptation and mitigation behavior and policy support.

Keywords Risk perception � Influenza � Information

theory � Human behavior � Probabilistic risk assessment

1 Introduction

Risk perception, referred to as awareness or belief about

the potential hazard/harm, plays a crucial role in shaping

health-related behaviors in a variety of infectious disease

control settings (Brewer et al. 2004, 2007; Bults et al.

2011; Hatzopoulos et al. 2011; Perra et al. 2011; Poletti

et al. 2012). Brewer et al. (2007) indicated that the rela-

tionships between risk perception and health behavioral

changes can be used to measure influence and suscepti-

bility in a disease network, suggesting that hazard-specific

risk perception is a predictor of the vaccination behavior

against infectious disease.

Based on the health belief model, risk perception can be

described by the probability expected and severity of the

infectious diseases (Poland 2010). Risk perception may be

affected by factors such as perception of a hazard, cultural

and social factors or the experience or memory of a prior

similar hazard, all of which may result in variation in risk

perception among individuals (Jacobs et al. 2010).

Recently, many researchers have pointed out that the

social network structure could enable new health behav-

ioral interventions to affect critically the interactions

between risk perception and contagious disease transmis-

sion (Epstein et al. 2008; Salathé et al. 2010; Salathé and

Jones 2010; Salathé and Khandelwal 2011; Fenichel et al.
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2011; Cauchemez et al. 2011). Despite the importance of

the understanding of the impact of risk perception on a

pandemic (Kristiansen et al. 2007; Prati et al. 2011; Poletti

et al. 2011; Rosoff et al. 2012), it is difficult, if not

impossible, to predict empirically the spread of health

behavior for reducing host’s susceptibility. Christakis and

Fowler (2007, 2008) indicated that the social contact

structure of who is connected to whom plays a vital role in

affecting the spread of behavior across a population such as

the prevalence of obesity and smoking. Thus, the burden of

infectious disease is usually associated with health-harm-

ing behaviors.

Kermack and McKendrick (1927) developed a deter-

ministic susceptible-infected-recovery (SIR) model to

describe the spread of an infectious agent such as influenza

pandemic in a population. The deterministic SIR model

ignores the latent and incubation periods and assumes that

infectious and infectiousness occur simultaneously. On the

other hand, a stochastic epidemic model is presented based

on SIR model by a branching process (Mikler et al. 2007).

Properties of the stochastic SIR model include the proba-

bility of disease extinction, probability of disease outbreak,

final population size distribution, and expected duration of

an epidemic (Mikler et al. 2007).

Funk et al. (2009, 2010a, b) linked a mathematical

model describing the spread of risk perception in a host

population and the SIR model for understanding the per-

ception effects on behavioral change and susceptibility

reduction. They treated the spread of risk perception or

behavior as a simple contagious disease, implicating that a

single contact with an infected individual is usually suffi-

cient to transmit the risk perception or behavior. They

further indicated that the social network structure had a

substantial effect on the spread of health behavior in

response to infectious disease outbreaks. Funk et al. (2009)

also pointed out that the interaction within a social network

structure with the disease properties can induce a health

behavioral change in individual and can feedback to alter

the disease dynamics.

Colizza et al. (2006) used an information theoretic

approach to characterize quantitatively the heterogeneity

level for the disease spreading. Greenbaum et al. (2012)

presented an information theory approach as the natural

mathematical framework to assess pandemic risk and

provided a quantitative framework to assess pandemic

threats. Zhao et al. (2011) developed a model to quantify

how much the entropy of a dynamic network such as epi-

demic spreading or opinion dynamics changes in the social

networks. Kentel and Aral (2007) and Mikler et al. (2007)

revealed the risk tolerance measure in information theory-

based fuzzy analysis. These approaches were involved the

health risk assessment perspectives and the decision-

making.

