
Journal of Hydrology 499 (2013) 265–274
Contents lists available at SciVerse ScienceDirect

Journal of Hydrology

journal homepage: www.elsevier .com/ locate / jhydrol
Regional estimation of groundwater arsenic concentrations through
systematical dynamic-neural modeling
0022-1694/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.jhydrol.2013.07.008

⇑ Corresponding author. Tel.: +886 2 23639461; fax: +886 2 23635854.
E-mail address: changfj@ntu.edu.tw (F.-J. Chang).
Fi-John Chang ⇑, Pin-An Chen, Chen-Wuing Liu, Vivian Hsiu-Chuan Liao, Chung-Min Liao
Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC

a r t i c l e i n f o
Article history:
Received 6 February 2013
Received in revised form 23 May 2013
Accepted 3 July 2013
Available online 15 July 2013
This manuscript was handled by Laurent
Charlet, Editor-in-Chief, with the assistance
of Jose Daniel Salas, Associate Editor

Keywords:
Arsenic (As)
Groundwater quality
NARX network
Gamma test
Bayesian regularization
Indicator kriging
s u m m a r y

Arsenic (As) is an odorless semi-metal that occurs naturally in rock and soil, and As contamination in
groundwater resources has become a serious threat to human health. Thus, assessing the spatial and tem-
poral variability of As concentration is highly desirable, particularly in heavily As-contaminated areas.
However, various difficulties may be encountered in the regional estimation of As concentration such
as cost-intensive field monitoring, scarcity of field data, identification of important factors affecting As,
over-fitting or poor estimation accuracy. This study develops a novel systematical dynamic-neural mod-
eling (SDM) for effectively estimating regional As-contaminated water quality by using easily-measured
water quality variables. To tackle the difficulties commonly encountered in regional estimation, the SDM
comprises of a neural network and four statistical techniques: the Nonlinear Autoregressive with eXog-
enous input (NARX) network, Gamma test, cross-validation, Bayesian regularization method and indica-
tor kriging (IK). For practical application, this study investigated a heavily As-contaminated area in
Taiwan. The backpropagation neural network (BPNN) is adopted for comparison purpose. The results
demonstrate that the NARX network (Root mean square error (RMSE): 95.11 lg l�1 for training;
106.13 lg l�1 for validation) outperforms the BPNN (RMSE: 121.54 lg l�1 for training; 143.37 lg l�1 for
validation). The constructed SDM can provide reliable estimation (R2 > 0.89) of As concentration at unga-
uged sites based merely on three easily-measured water quality variables (Alk, Ca2+ and pH). In addition,
risk maps under the threshold of the WHO drinking water standard (10 lg l�1) are derived by the IK to
visually display the spatial and temporal variation of the As concentration in the whole study area at dif-
ferent time spans. The proposed SDM can be practically applied with satisfaction to the regional estima-
tion in study areas of interest and the estimation of missing, hazardous or costly data to facilitate water
resources management.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Arsenic (As) contamination in groundwater has been reported
and resulted in a massive epidemic of As toxication in several
countries such as Bangladesh, Vietnam, Cambodia, China and Tai-
wan. It is estimated that approximately 57 million people drink
As-contaminated groundwater with concentrations exceeding the
drinking water standard recommended by the WHO (World Health
Organization) (BGS-DPHE, 2001; Chakraborti et al., 2010). As pollu-
tion affects not only crop productivity and water quality but also
the quality of water bodies, which threatens the health of animals
and human beings by way of food chains. Long-term exposure to
As in drinking water has been implicated in a variety of health con-
cerns including cancers, cardiovascular diseases, diabetes and neu-
rological effects (National Research Council, 1999). Blackfoot
disease as well as cancers of the skin, bladder, lung and liver have
been associated with drinking As-contaminated groundwater
(Chiou et al., 1997; Rahman et al., 1999). As-contaminated ground-
water is derived naturally from As-rich aquifer sediments, and the
geochemistry of As can be rather complex (Stollenwerk, 2003).
Various hydrogeological and biogeochemical factors affecting As
concentration in groundwater have been detected, such as sedi-
ment mineralogy, microbial oxidation or reduction of As, ground-
water recharge, groundwater flow paths (Ford et al., 2006; Wang
et al., 2007, 2011; Xie et al., 2013), and the presence of fractures
in bedrock formations (Ayotte et al., 2003; Liao et al., 2011). Even
though the processes controlling the release of As into groundwa-
ter systems have been extensively discussed over the past decade,
the exact chemical conditions and reactions leading to As mobiliza-
tion still remain a subject of intense debate (Goovaerts et al., 2005;
Polizzotto et al., 2006; Winkel et al., 2008). Moreover, the high var-
iability of arsenic concentration can occur within a short distance
and/or in different well depths due to the diversity in geology
and geomorphology (Serre et al., 2003; Yu et al., 2003). Besides,
the detection of As contamination in groundwater by using
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graphite atomic absorption spectrophotometry or inductively cou-
pled plasma mass spectroscopy can be manpower and cost inten-
sive. Consequently, how to adequately estimate As
concentrations in complex hydro-geological systems is a crucial
and challenging issue.

