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Fluctuations in air pollution give risk warning signals of asthma
hospitalization
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h i g h l i g h t s

� Fluctuations in air pollution may imply risks of asthma hospitalization.
� Statistical indicators of air pollution and asthma hospital admissions are associated.
� Statistical indicators based regression model can forecast asthma hospitalizations.
� Variation and skewness of are leading indicators to detect asthma admission.

a r t i c l e i n f o

Article history:
Received 29 January 2013
Received in revised form
7 April 2013
Accepted 15 April 2013

Keywords:
Asthma hospitalization
Air pollution
Statistical indicators
Fluctuation
Warning signal
Risk

a b s t r a c t

Recent studies have implicated that air pollution has been associated with asthma exacerbations.
However, the key link between specific air pollutant and the consequent impact on asthma has not been
shown. The purpose of this study was to quantify the fluctuations in air pollution time-series dynamics
to correlate the relationships between statistical indicators and age-specific asthma hospital admissions.
An indicators-based regression model was developed to predict the time-trend of asthma hospital ad-
missions in Taiwan in the period 1998e2010. Five major pollutants such as particulate matters with
aerodynamic diameter less than 10 mm (PM10), ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2),
and carbon monoxide (CO) were included. We used Spearman’s rank correlation to detect the re-
lationships between time-series based statistical indicators of standard deviation, coefficient of variation,
skewness, and kurtosis and monthly asthma hospitalization. We further used the indicators-guided
Poisson regression model to test and predict the impact of target air pollutants on asthma incidence.
Here we showed that standard deviation of PM10 data was the most correlated indicators for asthma
hospitalization for all age groups, particularly for elderly. The skewness of O3 data gives the highest
correlation to adult asthmatics. The proposed regression model shows a better predictability in annual
asthma hospitalization trends for pediatrics. Our results suggest that a set of statistical indicators inferred
from time-series information of major air pollutants can provide advance risk warning signals in complex
air pollution-asthma systems and aid in asthma management that depends heavily on monitoring the
dynamics of asthma incidence and environmental stimuli.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

It is generally recognized that air pollution is the major envi-
ronmental stimuli which may induce respiratory diseases exacer-
bations (Chen et al., 2012). Asthma is an allergic respiratory disease
affecting millions of population worldwide. Since the growing
epidemic of asthma, recent studies had takenmore efforts to predict
the disease progression and control (Frey et al., 2005; Thamrin et al.,

2011). Several statistical methods have been applied to assess the
severity and control of asthma (Que et al., 2001; Freyet al., 2011). It is
known that much more clinical and basic researches are needed to
understand the asthma due to the complexity of disease progres-
sion. Plausibly, effective assessment approaches are capable of
predicting asthma and its various co-morbidities in the future.

Air pollutants such as particulates and oxidative chemicals are
most likely associated with asthma hospital admission and emer-
gency room visits among different age groups (Lee et al., 2003;
Hwang et al., 2005; Tsai et al., 2006; Chen et al., 2012; Makra et al.,
2012). It is evident that exposed to traffic-related air pollution
includedparticulatematterwith an aerodynamic diameter less than
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10 mm (PM10), ozone (O3), nitrogen dioxide (NO2), sulfur dioxide
(SO2), and carbon monoxide (CO) are much likely to increase the
exacerbation risk of asthma and asthma-like respiratory symptoms.
Chen et al. (2006) found that air pollutant levels of O3, SO2, and CO
were significantly associated with adult asthma admission in
Taiwan. In addition, PM10 and O3 contributed significantly to pedi-
atric asthma admission (Xirasagar et al., 2006). Liao et al. (2011)
found a strong association between long-term fluctuations in SO2
time-trend and asthma admission rate. NO2 is chemically reactive
pollutant in the atmospheric environment. The nitric vapor can
produce the amount of photo oxidation from automobile emissions
which can induce lung damage (Yang and Omaye, 2009).