Jones and Salathé (2009) and Salathé and Khandelwal

(2011) suggested that an understanding of the spread of

information distribution of risk perception and behavioral

change (such as social distancing and health hygiene)

during the initial phase of an epidemic of an emerging

infectious disease may mediate human behavior and help

with the design of control strategies. Goffman and Newill

(1964) adopted the concept of the transmission of an

infectious disease, i.e., in terms of an epidemic process

with a SIR model, to examine the transmission and

development of ideas within a population.

Inspired by those works, we treated the spread of risk

perception in response to an influenza pandemic as an

information process. Information theory builds upon a

general mathematical scheme that can quantify the trans-

mission and exchange of information and had been com-

monly applied to assess telecommunication systems (Cover

and Thomas 2006). But, information theory has not been

applied to evaluate the impact of risk perception on a

pandemic influenza outbreak. Therefore, information

transmission of risk perception about a pandemic can be

reformulated using information theory for determining the

information content of signal source of the original distri-

bution and the information shared between signal and

response.

Within the information theory, risk perception can be

quantified as the uncertainty about the environment that is

removed by the knowledge gained by signaling system

(Kentel and Aral 2007). The amount of risk perception

depends on both the amount of variability in the environ-

ment and noise in the signaling process itself. Information

theory also allows us to determine the maximum infor-

mation that a signaling system can obtain about some

aspects of the environment under the ideal situations.

It is well recognized that influenza is a major disease of

animals and humans. Influenza also claims 250,000–

500,000 lives worldwide annually (http://www.who.int/

mediacentre/factsheets/fs211/en/). Generally, nonregulato-

ry approaches to changing behaviors against influenza

across individuals and populations have focused on using

information-based interventions to persuade people of the

risks they face and the potential benefits of change, through

clinics or public health campaigns, such as those aimed at

keeping distance from infected individuals, wearing pro-

tective masks, and reducing the time-spent in crowded

environments (Prati et al. 2011).

The purpose of this paper was fourfold: (i) to develop a

risk perception assessment model, based on the formalism

of information theory, to investigate the interplay between

the spread of risk perception and health behavioral change

in response to an influenza pandemic in a human popula-

tion, (ii) to predict the risk perception spread as the amount

of risk information in a population transmission dynamic
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system of influenza, (iii) to use a negative feedback-based

information theoretic model to explore whether health

behavior change (e.g., vaccination or antiviral drug use)

can reduce noise and increase the control effectiveness, and

(iv) to use a probabilistic risk assessment framework to

predict the infection risk of influenza based on the maximal

information-derived risk perception information.

2 Materials and methods

2.1 General concept

The overall concept of this study can be briefly described

as follows: (i) we first reanalyzed the essential epidemio-

logical parameters of the seasonal and pandemic influenza

from previous study data to calculate the mutual risk per-

ception information based on the proposed information

theory-based risk perception model (Fig. 1a–d), (ii) we

used the network-based risk perception analysis to assess

the mutual risk perception information by the contact

numbers of infectious individuals (Fig. 1e), (iii) the pro-

posed risk perception model with a negative feedback-

based single channel was used to investigate the effect of

health behavioral changes on reducing host susceptibility

(Fig. 1f), and (iv) a probabilistic risk model and the pro-

posed risk perception model were linked to capture the

interplay between mutual risk perception information and

infection risk probability. The detail descriptions are stated

in the following sections.

2.2 Study data

We conducted a comprehensive literature search, compil-

ing scientific studies on reporting seasonal influenza virus

with experimental human influenza and pandemic influ-

enza virus.

First we used the references included in the previous

study (Yang et al. 2009) and then extended the search by

using online search engines (Google scholar, ISI web of

knowledge, and PubMed) as well as reference lists of

published articles. Here we tried to identify estimates of the

basic reproduction number (R0) and secondary attack rate

(SAR) for seasonal and pandemic influenza, respectively,

based on data from any previous influenza outbreak

worldwide. The R0 is a central concept in infectious con-

trol, defined as the average number of secondary cases

produced by an infected individual in totally susceptible

(Anderson and May 1991). On the other hand, SAR,

defined as the probability that an infected person in the

household will infect another person in the household

during the infectious period, best characterizes household

influenza transmissibility (Yang et al. 2009). The

relationship between R0 and SAR can be described as:

SAR = 81.9 ? (-79.1/R0) (r2 = 0.99) that is derived

from Yang et al. (2009).