Artificial neural networks (ANNs) are a biologically motivated
method and are considered as powerful alternative computational
approaches to modeling complex systems. In the last decades,
ANNs have been widely applied with success to various water re-
sources problems, such as rainfall–runoff modeling (Antar et al.,
2006; Chiang et al., 2007), groundwater (Krishna et al., 2008; Nik-
olos et al., 2008), and water quality (Khalil et al., 2011; McNamara
et al., 2008; Sahoo et al., 2006). Recurrent neural networks (RNNs)
are powerful nonlinear models capable of extracting dynamic
behaviors from complex systems through internal recurrence and
have attracted much attention for years (Assaad et al., 2005; Chang
et al., 2002; Chiang et al., 2004, 2010; Ma et al., 2008). The Nonlin-
ear Autoregressive with eXogenous input (NARX) network (Lin
et al., 1996), a subclass of RNNs, can suitably build the temporal
relationship between input and output patterns because the net-
work’s input vector is cleverly built through two tapped-delay ele-
ments: one from the input signal and the other from the network’s
output (Menezes and Barreto, 2008). NARX networks were applied
to various nonlinear systems (Ali, 2009; Ardalani-Farsa and Zolfag-
hari, 2010; Hong, 2012). However, its feasibility as a nonlinear tool
for time series modeling and prediction of different disciplines
such as hydrological systems and water quality assessment has
not been fully explored yet. Therefore, the practical meaning and
importance of recurrent connections from the NARX network’s
output when dealing with regional estimation problems will be ex-
plored in this study.

Groundwater quality parameters exhibit considerable spatial
variability. Geostatistical methods are generally based on the
regionalized variable theory that delineates the variation behavior
in an area and exhibits both randomly and spatially structure prop-
erties (Matheron, 1963; Shin and Salas, 2000). One of the most
important geostatistical methods is the kriging method, which is
an interpolation method for deriving data at unsampled locations
by considering the spatial dependence of samples. The kriging
method has been applied to the modeling of spatiotemporal distri-
butions in many disciplines such as hydrological problems (Barga-
ouia and Chebbib, 2009), mapping topsoil fertility (Webster and
McBratney, 1987), and As contamination (Goovaerts et al., 2005;
Juang and Lee, 1998; Liu et al., 2004). Geostatistical tools are
increasingly coupled with the geographic information system
(GIS) for applications that characterize spatiotemporal structures,
and spatially interpolate scattered measurements are used to con-
struct spatially exhaustive layers of information (Pijanowski et al.,
2002; Goovaerts et al., 2005). The estimation of individual-level
historical exposure of study participants to arsenic can be obtained
from the visualized spatiotemporal information of the spatiotem-
poral mobility of study participants and their surrounding
environment.

The hyper-endemic blackfoot disease in the Yun-Lin County of
Taiwan has been verified to be associated with high As concentra-
tions in groundwater (Chen et al., 1995; Chiou et al., 1997). The
residents had long-term exposed themselves to As through various
paths such as ingestion of aquacultural and agricultural products,
and thus dangerously posed carcinogenic risks to their health
(Liu et al., 2008). Due to great concern for the potential effects of
As on human health, there is a growing need for efficiently model-
ing the spatial distribution of As contamination in groundwater.
One of the popular modeling approaches in use is the multiple lin-
ear regression (MLR), but this approach, however, may fail to esti-
mate the spatial distribution of As contamination due to the great
variability of As concentration and complex nonlinear processes
involved in geology and geomorphology. Lately, using ANNs for
the prediction of heavy metal concentration in groundwater has
been attempted and gained a reasonably good degree of success
(Chang et al., 2010; Cho et al., 2011; Giri et al., 2011; Mondal
et al., 2012; Purkait et al., 2008). The modeling results indicated
that ANN techniques could produce higher prediction accuracy
than the conventional methods such as MLR. These studies were
mostly dedicated to exploring the applicability of static ANNs, such
as the back propagation neural network (BPNN), for building the
relationship between As concentration in groundwater and hy-
dro-geological parameters in arsenic-affected areas. Nevertheless,
the natural characteristics of hydrogeological processes are not
only complex but also dynamic. The static neural networks might
fail to establish reliable models for predicting the dynamical fea-
tures, such that the delivered relationship might be simply the pos-
sible impacts of factors on temporal characteristics of local
environments. Consequently, the comprehensive analysis of dy-
namic hydrogeological features and estimation of the variability
in As concentration over arsenic-affected regions remains a great
challenge that needs to be overcome.