Frey et al. (2011) indicted that respiratory system has memory
characteristics like many other physiological systems with complex
structure. Therefore, the susceptible system can have cumulative
memory effects under environmental triggers, and further cause
respiratory symptoms or lung function variation associated-asthma
exacerbations. The cumulative effect can occur due to the existence
of lag effectswhichwere confirmed inmanyepidemiological studies
(Lewis et al., 2005; Bell et al., 2008; Chang et al., 2012). Thus, pre-
vious environmental stimuli are important because each specific
stimulus in the past has potential to add to the cumulative effect
(Frey and Suki, 2008). Therefore, the fluctuation properties in envi-
ronmental stimuli may result in the short- and long-term effects in
the respiratory system (Frey, 2007; Frey and Suki, 2008; Thamrin
et al., 2010). Yuval and Broday (2010) indicated that meteorological
and air quality variables have the statistical predictability that can
implicate to exposure assessment. In light of this concept, the fluc-
tuations in environmental triggersmay imply different levels of lung
failure and disease incidence (Frey et al., 2011).

The statistical techniques have been used to characterize the
internal fluctuating phenomena in response to external triggers on
disease exacerbations risk for describing the properties of such
complexity phenomenon (Frey et al., 2005). There has been a
growing interest in using statistical indicators as early warning
signals of abnormal change in dynamic processes for various fields
such as physiology and climate systems (Que et al., 2001; Frey et al.,
2005; Dakos et al., 2008; Gorban et al., 2010; Lenton, 2011). These
indicators include variance, coefficient of variation (COV), skew-
ness, and kurtosis.

For asthma attack, statistical signatures of COV and skewness in
lung ventilation were found to be correlated with the levels of
disease exacerbations (Frey et al., 2005; Venegas et al., 2005). The
statistical indicators in lung function measurements have been
used to assess the risk of future asthma episodes, and thereby
improve the assessment and management of asthma severity. Que
et al. (2001) found that the spontaneous variation in airway caliber
in normal subjects and asthmatic patients can be assessed over a
period of minutes by measured and analyzed the variability and
kurtosis of respiratory impendence. Recent studies revealed that
the quantified indicators can improve the predictability and
detectability in a variety of dynamical systems (Ditlevsen and
Johnsen, 2010; Lenton et al., 2012; Scheffer et al., 2012).

Although recent studies have implicated an association between
air pollutant andasthmaexacerbations, thekey link between specific
air pollution and consequence impacts has not been shown. Because
exacerbations of asthma are strongly related to environmental con-
ditions, we thought that fluctuating properties in air pollution may
imply advance warning signals of risk of the asthma incidence.

The purpose of this study was threefold: (1) to quantify the
fluctuations in air pollutants for higher asthma epidemic areas in
Taiwan, (2) to correlate the relationship between statistical in-
dicators of air pollution and age-specific asthma hospital admis-
sions, and (3) to predict asthma hospitalization trends by statistical
indicators-based regression model. This study investigated the air

pollution-associated asthma hospitalization in Taiwan in the period
1998e2010.

2. Materials and methods

2.1. Study data

Air pollution data were adopted from Taiwan Air Quality
Monitoring Network (http://taqm.epa.gov.tw/taqm/en/default.
aspx). There were more than seventy monitoring stations estab-
lished by Taiwan Environmental Protection Administration. The
hourly monitoring data were described clearly the distributions of
pollutant dynamics. We selected major air monitoring stations in
the highest epidemic City/County in four divided regions. Daily
reading of major air pollutant levels such as PM10, NO2, SO2, CO, and
O3 were included. We used daily average concentrations for PM10,
NO2, SO2, CO and average of daily maximum 8-h O3 concentrations
based on the air quality guideline suggested by World Health Or-
ganization (WHO) and U.S. Environmental Protection Agency
(USEPA) (WHO, 2006; Weinhold, 2008).

The asthma admission records were collected from National
Health Insurance database. We selected all hospitalization patients
on the basis of the International Classification of Disease, Clinical
Modification (ICD-9-CM) code for asthma (493). The data were
recorded as number of asthma per year in terms of age, gender, and
region. The annual numbers of case were divided by the year-end
population to obtain the asthma hospitalization rate as the
admission rate per 100,000 population based on annual population
data released by Population Affairs Administration, Ministry of
Interior, Taiwan.

We extracted the site-specific asthma hospitalization rate to
determine the levels of epidemic in northern, eastern, central, and
western Taiwan divided based on Taiwan Council for Economic
Planning and Development. We estimated the annual age-specific
asthma hospital admission data in the period 1998e2010. In
addition, this study adopted the populationebased study from
Chen et al. (2006) in that the monthly age-specific asthma hospi-
talization rates were shown in the period 1998e2001. The asthma
hospitalization were categorized into five age groups of 0e4, 5e14,
15e44, 45e64, and �65 yrs (Chen et al., 2006). We simplified the
age group to 0e14, 15e64, and �65 yrs to reasonably represent the
pediatric, adult and elderly asthmatics, respectively.