We applied several selection criteria to ensure that

minimum scientific standards were met. Studies were only

included if they (i) included the terms seasonal influenza,

human AND basic reproduction number, (ii) reported data

on pandemic subtype influenza virus AND secondary

attack rate, (iii) addressed data on human infection with

cold-recombinant vaccination and antiviral drug of neur-

aminidase inhibitors in experimental human influenza, (iv)

reported data not already included from another paper (i.e.,

avoid multiple counting), and (v) reported the mean, an

error terms (standard deviation (SD), standard error (SE) or

confidence interval) and sample size (n) as numerical or

graphical data, or if mean and sd of R0 and SAR over time
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Fig. 1 Schematic representation of our approach algorithm used in

this study. a SIR-based awareness spread model, b Interaction

between awareness and unawareness signals, c Uncertainty for

population about R0 signals due to response distribution, d Individ-

ual-based R0-I risk perception model, e Network-based R0-I risk

perception model, and f Negative feedback-based single channel

R0-I risk perception model (See text for symbol meanings)
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could be calculated from the published data. The use of

selection criteria is a critical step in conducting the present

analysis.

2.3 Information theory-based risk perception

framework

In view of the SIR-based awareness spread models devel-

oped by Funk et al. (2009, 2010a, b) (Fig. 1a), there are

two crucial parameters that can be used to capture the

relationships among disease, awareness, and behavioral

response: R0 and infected fraction of population (I). Based

on Funk’s model (Fig. 1a), there were two R0s can be

obtained as: (i) Ra
0 ¼ a=k for an aware state and (ii) Rd

0 ¼
b=c for an unware state in the SIR scheme where a is the

rate of awareness spread, k is the rate of awareness loss, b
is the infection rate from unaware infected to unaware

susceptible, and c is the recovery rate of unaware infected

(Fig. 1a, b).

Within the information theory framework, we can sep-

arate two levels of information transfer and exchange

within the aware-unaware SIR scheme: (i) Sa and (ii) Sd,

representing the R0 signals of aware and unaware states,

respectively (Fig. 1b). However, noise from sources of

information, e.g., noisy and incomplete observed and sur-

veillance data, can cause loss of information about the

input, leading to a overlap of possible output responses

(Fig. 1c). Here the signal is a discrete random variable

from information and the response is the sum of the input

(signal) and the noise. The noise, for instance, can be

derived from a Gaussian distribution with variance.

Therefore, we used R0 as a proxy of information source

about an influenza outbreak. We adopted experimental

human influenza data (see Tables S3 and S4 in Supple-

mentary materials) to estimate the infected fraction of

population (I) to reflect the response to capture the per-

ception of influenza mobility/mortality risk during an

influenza outbreak (Fig. 1d, e). Moreover, health behav-

ioral measure data such as cold-recombinant vaccine and

antiviral drug used of neuraminidase inhibitors (see Tables

S3 and S4 in Supplementary materials) were adopted to

assess intervention effectiveness to reflect the precautions

that people may take to reduce susceptibility during an

influenza outbreak (Fig. 1f).

2.4 Mutual risk perception information analysis

In an information process as we have shown in our pro-

posed R0-I risk perception model (Fig. 1d), an individual is

always affected by noise generated from information

sources. Conventionally, the noise magnitudes referred to

as the statistical uncertainties are often measured by

variance, SD, or the correlation coefficient. Yet, these

measures are difficult to quantify noise that affects the

accuracy of risk information processing in an individual.

Instead, information formalism allows us to show how

signals Sa and Sd interact each other and to relate infor-

mation theoretic quantities such as entropy and mutual

information that can quantify risk perception transmission

in the R0-I scheme.