To construct a reliable estimation model of case competence, it
is important to understand the impacts of factors on real compe-
tence, the interaction and evolvement of factors within an opera-
tion system, and the measurements of factors. In this study, we
aim to present a novel model of case competence with good accu-
racy and predictability, in which certain assumptions are made for
the nature of cases and case-bases. Consequently, a novel system-
atical dynamic-neural modeling (SDM) incorporated with a dy-
namic ANN and four advanced statistical techniques is developed
to build a regional As concentration estimation model for decom-
missioned wells based on the easily-measured water quality vari-
ables of nearby functioning wells. The proposed SDM is expected to
offer an applicable and useful reference to decision makers for
dealing with groundwater management and preventing residents
from drinking or using toxic groundwater.
2. Materials

2.1. Study area

Yun-Lin County is located in the southwestern alluvial fan of the
Chou-Shui River in Central Taiwan (Fig. 1). Based on hydrogeolog-
ical settings, the southern Choushui River alluvial fan is classified
mainly into the proximal-fan, the mid-fan and the distal-fan areas
(Central Geological Survey, 1999), in which the coastal region of
the Yun-Lin County is located in the distal-fan area. The hydrogeo-
logical formation of the distal-fan can be divided into six inter-lay-
ered sequences: three marine sequences and three non-marine
sequences. The non-marine sequences with coarse sediments
(from medium sand to highly permeable gravel) are considered
as aquifers, whereas the marine sequences with fine sediments
are considered as aquitards. The annual average precipitation is
1417 mm and mainly occurs during wet season (i.e. May and Sep-
tember). Aquaculture is the primary revenue source for the inhab-
itants in the coastal region of Yun-Lin County. Due to high demand
but limited water supply, groundwater has become a vital water
resource in this area for decades. In 1992 the Water Resources
Agency installed 26 groundwater monitoring wells (well depths
range from 8 m to 110 m) distributed in this area for recording
groundwater quality, particularly As pollution and other potential
contamination in groundwater. Approximately 757 million m3 of
groundwater was extracted annually from the aquifers in this area,
of which 268 million m3 was considered to be over-pumped (Liu
et al., 2001). High As concentration (93.2 ± 161 lg l�1) was de-
tected in monitoring wells in this area (WHO drinking water



Fig. 1. Locations of 26 groundwater wells at Yun-Lin coastal area, Taiwan.
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standard: 10 lg l�1). Liu et al. (2006) indicated over-pumping
groundwater induces dissolved oxygen and increases As mobility
in water and the relatively high As content has accumulated and
been deposited in the marine sequences with fine sediments.

2.2. Data collection and preliminary analysis

In this study, sampling data of groundwater quality variables
were collected quarterly at 26 wells between 1992 and 1999,
and the field sampling methods of As concentration was deter-
mined by hydride generation followed by atomic absorption spec-
troscopy, APHA Method 3500-arsenic Part B (APHA, 1992). The
maintenance of groundwater monitoring wells is laborious and
cost intensive, and therefore only six wells (#3, #6, #7, #12, #17
and #19) have continued monitoring groundwater quality after
1999. The proposed method intends to estimate the As fluctuations
of 20 un-monitored wells based on other water quality variables
that are easier to measure. We assume that 20 un-monitored wells
are ungauged sites and 6 monitored wells are gauge stations
(Fig. 1).

A total of 270 (=45 � 6 wells) data sets of twelve water quality
variables [power of hydrogen (pH), alkalinity (Alk), cadmium ion
(Ca2+), chlorine ion (Cl�), total dissolved solid (TDS), electrical con-
ductivity (EC), sodium ion (Na+), sulfate ion (SO2�

4 ), potassium ion
(K+), dissolved oxygen (DO), magnesium ion (Mg2+) and tempera-
ture (Temp)] were collected at six gauge stations (wells) between
1992 and 2005, which are used for model construction in this
study. Table 1 shows the well depth, mean and standard deviation
(SD) of groundwater quality variables at these 6 gauge stations, in
which high mean and variation of As concentration occur, espe-
cially at wells #6 and #7. The depths interval of the three aquifers
were <60, 120–200, and 280–350 m, respectively (Agricultural
Engineering Research Center, 2008). This indicates that the
6 monitored wells (well depth: 8.4–22.8 m) are in the same con-
fined aquifer. Table 2 shows that all the correlation coefficients be-
tween As and twelve water quality variables are smaller than 0.34
(in an absolute sense), which implies the difficulty in determining
non-trivial factors that affect As concentration based solely on such
traditional correlation analysis. Therefore, we adopt a more
sophisticated method to effectively extract non-trivial factors from
water quality variables for building an As concentration estimation
model.
3. Methods

The proposed SDM incorporates a dynamical-neural network
with four advanced statistical techniques to tackle regional estima-
tion problems, and its implementation procedure is shown in
Fig. 2. The SDM first effectively extracts the non-trivial factors that
significantly affect the fluctuations of As concentrations through
the Gamma test (GT). The NARX network is then utilized to obtain
As concentration at ungauged sites with inputs consisting of the
extracted non-trivial factors and the estimated As concentrations
from recurrent connections, and the Bayesian regularization meth-
od is configured to control the network complexity for preventing
over-fitting. The cross validation technique is used to produce a
low-bias estimator of the generalizability and thus provides a sen-
sible criterion for model selection in the calibration stage. Finally,
the indicator kriging is implemented to derive the probability
map of As concentrations for detecting unsampled areas with As
concentrations exceeding the WHO drinking water standard. The
methods for use in this study are introduced as follows:
3.1. Nonlinear Autoregressive with eXogenous input (NARX) network