2.2. Statistical indicators

To investigate the relationships between statistical indicators of
air pollution and age-specific asthma hospital admissions, we
calculated four statistical indicators of standard deviation (SD),
COV, skewness, and kurtosis (Table 1). The monthly statistical

Table 1
Equations of statistical indicator used in time-series analysis.a

Indicator Equation

Standard deviation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Xn

i¼1
ðxi � xÞ2

r
(T1)

Coefficient of variation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1ðxi � xÞ2=ðn� 1Þ
q

x

(T2)

Skewness 1
n

Xn

i¼1
ðxi � xÞ3

�
1
n

Xn

i¼1
ðxi � xÞ2

�3=2

(T3)

Kurtosis 1
n

Xn

i¼1
ðxi � xÞ4

�
1
n

Xn

i¼1
ðxi � xÞ2

�2 � 3

(T4)

a n is sample size and x is sample mean.
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indicators were calculated based on time-series air pollution
datasets. Each time-dependent indicator was correlated to asthma
hospitalization for determining the most related air pollutant and
age-specific asthma hospital admissions in Taiwan during the study
periods. We used Spearman correlation to investigate the overall
correlation between asthma hospitalization rates and statistical
indicators of air pollutants.

2.3. Asthma incidence prediction

This study used the Poisson probability distribution-based
generalized linear regression model, considering long-term
trends and well-correlated statistical indicators for each
pollutant, to determine the best-fitted model in relation to age-
specific asthma hospitalization. The proposed model can estimate
the fluctuations of air pollution-associated asthma as

lnðYtÞ ¼ b0 þ b1t þ b2SPM10;t þ b3SO3;t þ b4SNO2;t þ b5SSO2 ;t

þ b6SCO;t;

(1)

where Yt is the hospitalization rate of age-specific asthma at time
t, S is the specific statistical indicator, b0 is the intercept, and b1
through b6 represent the coefficients for significant statistical
indicators corresponding to PM10, O3, NO2, SO2, and CO,
respectively.

The predicted asthma hospitalization rates can be further used
to estimate the excess morbidity with observed hospitalization
rates by baseline predicted asthma incidence. The excess morbidity
was the observed asthma hospitalization that exceeds the model
predicted baseline. The baseline hospitalization rates can be
defined by setting the lower bound of 95% confidence interval (CI)
(i.e., 1.96-fold of SD with sample size during the study period) from
predicted model. Thus, the estimates of monthly excess morbidity
can be calculated as the differences between observed and the
baseline hospitalization rates. The calculated excess morbidities
were then used to characterize the probability distribution by
Monte Carlo (MC) simulation technique with 10,000 iterations in
each year and overall time-period 1998e2001.

The constructed Poisson generalized linear regression model
was validated by collected annually asthma hospitalization in the
period 2002e2010. The mean absolute percentage error (MAPE)
was used to judge the model performance. The correlation analyses
were performed by using Statisitca� (Version 6.0, Statsoft Inc.,
Tulsa, OK, USA). The MC simulationwas performed by using Crystal
Ball� software (Version, 2000.2, Decisionerring, Inc., Denver, CO,
USA).

3. Results

3.1. Fluctuation properties of air pollution

Fig. 1 demonstrates the time-series of daily air pollution data for
PM10, O3, NO2, SO2, and CO in Taiwan in the period 1998e2010.
During the study period, the temporal variations for daily PM10,
NO2, CO showed the seasonal pattern that peaked during the
winter months. The distributions of daily levels for PM10, O3, NO2,
SO2, and CO are 46.23 mg m�3 (95% CI: 22.5e95.1 mg m�3),
38.44 ppb (18.2e63.9 ppb), 14.8 ppb (7.9e25.2 ppb), 2.7 ppb (0.9e
5.3 ppb), and 600 ppb (408e929 ppb), respectively. The probability
distributions for each air pollutant were approximately to be a
lognormal distribution. Our result showed that upper bound of 95%
CI for 8-hr maximum O3 was exceeding the EPA standard in our
study periods.