By applying information theory to R0-I risk perception

model (Fig. 1d), the mutual risk perception information

between R0 and I, i.e., RI(I; R0) can be expressed mathe-

matically as the binary logarithm of the maximum number

of input signal values (R0), whereas a signaling system can

resolve in the presence of its noisy output response (I)

(Cover and Thomas 2006),

RI I; R0ð Þ ¼
X

I;R0

P I; R0ð Þ log2

P I; R0ð Þ
P Ið ÞP R0ð Þ

¼ �
X

I

P Ið Þ log2 P Ið Þ � �
X

I; R0

P I; R0ð Þ log2 P I R0jð Þ
" #

¼ H Ið Þ � H I R0jð Þ
ð1Þ

where P(I, R0) is a joint probability function determining

the marginal probability functions P(I) and P(R0), and

hence also the mutual information, and can be expressed as

P I; R0ð Þ ¼ P R0ð Þ � P I R0jð Þ in that P I R0jð Þ is a condi-

tional response distribution, H(I) is the Shannon entropy of

a random variable I with a probability mass function

P(I) measured in bits, and H(I|R0) is the conditional

entropy for a conditional response probability P(I|R0).

In particular, H(I) measures inherent uncertainty rather

than how different the outcomes are, whereas RI(I; R0)

measures the reduction in the entropic uncertainty of I due

to the knowledge of R0, regardless of how their outcomes

may correlate (Cover and Thomas 2006). The R0 signal

distribution, P(R0), reflects setting-specific influenza

transmission potentials at which an individual experiences

different R0 values.

Although the amount of information might vary from

case to case. One can also determine the maximal amount

of risk perception information based on the noise generated

from observed data. This quantity is known as channel

capacity in information theory (Cover and Thomas 2006)

and can be used to characterize the proposed R0-I risk

perception transmission system (Fig. 1d).

2.5 Network-based risk perception analysis

An individual-based model (Fig. 1d) can only capture

relatively low amounts of risk perception information

about R0 signal strength, allowing only limited reliable

decision making by an individual. Risk information
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transmission in a population-based disease transmission

system, however, is typically processed by disease net-

works comprising multiple transmission channels.

To investigate the effect of disease network structure on

risk perception transmission, a parsimonious information

theoretic model known as a multiple access channel

(MAC) was considered (Cover and Thomas 2006). This

simple MAC model can be used to describe a R0 signal

transmitting through multiple channels to the responses I1,

I2, …, In, under the assumption of Gaussian distribution

(Fig. 1e). Based on the proposed MAC model, the mutual

risk perception information can be estimated as (Cover and

Thomas 2006),

RIMAC I1; . . .; In; R0ð Þ ¼ 1

2
log2 1þ n

r2
R0

r2
R0!I

 !
ð2Þ

where n is the contact numbers of infectious individuals,

r2
R0

is the variance of the R0 signal distribution and r2
R0!I is

the variance (noise) introduced in each access channel. The

ratio r2
R0
=r2

R0!I is the signal-to-noise ratio (SNR) (Cover

and Thomas 2006).

To explore the effect of health behavioral changes on

reducing host susceptibility and noise, the proposed R0-I

risk perception model with a negative feedback-based

single channel was used (Fig. 1f). Here we used the cor-

relation coefficient (q) to associate the basic reproduction

number (R0) and the fraction infected of people (I) from

published data (see Supplementary materials) in order to

calculate r2
R0!I . Based on the information theory theorem

(Cover and Thomas 2006), r2
R0!I ¼ 1� q2ð Þr2

R0
. There-

fore, Eq. (2) can be rewritten as,

RIMAC I1; . . .; In; R0ð Þ ¼ 1

2
log2 1þ nSNRð Þ

¼ 1

2
log2 1þ n

1� q2ð Þ

� �
: ð3Þ

Equation (3) shows that q can be used to associate the

amount of observed variability that can be ascribed to true

biological variability versus experimental data in order to

assess the degree to which estimates of mutual risk

perception information are affected by experimental

noise. Moreover, we used Eq. (3) to explore whether a

potential control measure (i.e., a negative feedback) may

enhance the risk perception of the growing epidemic via

the disease network.