The NARX network is an important class of dynamic discrete-
time nonlinear systems. Fig. 3 shows the architecture of the NARX
network used in this study. The NARX network consists of three
layers (input, hidden and output layers) and produce recurrent
connections from the output which may delay several unit times
to form new inputs. s�1 is the unit time delay, and dZ P 1 is the
output-memory order. Therefore, this nonlinear system can be
mathematically represented by the following equation:
zðtÞ ¼ f ½zðt � 1Þ; . . . ; zðt � dzÞ; UðtÞ� ð1Þ
where U(t) and z(t) denote the input vector and output value at the
discrete time step t, respectively. And f(�) is the nonlinear mapping
function.

There are two ways to train the NARX network. The first mode is
the Series-parallel (SP) mode, where the output’s regressor in the
input layer is formed only by the target (actual) values of the sys-
tem, d(t):
zðtÞ ¼ f ½dðt � 1Þ; . . . ;dðt � dzÞ; UðtÞ� ð2Þ

The other alternative is the Parallel (P) mode, where estimated
outputs are fed back into the output’s regressor in the input layer,
which can also be mathematically represented as Eq. (1). It is quite
common for a regional estimation model to perform poorly at
ungauged sites, which is mainly because the information of target
variables is not always available (either lack of or missing) at unga-
uged sites. To mitigate this defect, the NARX network can be
trained in the SP mode by using a few but available target values.
Then the trained network is adopted to P mode for estimating the
missing target values at the ungauged site.



Table 1
Well depth, mean and SD (standard deviation) of groundwater quality variables during 1992 and 2005 at six gauge stations (wells).

Item Unit #3 #6 #7 #12 #17 #19
Well depth m 22.8 17.0 19.0 19.6 8.4 14.9

Mean SDa Mean SD Mean SD Mean SD Mean SD Mean SD

As ug/L 75.9 ± 67.6 177.0 ± 109.5 450.4 ± 314.3 43.7 ± 30.7 39.5 ± 47.6 38.1 ± 30.7
Temp. �C 25.8 ± 1.0 25.7 ± 0.9 25.8 ± 1.0 25.9 ± 1.3 26.1 ± 1.4 26.1 ± 1.3
pH 7.7 ± 0.4 7.9 ± 0.4 7.9 ± 0.2 7.7 ± 0.5 7.6 ± 0.4 7.6 ± 0.3
EC lmho/cm

25 �C
23,383 ± 18,221 16,509 ± 8317 2209 ± 912.2 21,795 ± 13,886 1408 ± 970.8 17,295 ± 7677

DO uS/cm 1040 ± 7347 419.0 ± 2923 51.0 ± 349.1 1.3 ± 1.0 1.3 ± 1.0 1.3 ± 1.0
Alk ug/L 356.2 ± 137.3 560.2 ± 138.5 504.4 ± 84.8 384.1 ± 123.9 315.0 ± 55.7 504.2 ± 143.0
TDS ug/L 15,822 ± 10,285 10,963 ± 4149 1432 ± 626.2 13,994 ± 7302 885.9 ± 637.7 11,790 ± 5426
Cl- ug/L 6851 ± 4652 4479 ± 1819 391.9 ± 215.6 5945 ± 3419 233.6v236.3 4937 ± 2155

SO2�
4

ug/L 690.9 ± 784.1 512.0 ± 270.8 102.9 ± 82.8 960.0 ± 588.1 64.5 ± 57.4 515.6 ± 467.0

Na+ ug/L 3772 ± 2604 2708 ± 998.5 293.5 ± 90.8 3297 ± 1806 179.2v121.7 2756 ± 1133
K+ ug/L 201.1 ± 105.6 145.2 ± 46.1 38.7 ± 15.5 133.4 ± 57.6 17.0v11.4 142.4 ± 91.9
Mg2+ ug/L 598.8 ± 954.6 254.7 ± 205.5 73.2 ± 30.3 427.5 ± 296.4 32.2v22.6 323.8 ± 156.3
Ca2+ ug/L 216.0 ± 133.1 74.9 ± 50.1 59.0 ± 19.7 281.8 ± 174.3 88.0 ± 46.7 150.4 ± 75.8

a Standard deviation.

Table 2
Correlation matrix of As concentration and water quality variables collected at six gauge stations (wells) during 1992 and 2005.