Fig. 2 shows the monthly calculated statistical indicators for
each pollutant. The PM10 had highest SD ranging from 3.8 to
28.3 mg m�3, indicating seasonal variation that was occurred much
higher in spring season (Fig. 2A). The SD of PM10, SO2, and CO
experienced decreasing trends in study period, whereas the
increasing trend of SD was observed in NO2 (Fig. 2A, C, D, E).
However, there was no significant changed in monthly trend of SD
in O3 (Fig. 2B). The COVs of SO2 data ranged from 0.27 to 0.97,
indicating that SO2 had the highest dispersion (Fig. 2I). PM10 also
had higher dispersion with an average COV of 0.31 (ranging from
0.14 to 0.92) (Fig. 2F). The lower COVs were found in NO2 (0.15e
0.56) and CO (0.08e0.35) time series data (Fig. 2H, J). The estimated
skewness were 0.66 (�0.74 to 2.25), �0.04 (�1.33 to 1.19), 0.26
(�2.00 to 1.95), 0.52 (�0.51 to 2.12), and 0.48 (�0.72 to 2.08) for
PM10, O3, NO2, SO2, and CO time-series data, respectively (Fig. 2Ke
O). The results showed that PM10 also had the highest positive
skewness, indicating that extremely events were occurred
frequently. Furthermore, the estimated kurtosis were 0.93 (�1.23 to
5.37), e0.13 (�1.33 to 4.21), 0.42 (�1.14 to 5.84), 0.54 (�1.07 to
8.71), and 0.40 (�1.28 to 6.31) in PM10, O3, NO2, SO2, and CO time-
series data, respectively (Fig. 2PeT). The result showed that the
highest kurtosis was also observed in PM10 data.

3.2. Descriptive statistics of asthma incidence

Results indicated that monthly age-specific asthma hospitali-
zation rates were lowest for adult age group and highest among
elderly ranging from 45 to 117 per 100,000 population (Fig. 3A).
Generally, the hospitalization peak was observed during January to
March, followed by a substantially decreased in April through
August, then had an increasing trend starting from September. The
estimated annual hospitalization rates of pediatrics, adult, and
elderly were 239 � 23 (mean � SD), 43 � 10, and 603 � 168 per
100,000 population, respectively (Fig. 3B).

Asthma hospitalization rate for elderly was nearly 14 times
higher than adult group. The general hospitalization rate decreased
from 357 in 1998 to 241 per 100,000 population in following 12
years. As expected, different asthma admission trends were
observed among different age groups. The annual hospitalization
rates were increased by 2.9% each year in pediatric group. However,
there were 1.7 and 5.2% decreases of hospitalization rate in adult
and elderly groups, respectively.

There were the highest asthma hospital admission in east
Taiwan (380 per 100,000 population), whereas the lowest ones
were observed in south Taiwan (301 per 100,000 population)
(Fig. 4AeE). This study thus chose Ilan (412 per 100,000 popula-
tion), Hualien (412 per 100,000 population), Miaoli (338 per
100,000 population), and Pingtung (329 per 100,000 population)
Counties as our representative sites where the highest epidemic of
asthma hospitalization rates were occurred. The result indicated
that north regions of Taiwan contributed nearly 42.2% of asthma
hospitalization in the period 1998e2001 (Fig. 4F). The south and
central regions were also contributed 24.8% and 26.5% of asthma
hospitalization, respectively (Fig. 4F).

3.3. Correlation of pollution variables

Table 2 indicates that SD of PM10 data correlated significantly
with asthma hospitalization among all age groups (p < 0.001) with
the highest correlation coefficient in elderly (r ¼ 0.61). Moreover,
PM10 also gave a relative good correlation with pediatric and adult
asthmatics base on indicator SD (Table 2). Collectively, our results
indicated that (i) SD of PM10, SO2, and CO data correlated signifi-
cantly with elderly asthmatics, (ii) skewness of O3 and NO2 showed
a negative correlation with asthma hospitalization, (iii) kurtosis
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only correlated significantly with elderly asthmatics in NO2
(r¼�0.39), and (iv) COV only had significant correlationwith adult
asthmatics in O3 (r ¼ �0.39) (Table 2).