2.6 R0-perception based probabilistic risk assessment

To develop a probabilistic risk model, a dose–response

model describing the relationship between transmission

potential quantifying by signal R0 and the total proportion

of the infected population (I) has to be constructed.

Theoretically, in a homogeneous and unstructured popu-

lation, the total proportion of the infected population dur-

ing the epidemic (I) depends only on R0, and can be

expressed as (Anderson and May 1991),

I ¼ 1� exp �R0Ið Þ: ð4Þ

Equation (5) cannot be solved analytically. Thus, we

solved Eq. (4) numerically by using a nonlinear regression

model to best-fit the profile describing the relationship

between I and R0 for R0 ranging from 1 to 5 (Anderson and

May 1991). Finally, I can be expressed as a function of R0

only,

I R0ð Þ ¼ 1� exp 1:63� 1:66R0ð Þ; 1\ R0 \5; r2 ¼ 0:99:

ð5Þ

Equation (5) can also be treated as a conditional

response distribution describing the dose–response

relationship between I and R0 and expresses as PðIjR0Þ.
Thus, followed by Bayesian inference, influenza infection

risk (the posterior probability) can be calculated as the

product of the probability distribution of R0 signal (the

prior probability) and the conditional response probability

of the proportion of the population expected to be infected,

given R0 (the likelihood PðIjR0Þ). This results in a joint

probability distribution or a risk profile. This can be

expressed mathematically as,

RðIÞ ¼ PðR0Þ � PðIjR0Þ ð6Þ

where R(I) is the cumulative distribution function,

describing the probabilistic infection risk in a susceptible

population at a specific R0 signal. The exceedance risk

profile can be obtained by 1-R(I).

In view of Eqs. (1) and (6), PðI;R0Þ ¼ PðR0Þ�
PðIjR0Þ ¼ RðIÞ. Thus, the mutual risk perception informa-

tion in the R0-I model can be rewritten as,

RI I; R0ð Þ ¼
X

I; R0

P I; R0ð Þ log2

P I R0jð Þ
P Ið Þ

¼
X

I; R0

R Ið Þ log2

1� exp 1:63� 1:66R0ð Þ
P Ið Þ

� �
:

ð7Þ

Equation (7) captures the interplay between mutual risk

perception information and infection risk estimates.

2.7 Uncertainty analysis

TableCurve 2D package (AISN Software Inc., Mapleton,

OR, USA) and Statistica� (version 9, Srarsoft, Inc., Tulsa,

OK, USA) were used to perform model fitting techniques

and statistical analysis. A Monte Carlo (MC) technique was

implemented to quantify the uncertainty and its impact on

the estimation of expected risk. A MC simulation was also
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performed with 10,000 iterations to generate 2.5- and 97.5-

percentiles as the 95 % CI for all fitted models. The Crystal

Ball� software (Version 2000.2, Decisioneering, Inc.,

Denver, Colorado, USA) was employed to implement MC

simulation. Information theoretic calculations were per-

formed using Matlab R2006a (Math Works).

3 Results

3.1 Mutual risk perception information

in a R0-I epidemic structure

We summarized the estimates of R0 for seasonal subtype

influenza and SAR for pandemic based on our compre-

hensive synthesis of the current scientific literature in

Tables S1 and S2 (see Supplementary materials). Tables S3

and S4 (see Supplementary materials) list the estimates of

the percentage of infected population treated with cold-

remanidase inhibitors and antiviral drug used for seasonal

subtype influenza.

Our results indicated that R0 signals produced from

multiple sources can exhibit different statistical distribu-

tions (Tables S1 and S2; Fig. 2). We found that R0 distri-

butions represented by lognormal (LN) yielded higher

mutual risk perception information about R0 than those of

normal (N), uniform (U), and triangular (T) distributions

for seasonal and pandemic subtype influenza (Fig. 2).

Generally, seasonal influenza had higher mutual risk per-

ception information than that of pandemic, particularly for

type B virus in that the calculated mutual risk perception

information obtained from pandemic was much lower than

seasonal ones (Fig. 2i, l).