As pH Alk Ca2+ Cl� TDS EC Na+
SO2�

4
K+ DO Mg2+ Temp.

As 1.00 0.32 0.13 �0.34 �0.32 �0.31 �0.30 �0.30 �0.27 �0.26 0.19 �0.18 �0.07
pH 1.00 0.46 �0.56 �0.48 �0.43 �0.51 �0.44 �0.47 �0.37 0.26 �0.33 �0.03
Alk 1.00 �0.41 �0.27 �0.20 �0.28 �0.22 �0.33 �0.16 0.14 �0.17 0.04
Ca2+ 1.00 0.77 0.71 0.76 0.73 0.74 0.62 �0.22 0.52 0.02
Cl� 1.00 0.93 0.97 0.97 0.88 0.87 �0.16 0.55 �0.05
TDS 1.00 0.93 0.93 0.81 0.84 �0.18 0.51 �0.07
EC 1.00 0.96 0.88 0.86 �0.19 0.53 �0.06
Na+ 1.00 0.84 0.88 �0.19 0.52 �0.09

SO2�
4

1.00 0.72 �0.08 0.42 �0.06

K+ 1.00 �0.11 0.47 �0.07
DO 1.00 �0.12 �0.02
Mg2+ 1.00 0.02
Temp. 1.00

Training data set 

from gauge stations

Gamma test

NARX network in Series - parallel 

(SP) mode with Bayesian    

regularization method

Testing data set 

from ungauged sites

Indicator Kriging

Cross validation

NARX network in Parallel (P) mode 

Determine the best input 
combination of groundwater 

quality variables  

Prevent the over-fitting problem

Estimate Arsenic 
concentration at ungauged 

sites

Transform point estimation to a 
regional probability map 

Deal with data scarcity 

 

Fig. 2. Implementation procedure of the proposed SDM for regional analysis.
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τ −1

τ −1

Fig. 3. Architecture of the NARX with recurrent connections from output-delay
terms in this study.
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3.2. Gamma test (GT)

The Gamma test (GT), presented by Koncar (1997) and Agalbj-
orn et al. (1997), is a data analysis technique for assessing the ex-
tent to which a given set of M data points can be modeled by an
unknown smooth nonlinear function.

Suppose a set of input–output observation data is given in the
form of:

½ðxi; yiÞ;1 6 i 6 M� ð3Þ

where vectors xi are d dimensional vectors (with a record length of
M) and the corresponding outputs yi are scalars. The underlying
relationship of the system is expressed as

y ¼ f ðx1 . . . xdÞ þ r ð4Þ

where f is an unknown smooth function, and r denotes a random
variable that represents noise. The Gamma statistic (C) is an esti-
mate of the model output’s variance that cannot be accounted for
through a smooth data model. The GT is assessed based on the
kth (1 6 k 6 p) nearest neighbor XN(i,k) for each vector Xi, and then
the GT can be derived from the Delta function of input vectors:

dMðkÞ ¼
1
M

XM

i¼1

jXi;k � Xij2ð1 6 k 6 pÞ ð5Þ

where |���| is the Euclidean distance, and the corresponding Gamma
function of the output values is given in Eq. (4). The number of p de-
pends on the density of sampling (Koncar, 1997). In this study, the
number of p is determined as the value that produces the minimum
C value through trial and error (p ranges from 10 to 50), and conse-
quently p is determined as 10.

cMðkÞ ¼
1

2M

XM

i¼1

jyNði;kÞ � yij
2ð1 6 k 6 pÞ ð6Þ

where yN(i,k) is the corresponding y-value for the kth nearest neigh-
bor of Xi, in Eq. (3). For computing C, a least squares regression line
is constructed for p points (dM(k),cM(k)) as Eq. (5):

c ¼ Adþ C ð7Þ

where A is the gradient.
Performing a single Gamma test is a fast procedure, which can

provide the noise estimate (C value) for each subset of input vari-
ables. When the subset for which its associated C value is closest
to zero, it can be considered as ‘‘the best combination’’ of input
variables.

Several studies discussed about the GT theory and its applica-
tions in time series forecasting (Durrant, 2001; Tsui et al., 2002).
Lately, research findings indicate it is suitable and effective to com-
bine ANNs with the GT for identifying non-trivial input variables
and thus reduces the input dimensions as well as produces precise
outputs of ANNs (Moghaddamnia et al., 2009; Noori et al., 2010a,b,
2011). Therefore, the NARX network combines the GT to first ex-
tract non-trivial factors affecting As concentrations from twelve
water quality variables in this study.

3.3. Bayesian regularization method

The regularization method proposed by MacKay (1992) can im-
prove the generalizability of a neural network through minimizing
an objective function that constrains the value of network weights.
The idea is based on that the true underlying function is assumed
to have a degree of smoothness controlled by the network param-
eters, and the network response will be smooth as the values of
parameters are kept small. Thus the network is able to sufficiently
represent the true function, rather than capture the noise. The
objective function of the network in the regularization method is
given by

MðWÞ ¼ bED þ aEW ð8Þ

where a, b are regularization parameters. ED is the mean square er-
ror of network outputs. EW is a penalty term for network complexity
in the regularization method, in which smaller values of network
weights imply lower connection complexity for network weights.
ED and EW are defined as follows:

ED ¼
1
2

Xm

t¼1

ðdðtÞ � zðtÞÞ2 ð9Þ

where m is the sample size.

EW ¼
1
2

Xn

i¼1

w2
i ð10Þ

where wi is weight value of the network, and n is the number of
weights.