Statistical indicators-based Poisson regression model were used
to estimate the asthma hospitalization rate, allowing us to capture
quantitative (magnitude) and qualitative (shape) trends (Table 3).
The estimated MAPEs of all age group-specific asthma hospitali-
zation rates were less than 20%, indicating the robust predictability
of the proposed regression model. Skewness of O3 time-series data
showed the significant contribution to asthma hospital admission
in adult group (p < 0.001) and slightly contributes to pediatric
asthma (p < 0.05). Moreover, SD of CO time-series data was a

common significant indicator to asthma hospital admission of pe-
diatric and elderly (Table 3).

Fig. 5 shows the predicted time-series dynamics of asthma
hospitalization rates in the period 1998e2001 by the proposed
Poisson regressionmodel. The proposed Poisson regression model
can estimate the hospitalization rates for all age groups signifi-
cantly (p < 0.01). The estimations were reasonably well in adult
and elderly groups in that correlation coefficients were 0.76 and
0.75, respectively, whereas the pediatric population had relative
lower correlation (r ¼ 0.66). The SD of CO approximately
contributed more than 50% morbidity of asthma hospitalization
among age group of 0e14 and 15e64 years old (Fig. 5D, E). The SD
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Fig. 1. Time-series of air pollution levels in Taiwan for PM10, O3, NO2, SO2, and CO in the period 1998e2010.
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of PM10 is the minor important factor which contributed 7.4%,
6.7%, and 5.4% for pediatric, adult, and elderly asthma group,
respectively (Fig. 5DeE). In addition, the intercept given the
higher contribution in asthma hospitalization for all age groups
ranged from 34%e60%.

3.4. Regression analysis-based asthma prediction

Fig. 6A shows the estimated monthly age-specific excess
morbidities of asthma hospitalization in the period 1998e2001. A
lognormal distribution (LN(geometric mean, geometric standard
deviation)) was optimal fitted to the average excess morbidity
estimates per 100,000 population based on the lower bound of
95% CI as baseline, resulting in LN(4.8, 1.7) for 0e14 yrs, LN(1.6,

1.7) for 15e64 yrs, and LN(19.8, 1.9) for �65 yrs (Fig. 6BeD). The
result also showed that the excess morbidities were higher with
6.4 (95% CI: 2.4e17.6), 2.0 (0.8e4.9), 24.4 (5.8e98.3) per 100,000
population for 0e14, 15e64, and �65 yrs, respectively, in 1999
(Table 4).

The fitted Poisson regression models were also tested by fore-
casting time-series dynamics of asthma hospital admission based
on asthma data in the period 1998e2001. Results showed that the
estimated age-specific asthma hospitalization rates were in
apparent agreement with the observed data for 0e14
(MAPE ¼ 8.1%) and �65 yrs (MAPE ¼ 18.3%) in the period 1998e
2010 (Fig. 7A, C). However, the model is not capable of predicting
the time-trend of asthma hospitalization for 15e64 yrs group
accurately (MAPE ¼ 82.3%) (Fig. 7B).
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4. Discussion

4.1. Association between air pollutions and asthma

Our study found an association of fluctuating properties in air
pollutionwith age-specific asthma admissions based on the data in
the period 1998e2010. Result showed that variations of PM10 play
crucial role in affecting the asthma hospitalization on all age
groups. The seasonality in asthma admission is strongly associated
with monthly variation of PM10 which may increase the asthma
severity. Chen et al. (2006) indicated that the asthma-related hos-
pitalization had the seasonality properties, which stayed low in
summer and autumn and increased in the period of winter to
spring. The impact of PM10 on the association of hospitalization in
patients with asthma found in our study is consistent with previous
epidemiologic studies, showing increasingly susceptible to partic-
ulate pollutant exposure in individuals with existing chronic res-
piratory diseases (Sacks et al., 2011). Particulate pollutants are the
respiratory tract irritant that have shown to cause acute respiratory
tract effects, including lung function decrement, respiratory
symptoms, and significant airway injury (Chen et al., 2007; Gupta
et al., 2012; Leung et al., 2012). Canova et al. (2012) indicated that
increase in PM10 concentrationwas associated with a 35% increased
risk of exacerbations requiring hospital admission in chronic res-
piratory diseases patients for asthma and chronic obstructive pul-
monary disease (COPD), with the effect being greater in the elderly
individuals and in smokers.