3.2 Network-based analysis

Here we considered R0 signals via multiple contacts of

infectious individuals, each considered as the separate

information channels within a disease network. Our results

indicated that the risk perception information increased

logarithmically with the increasing of contact numbers of

infectious individuals in a disease network (Fig. 3). Thus,

we found that collective individual behavior can substan-

tially increase the mutual risk perception information

gained and produce responses discriminated between many

R0 signal sources.

To explore whether health behavioral changes can

increase risk perception, we used effective control mea-

sures of vaccination and antiviral drugs as a negative

feedback mechanism to calculate the response. Our results

indicated that the health behavioral changes mediated by

vaccination and antiviral drugs increased mutual risk per-

ception information for subtype influenza viruses of A

(H1N1), A (H3N2), and type B (Fig. 3). Our results

revealed that the health behavioral change as a negative

feedback loop was capable of decreasing noise and

improving risk perception information transmission.

Moreover, maximal risk perception information about R0

signals acquired with health behavioral changes exhibits

advantages for mitigating the risk perception noise by

using a negative feedback loop.

3.3 Mutual information-based risk estimates

To evaluate how the joint distribution P(I, R0) (Eq. (1)) can

be used to determine risk estimates of infection, we fol-

lowed a probabilistic risk assessment framework shown in

Eq. (6). Our results indicated that there were 50 % prob-

ability chances for populations infected exceeding 0.65,

0.47, and 0.32 and 0.62, 0.50, and 0.25 for seasonal and

pandemic subtype influenza A (H1N1), A (H3N2), and

type B, respectively, without any control measure inter-

vention (Table 1; Fig. 4). However, there was a 50 %

probability for reducing the infected fraction of population

within the ranges of 0.20–0.29 for vaccination and 0–0.17

for antiviral drug measures, respectively, under a seasonal

influenza outbreak (Table 1; Fig. 4).

Figure 5 demonstrates the subtype influenza-specific

relationship between mutual risk perception information

and infection risk probability. Figure 5 indicates that, in

most of the cases, influenza outbreak with control measures

have higher mutual risk perceptions information under the

situation with same infection risk probability. On the other

hand, for a specific intervention, higher mutual risk per-

ception information gains lower infection risk probability.

3.4 A case study

Here we present a case study to parsimoniously illustrate

how information theory can be applied to an influenza

epidemic for assessing risk perception and infection risk

estimate. We adopted the essential epidemiological

parameters from our previous publication (Chen and Liao

2008) concerning the impact of pandemic influenza among

schoolchildren in an elementary school located in the

southern Taipei city. Table 2 lists the estimates of essential

parameter used in the case study.

Our result indicated that R0 distribution can be repre-

sented by a lognormal model (LN(2.1, 4.26)) for an influ-

enza outbreak in a studied elementary school (Fig. 6a). We

further used Eq. (2) to calculate the mutual risk perception

information based on the fitted lognormal distribution of R0

with r2
R0
¼ 18:5 and r2

R0!I ¼ 12:9, resulting in RI = 0.66

bits (Fig. 6b). To investigate the impact of contact numbers

of infectious individuals on the mutual risk perception
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information, we estimated the correlation coefficient (q)

based on the relationship between viral titer based I and

viral titer based R0 for subtype influenza, resulting in

q = 0.4 (Fig. 6c).

We then used Eq. (3) to depict the mutual risk percep-

tion information affecting by contact numbers of I, indi-

cating that the estimates of mutual risk perception

information ranged from 0.9 to 3.1 with multiple contacts

of infectious individuals from 1 to 6 (Fig. 6d). By inte-

grating Eqs. (5) and (6), we can estimate the exceedance

risk among susceptible schoolchildren at a specific R0

signal. We finally used Eq. (7) to estimate the relationship

between mutual risk perception information and infection

risk. Our results indicated that the infection risk probability

decreased with increasing in mutual risk perception infor-

mation and there was a 50 % probability chance for

schoolchildren infected exceeding 0.79 (Fig. 6e, f).