Then the Bayesian theory can be utilized to determine the reg-
ularization parameters (a and b) at the minimum WMP of M(W) and
cp presenting the effective number of network parameters can also
be calculated. The detailed formulation can be found in MacKay
(1992).

3.4. Cross validation

Cross-validation, which involves partitioning data into training
and testing sets, is commonly used to obtain a reliable estimation
for model performance (Kohavi, 1995; Stone, 1974). The k-fold
cross-validation is utilized in this study. The k results from the
folds can be further averaged to produce a single estimation error.
Therefore, the averaged estimation errors derived from different
initial parameter settings are compared to choose the most appro-
priate model for use in the testing stage. In brief, cross validation
can produce a low-bias estimator for the generalization abilities
of a statistical model, and therefore provides a sensible criterion
for model selection and performance comparison, especially for
samples that are hazardous, costly or difficult to collect, such as
the As concentration in this study.

3.5. Indicator kriging (IK) method

The IK is a non-parametric geostatistical technique that in-
volves the transformation of one variable to a binary response
(0,1) (Cressie, 1992; Journel, 1983). In this study, to reduce the
influence of the extreme values of the estimated As concentration
on the variogram and mitigate the uncertainty produced by the
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NARX model, the IK is utilized to illustrate the variation of As con-
centration for the whole study area.

The geostatistical method is used to estimate the probability of
exceeding a specific cut-off value (threshold) at a given location. In
this study, the cut-off value is adequately set as 10 lg l�1, the WHO
drinking water standard for As concentration. Therefore, the IK can
derive the probability map that discloses the probability of As con-
centration exceeding the WHO drinking water standard in the
study area.
4. Results and discussion

4.1. Extracting effective water quality factors

The six wells (#3, #6, #7, #12, #17 and #19) that have sufficient
water quality data are assumed as gauge stations for As concentra-
tion and are utilized by the GT. Data sets of twelve water quality
factors are first scaled to [�1,1], and a total of 4095 (212 � 1) C val-
ues corresponding to all possible input combinations are derived
through the GT. The derived C values are next sorted in an ascend-
ing order, in which C values smaller than the 10th percentile
(C10 = 0.0089) are classified as the best group (FC6C10 ) whereas C
values bigger than the 90th percentile (C90 = 0.136) are classified
as the worst group (FCPC90 ). Fig. 4 shows the result of the GT, where
blue bars represent the occurrence frequency of variables in the
best group (FC6C10 ) and red bars represent the occurrence fre-
quency of variables in the worst group (FCPC90 ). Non-trivial factors
that significantly affect fluctuations of As concentration can then
be identified as the variables associated with higher blue bars
and lower red bars simultaneously, and such ratios are shown by
the dotted line in Fig. 4. And therefore we can extract a subset of
input variables that ranks top three in the ratio of FC6C10 to
FCPC90 . The GT results indicate that Alk, Ca2+ and pH value are
the non-trivial factors for use in the estimation models (the NARX
network and BPNN).

These results are consistent with several studies, which indi-
cated the increase in As leaching efficiency depends on high pH
values and Alk concentration (Anawar et al., 2004; Kim et al.,
2000; Kuo and Chang, 2010; Liu et al., 2003; Park et al., 2006;
Pierce and Moore, 1982). The major C-containing species in the
reducing condition n groundwater are HCO�3 and H2CO3, which
cause high pH values and Alk concentration (Wang et al., 2007).
In addition, salinization and As enrichment are two main hydrog-
eochemical characteristics in the Yun-Lin coastal area, and they
were estimated by the factor analysis (FA) (Wang et al., 2007).
Respectable cation, such as calcium ions, and anion contents car-
ried by seawater intrusion initially increased the ion strength in
groundwater and induced As desorption (Appelo et al., 2002; Keon
et al., 2001). On the one hand, As anions could sorb or bind using
carbonates in natural systems (Bauer et al., 2008; Rothwell et al.,
Fig. 4. Determination of non-triv
2009). Therefore the relationship between As and calcium ions
might be caused by the dissolution of calcium arsenates and/or
the competitive desorption of calcium (Bothe and Brown, 1999;
Mihaljevic et al., 2003; Nishimura and Robins, 1998). In the Yun-
Lin coastal area, the shallow aquifer has suffered serious saliniza-
tion that affects the concentration of the calcium ion due to the
over-pumping of groundwater. This exercise gives evidence that
the GT can effectively identify non-trivial and meaningful factors
that affect the fluctuations of As concentration, compared with
the identification difficulty raised by the traditional correlation
matrix shown in Table 2.
4.2. Estimating As concentration at ungauged sites by the NARX
network

In this study, the NARX network is proposed to estimate the re-
gional As concentration in Yun-Lin County. Variables Alk, Ca2+ and
pH determined by the GT are used as exogenous inputs to the
NARX network. The data sets collected from six gauge stations be-
tween 1992 and 2005 are used for model calibration. Therefore, the
NARX network in the SP mode trained by the Bayesian regulariza-
tion method is calibrated by a 30-fold cross validation. The log-sig-
moid function and the linear function are the transfer functions
used in the hidden and output layers of the NARX network, respec-
tively. The most appropriate NARX network comprises two output-
memory orders and 20 neurons in the hidden layer, and the effec-
tive number of network parameters (cp) is 23.74.