Moreover, our study found that skewness of O3 time-series data
was also associated with asthma hospitalizations among pediatric
and adult groups. Recent studies have assessed the effects of
ambient O3 exposure on asthma prevalence in Taiwan. Hwang and
Lee (2010) indicated that O3 concentration had strong association
with schoolchildren asthma than PM10 levels. Furthermore, Hwang
and Lee (2010) found that long-term exposure to O3 can increase
bronchitis symptoms among Taiwanese children. Jerrett et al.
(2009) indicated a strong association between O3 concentration
and the risk of death from respiratory causes. Recent studies also
found that traffic-related air pollution such as O3 and NO2 may
become increasingly susceptible to chronic pulmonary diseases and
even induce more severity respiratory illness (Chen et al., 2008;
Balmes et al., 2009; Hwang and Lee, 2010).

In our study, the variations in CO data show a positive associa-
tion with asthma hospitalization among all age groups. Recent
epidemiology studies found that the prevalence of asthma symp-
toms was highly correlated with CO exposure in Taiwan (Hwang
and Lee, 2010). Our study found that the elderly had higher cor-
relation with asthma hospitalization than pediatric and adult
populations. Recent studies indicated significant association be-
tween asthma prevalence and CO exposure among schoolchildren
(Ho et al., 2007; Guo et al., 2009). Our study also found that vari-
ations in SO2 data may have potential influence on asthma hospi-
talization of elderly. Liao et al. (2011) found that long-term SO2

levels were associated with annual asthma admission rate which
included outpatient, hospitalization, and emergency roomvisits. Ko
et al. (2007) reported that SO2 and O3 had a greater effect than
particulate pollutants on COPD in Hong Kong. Leung et al. (2012)
indicated that there were densely populated in many Asia coun-
tries burning the biomass of coal, resulting in an increasing of
particulate pollutants and SO2 levels. However, the densely motor
vehicles are also the major source or secondary air pollution which
increase the photochemical oxidative species of O3, NO2, and SO2.

The region-specific air pollution observations were pooled to
represent the average daily air pollution data in Taiwan due to no
region-specific data available for the age-specific hospital admis-
sions of asthma. Although the air pollutant levels were estimated
differently in study regions, it did not cause the changing of fluc-
tuation properties in statistical indicators of air pollution among
study regions.

4.2. Statistical indicators-based asthma prediction

This study applied a time-series Poison regression model to
predict the monthly and annual hospital admissions of asthma in
Taiwan in the period 1998e2010. Results showed that the leading
statistical indicators derived from air pollution data can well pre-
dict the seasonality and time-trend of age-specific asthma hospital
admissions effectively. The proposed best-fitted Poisson regression
model captures the association of annual trends of statistical
prosperities in air pollution time-series dynamics with age-specific
asthma hospitalizations.

Our developed statistical indicators-based regression model
reveals several important findings: (i) the model performed well
for the adult and elderly age groups, (ii) the fluctuations in air
pollution show a strong correlation with asthma epidemics,
implicating the risk warning signals of asthma incidence, and (iii)
the change in skewness of O3 data for measuring the asymmetry of
fluctuations, is also a good warning signal of adult asthma hospi-
talization. Scheffer et al. (2012) indicated that rising variance can
reflect the changing stability in stochastic systems such as climate,
ecology, sociology, and physiology systems. Several researches have
also used generalized linear regression model to describe asthma
hospital admissions and emergency room visits (Schwartz et al.,
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1993; Genuneit et al., 2006; Ostro et al., 2009). In addition, Zhao
et al. (2007) have developed the receptor model which can also
be used to understanding the potential mechanisms of asthma
exacerbation.

The contributory percentages of the model intercept in our
developed regression model were approximately 34% for pediatric
and adult asthma groups, whereas a highest in elderly of 59.9% was
found. Besides the common air pollutants, the other risk factors
were the important triggers that could cause asthma hospitaliza-
tion especially for elderly, affecting the contribution properties in
model parameter of intercept. However, the fluctuating air

pollution was the common factor for pediatric and adult asthma,
contributing 65.2% and 66% in asthma hospital admission for pe-
diatric and adult groups, respectively.