4 Discussion

In this study, we treated the influenza risk perception-

health behavioral change system as the information theo-

retic communication channels. We have quantitatively

shown that in an individual-based analysis, individuals who

perceived more accurate knowledge of influenza can sub-

stantially increase the amount of mutual risk perception

information. On the other hand, the network-based risk

perception model, which provides a theoretical framework

for analyzing the social network of potential infection

events, revealed that network over which individuals

communicate overlap can be more effective in risk per-

ception transfer.

We found that collective individual responses can

increase the risk perception information transferred, but

may be limited by the contact numbers of infectious
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individuals exposed to the same signal or by the informa-

tion presented in the initiating signal itself. Our findings are

consistent with the previous studies related to the rela-

tionship between risk perception and human health

behavioral responses in seasonal influenza (Ofstead et al.

2008; Zhang et al. 2012; Dahlstrom et al. 2012; Yu et al.

2013).

We explored several strategies that an individual was

used to overcome susceptibility risk due to less accurate

knowledge of influenza. We found that negative feedback,

which reflects as the control measures of influenza vacci-

nation and antiviral drug used, can further increase infor-

mation transfer on health-seeking behavior throughout the

epidemic. Therefore, the possible strategies for increasing

the risk perception information about a signal such as the

basic reproduction number include reducing noise by

introducing a negative feedback loop of health behavioral

changes, or by pooling risk perception information across a

social network which individuals communicate overlap

(Ferguson 2007; Glass and Glass 2008; Read et al. 2008;

Mossong et al. 2008).

We implicated that less accurate knowledge of diseases

restricts the ability of an individual to resolve the input

signal of different strengths and gather information about a

disease outbreak. This limitation can be overcame by

transferring centralized risk perception information about

the presence of a disease through complex disease net-

works. In this paper, an integrated theoretical framework

based on the formalism of information theory was devel-

oped to quantitatively understand the relationships between

influenza risk perception and health behavioral measures.

Our study suggests that more accurate knowledge of dis-

ease outbreaks leads to accurate decisions that can

encourage people for taking health behavioral measures to

reduce their susceptibility (Yu et al. 2013).

A rigorous analysis of signaling requires a well-defined

communications channels, including an ensemble of chan-

nel inputs as well as outputs that are conditional on each

possible input (Cover and Thomas 2006). In an epidemic

outbreak setting, it is not always clear what defines the

ensemble (Choi et al. 2008; Birrell et al. 2011). In this study,

the basic reproduction number (R0) of an epidemic serves as

the input to the channel, and the infected fraction of popu-

lation (I) serves as response output. Estimating channel

capacities requires estimating the entropy of probability

distributions (Cover and Thomas 2006). With available data
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Fig. 3 Mutual information estimates of without control (closed
circles), with vaccination (closed squares), and with antiviral drug

(closed triangles) varying with contact numbers of infectious

individuals (n) for subtype influenza a A (H1N1), b A (H3N2), and

c type B, respectively

Table 1 Risk estimates of infected fraction for virus-specific sea-

sonal and pandemic influenza without and with control (vaccination

and antiviral drug) under exceedance risks (ER) of 0.2, 0.5, and 0.9

Scenario Infected fraction of population

ER = 0.2 ER = 0.5 ER = 0.9

A (H1N1)

Seasonal w/o control 0.87 0.65 0.22

Seasonal w/vaccination 0.40 0.20 0

Seasonal w/antiviral drug 0.35 0.17 0

Pandemic w/o control 0.79 0.62 0.22

A (H3N2)

Seasonal w/o control 0.20 0.47 0.15

Seasonal w/vaccination 0.58 0.29 0

Seasonal w/antiviral drug 0 0 0

Pandemic w/o control 0.68 0.50 0.22

Type B

Seasonal w/o control 0.52 0.32 0.07

Seasonal w/vaccination 0.45 0.22 0

Seasonal w/antiviral drug 0.21 0.09 0

Pandemic w/o control 0.36 0.25 0.06
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synthesized comprehensively from the current scientific

literature on R0 and I, it becomes possible to estimate the

entropies required to establish the channel capacity for

accounting the known biases in entropy measurements due

to finite sample sizes (Cover and Thomas 2006).