To demonstrate the effectiveness and usefulness of the NARX
network established, the backpropagation neural network (BPNN)
that represents a classical type of static ANNs is implemented for
comparison purpose. The constructed BPNN consists of the same
input variables as those of the NARX network and six neurons in
the hidden layer. The hyperbolic tangent sigmoid function and
the linear function are the transfer functions used in the hidden
and output layers of the BPNN, respectively. The BPNN trained with
the Levenberg–Marquardt optimization algorithm is also cali-
brated by a 30-fold cross validation. The results show the average
RMSE of the NARX network in the training and validation phases
are 95.11 and 106.13 lg l�1, respectively, whereas the average
RMSE of the BPNN in the training and validation phases consider-
ably increases to 121.54 and 143.37 lg l�1, respectively. The re-
sults demonstrate that the NARX network has much better
performance than the BPNN. It is found large errors (average
RMSE) produced by both models, this is mainly due to the high
uncertainty attached to the sampled values, where the mean
(138.26 lg l�1) and standard deviation (205.25 lg l�1) of As con-
centration contributes to the poor model accuracy.

It is worth noting that the effective number of network
parameters (cp) has been optimized from 141 to 23.74 after the
re-calibration of the NARX network by using the Bayesian
ial factors by the GT results.



Fig. 5. Scatter plots of observed and estimated As concentration (conc.) derived
from the NARX network and BPNN at 20 ungauged sites from 1995 to 1999.
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regularization method. This demonstrates that the Bayesian regu-
larization method can significantly reduce the effective number
of network parameters and avoid the over-fitting problem caused
in a rather complex network structure. As a result, the NARX net-
work produces suitable results and has similar performance in
the training and validation phases (average RMSE: 95.11 lg l�1

and 106.13 lg l�1 accordingly). In contrast, the BPNN requires few-
er neurons in the hidden layer to prevent the over-fitting problem
but still performs worse in the validation phase (average RMSE:
143.37 lg l�1).

After model configuration, a total of 100 (=20 � 5 months) As
concentration data collected at the assumed 20 ungauged sites in
the five monitoring months (January 1995, October 1996, October
1997, September 1998 and January 1999) are utilized to test the
two constructed models. In addition to RMSE, the normalized
mean squared error (NMSE), R-square value (R2) and F test are also
used as performance criteria in the testing phase. The NMSE is de-
fined as:

NMSE ¼
Pn

i¼1ðOi � bZiÞ
2

Pn
i¼1ðOi � OÞ2

ð11Þ

where Oi and Ẑi are the observed and estimated As concentration
from the ith assumed ungauged sites in the same year, respectively,
�O represents the average of observed As concentrations in a certain
year, and n is the length of data.

The results of model comparison in the testing phase are sum-
marized in Table 3, which indicates the NARX network has much
smaller RMSE as well as NMSE values and higher R2 values than
the BPNN. Besides, when assessing the results of the F test, the null
hypothesis is rejected only at the 5% level of the estimation values
in October 1996 for the NARX network, whereas the null hypothe-
sis is rejected in January 1995, October 1996 and January 1999 for
the BPNN. Fig. 5 shows the scatter plots of observed and estimated
As concentrations in five different months during 1995 and 1999
derived from the NARX network and BPNN. The estimation values
obtained from the NARX network are close to the ideal line and
only have few underestimations at extremely high As concentra-
tions, whereas the BPNN overestimates As concentrations at values
lower than 200 lg l�1 and seriously underestimates As concentra-
tions at values higher than 200 lg l�1.

In sum, the NARX network adequately utilizes the information
of model outputs through recurrent connections to the network it-
self for producing reliable estimations of As concentrations at 20
ungauged sites. Owing to the implementation of the Bayesian reg-
ularization method into the NARX network, the network shows
impressive generalizability and performs well in the testing phase,
Table 3
Estimation performance of the NARX network and BPNN for As concentration at 20 ungau

Estimation time RMSE (lg l�1) NMSE R2

NARX network
1995 January 57.31 0.19 0.89
1996 October 91.53 0.29 0.89

1997 October 40.24 0.11 0.96
1998 September 48.34 0.26 0.91
1999 January 41.35 0.07 0.98

BPNN
1995 January 109.02 0.69 0.41

1996 October 158.70 0.88 0.17

1997 October 142.42 1.35 0.18
1998 September 114.63 1.47 0.29
1999 January 140.21 0.85 0.25

a Standard deviation.
b The null hypothesis is rejected at the 5% level (p-value < 0.05).
which can be proved through similar NMSE values in five testing
years (Table 3).
4.3. Deriving the risk map of As concentration through the IK

From the previous section, the NARX network can provide reli-
able point estimation of As concentration at 20 ungauged sites. The
IK is employed to estimate the regional spatial distribution and to
compute the probability of the exposure to high As pollution in
unsampled areas. Because the WHO drinking water standard for
As concentration is 10 lg l�1, the investigation of this study mainly
focuses on the threshold of 10 lg l�1. Therefore, the estimated As
concentration from the NARX network at 20 ungauged sites and
ged sites from 1995 to 1999 in the testing phase.