In a system that linked risk perception spread and epi-

demic outbreak, it often forms networks with multiple

interactions (e.g., cross-contact of infectious individuals)

that make the analysis of statistical dependencies (Poletti

et al. 2009; Eames et al. 2012). In our study, we showed

that in an individual-based analysis, each pathway alone

carried just short of one bit of risk perception information.

However, the joint response of the two-pathway in a net-

work-based model, it carried just over one bit, enough to

reliably distinguish a single yes–no decision, such as the

presence or absence of R0 information. Therefore, the

multiple-pathway obtains their information directly from
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Table 2 Parameters of an influenza outbreak in an elementary school

used in the case study

Parameters Meaning Estimate

Na Population size 493

I Number of infected 1

R0 Basic reproduction number LN(2.1, 4.26)c

lb Death and birth rate 3.6 9 10-5 day-1

ta Recovery rate 0.14 day-1

a Adopted from Chen and Laio (2008)
b Adopted from Department of Statistics, Ministry of the Interior,

ROC. (http://www.mio.gov.tw/stat/)
c Lognormal distribution with a geometric mean 2.1 and a geometric

SD 4.26

Stoch Environ Res Risk Assess

123

Author's personal copy

http://www.mio.gov.tw/stat/


the incoming signal. Therefore, the mutual risk perception

information of the multiple-response taken together can

potentially be substantially increased.

The capacity of any channel is related to the nature of

the noise affecting the input–output relationship, and it can

be difficult to establish quantitative characteristics of the

noise sources present in a system that linked risk percep-

tion spread and an epidemic outbreak. If the mutual risk

perception information is significant, then the probability

that two responses came from a given signal is to be

replaced by the joint probability.

Theoretically, if a sufficient quantity of the relationships

between risk perception and behavioral responses can be

obtained experimentally, the maximum mutual risk percep-

tion information can give an indication of channel capacity

between the signal and its response, giving a bound on how

much information can be possibly communicated between

risk perception spread and disease outbreaks in a noisy and

incomplete surveillance system. Understanding how much

these aware individuals’ transfer information about their ori-

ginal risk perception in an imperfectly observed environment,

and to what extent this is possible, can ultimately lead to

effective control measure strategies. We provide a quantita-

tive framework along with specific examples of what can be

implicated, offering a greater sense of how to assess the

relationships between risk perception and health behavioral

change and the limitations of risk communication.

A limitation of this research is the inherence of a case

study, which focuses attention on the risk perception and

behavioral responses to influenza epidemics. In this study, the

analysis was limited in knowing (i) the behavior responses in

different age groups, (ii) the disease spread in the social

contact network, and (iii) the effects of information resources

on the risk perception and human behavior. Despite these

limitations, the strengths of this approach are (i) to establish a

preventive strategy for the initial infectious transmission

duration based on the knowledge that the different risk per-

ception information spreads such as vaccination and antiviral

drug uses can reduce the infection risk probability and (ii) to

construct an information theory-based risk perception model

for linking psychosexual behaviors and infectious disease in a

standard SIR model. Because population with high or low risk

perception information may affect their behavior responses.

In conclusion, this paper showed that the information

theory provides a natural approach for interpreting and

contextualizing the risk perception spread and its impact on

epidemic outbreaks. The present method is applicable to

any system related to specific risk perception and its

behavioral responses. We anticipate that we may gain

insights that come from showing that this problem can be

interpreted in an information theoretic context, providing a

template for future studies on the global risk perception of

disease outbreaks and human behavior responses. We

suggest that greater effort in collecting and reporting more

accurate risk perception information to elevate the rela-

tionships between public media and scientific with public

health professionals can improve decision-making by

public health agencies on emerging infectious diseases.
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