F test
p-value

Data mean (lg l�1) Data SDa (lg l�1)

0.105 85.63 134.80

0.010b 90.71 173.61

0.291 64.51 125.99
0.731 47.83 97.02
0.816 75.57 155.91

0.025 85.63 134.80

0.002 90.71 173.61

0.070 64.51 125.99
0.302 47.83 97.02

0.004 75.57 155.91



Fig. 6. Exceeding probability maps of As concentration under the threshold of WHO drinking water standard (10 lg l�1) from (a) 1995 to (e) 1999.
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the observed As concentration at six gauge stations are utilized to
construct the semivariogram models for the IK.

The NARX network coupled with the IK can illustrate the un-
known probability of the exposure to high As concentrations at
neighboring areas of all 26 wells. If the observed and estimated
As concentrations exceed the threshold set in the adjacent region,
the IK will assign a high probability of concentration in the region
of interest. The probability maps of As concentration under the
threshold of WHO drinking water standard (10 lg l�1) in different
time spans are shown in Fig. 6. In January 1995, high exceeding
probabilities (>10 lg l�1) of As concentration occurred in northern
and southern areas, whereas both the surrounding area of well #5
and the central area (located between Old Huwei River and New
Huwei River) had low exceeding probabilities of As concentration.
In October 1996, the exceeding probability was high in the south-
ern area of the Old Huwei River. In contrast, the exceeding proba-
bility of As concentration was gradually and significantly mitigated
in the central and northern areas from October 1997 to January
1999, and the Old Huwei River could be deemed as a clear bound-
ary between high and low As concentrations in an exceeding prob-
ability sense. These risk maps reveal the high arsenic-prone areas.
As a result, the information of the risk maps derived from the IK of
the proposed SDM can consequently help decision makers manage
groundwater quality and thus prevent residents from drinking or
using toxic groundwater.

5. Conclusion

The blackfoot disease in the Yun-Lin Countyof Taiwan has been
verified to be associated with high As concentrations in groundwa-
ter. Residents had used high-Artesian well water for years and had
long-term exposed themselves to As and thus dangerously posed
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carcinogenic risks to their health. Due to great concern for the po-
tential effects of As on human health, there is a growing need for
efficiently modeling the presence and amount of As in groundwa-
ter. In this study, we propose a systematical dynamic-neural mod-
eling (SDM) that incorporates a dynamic-neural network with four
advanced statistical techniques to adequately estimate As concen-
tration in the area of Yun-Lin County in southern Taiwan. The mod-
eling processes and related results suggest that (1) the GT can
effectively extract non-trivial factors that affect the target variable;
(2) the Bayesian regularization method that constrains the net-
work’s weight values does improve the generalizability of the net-
work; (3) the cross validation can produce a low-bias estimator of
the generalization ability of networks; (4) the NARX network can
provide reliable estimation of As concentration at both gauged
and ungauged sites; and (5) the IK suitably derives the probability
maps of As concentration under the threshold of WHO drinking
water standard in the study area.

The results demonstrate that the NARX network has much bet-
ter performance than the BPNN. The average RMSE of the NARX
network in the training and validation phases are 95.11 lg l�1

and 106.13 lg l�1, respectively, whereas the average RMSE of the
BPNN in the training and validation phases considerably increases
to 121.54 lg l�1 and 143.37 lg l�1, respectively. The configured
NARX network can suitably and accurately estimate As concentra-
tions at 20 ungauges sites in five testing years (all R2 are high
(0.82–0.95)), whereas the BPNN fails to provide suitable estima-
tions (all R2 are low (0.17–0.41)). It proves the recurrent connec-
tions of model output information (As concentrations) to the
NARX network itself makes significant contribution to the accuracy
of the regional estimation model.

Finally, the IK can suitably derive the probability maps of As
concentration under the threshold of the WHO drinking water
standard in the study area, which is meaningful and useful for
the authorities to manage water resources so that prevent resi-
dents from using and drinking As-contaminated groundwater. In
particular, the construction of the proposed SDM requires As con-
centration data at six gauge stations and data of three easily-mea-
sured water quality variables (Alk, Ca2+ and pH) at six gauge
stations and the other 20 ungauged sites. It merely requires data
of three three-easily measured water quality variables for the con-
structed SDM to effectively and suitably estimate As concentra-
tions at ungauged sites. This approach will significantly reduce
the manpower cost of monitoring wells and effectively provide
reliable estimation of As concentration at ungauged sites.In sum-
mary, the proposed SDM modeling approaches to the estimation
of As concentration using on-site measurement data of other water
quality variables can be an alternative way to quantify the As con-
tamination and to provide predictive information for better public
health management.
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