4.3. Limitations and implications

There are some limitations in our analyses. First, we could not
validate the model performance for monthly asthma admission in
the period 2002e2010 due to the data limitation. We predicted the
annual asthma hospitalization in the period 2002e2010 to judge
the model performance. Unfortunately, the data limitation
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constrained the model accuracy for adult asthma group in the
period 2002e2010. Our proposed model was built on the obser-
vations of asthma hospitalization in the period 1998e2001. This
would result in the wrong predictions in the following years during
2002e2010. Therefore, the proposed model could not well-predict
the adult asthma trends (MAPE ¼ 82.3%). It may need more dataset
to adjust the model performance for adult asthmatics. With these
limitations, the results and forecasts present here should be inter-
preted with caution. Moreover, risk warning signals revealed by
statistical indicators based on time-series dynamics usually need

observations over a long span that are difficult, if not impossible, to
obtain in the real situations.

Second, our study did not consider the other external stimuli
such as virus infections and allergen events which are the major
risk factors for asthma exacerbation and incidence (Sears, 2008). Ly
et al. (2011) indicated that asthma exacerbations have potential link
with gut microbiota, probiotics, and Vitamin D in human subjects.
These internal factors can regulate the immune system to recover
the tissue inflammation. Thus, those factors may be incorporated
into the current regression model to improve predictability in the
future research. Additionally, the decreasing trend for adult and
elderly asthma hospitalizations may be affected by public health
factors. Lee et al. (2007) speculated that the decreasing in the
severity asthma might due in part to the improvement of asthma
care. Yeh et al. (2008) also indicated that the prevalence of the
asthma admission was remained stable or declined in recent years.

Table 2
Spearman’s coefficient of rank correlation for variability of air pollution.a

Pollution-indicatorsb Age groups (yrs)

0e14 15e64 �65

PM10

SDb 0.4610*** 0.4700*** 0.6108***
COVb 0.3135* 0.1614 0.2065
Skewness �0.1422 �0.2416 0.1893
Kurtosis �0.1656 �0.2133 0.1312

O3

SD 0.2772 0.0754 0.1438
COV �0.1599 �0.3905** �0.2073
Skewness L0.4201** L0.5656*** �0.0927
Kurtosis 0.1290 0.0408 �0.1401

NO2

SD 0.2903* 0.4375** 0.1769
COV 0.2366 0.2293 �0.0502
Skewness L0.3051* �0.3534* �0.2742
Kurtosis �0.1948 �0.2623 L0.3878**

SO2

SD 0.1820 0.1914 0.5553***
COV �0.1189 �0.1861 0.1384
Skewness �0.0946 �0.0903 0.0963
Kurtosis �0.0432 0.0327 �0.0800

CO
SD 0.3556* 0.3874** 0.5399***
COV 0.1059 0.0436 0.2321
Skewness �0.1341 �0.2171 �0.0943
Kurtosis 0.1415 0.0013 �0.1316

*p < 0.05, **p < 0.01, ***p < 0.001.
a Boldface denotes the largest value of correlation coefficient in each pollution.
b SD: Standard deviation, COV: Coefficient of variation.

Table 3
Model performance of fluctuating air pollution-based Poisson regression analysis.

Coefficient r MAPE (%)

0e14 yrs 0.66* 12.3
PM10 (SD)a 0.0058
O3 (Skewness) �0.1280*
NO2 (Skewness) �0.0293
CO (SD) 2.2281*
Trend 0.0037
Intercept 2.4825***
15e64 yrs 0.76** 15.3
PM10 (SD) 0.0054
O3 (Skewness) �0.2427***
NO2 (SD) 0.0287
CO (SD) 2.6102
Trend 0.0060
Intercept 1.1443***
�65 yrs 0.75** 13.0
PM10 (SD) 0.0075
NO2 (Kurtosis) �0.0019
SO2 (SD) 0.4206
CO (SD) 2.5776**
Trend �0.0026*
Intercept 3.5330***

*p < 0.05, **p < 0.01, ***p < 0.001.
a SD: Standard deviation.
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Therefore, the asthma education and self-care should be enhanced
for pediatric group.

Third, this study used asthma hospital admission to represent
the disease severity in the current model. Velthove et al. (2010)
indicated that using hospital admission as a measurement to esti-
mate asthma incidencemight lead to an underestimation of disease
exacerbations due to a trend toward outpatient care. Therefore,
they suggested that more information of disease incidence should
be taken into account. Our approach may extend to link with
fluctuating physiological signals such as lung function, symptoms,
and inflammatory biomarkers for understanding the relationships
between environmental triggers and systematic diseases (Frey and
Suki, 2008; Frey et al., 2011).

In view of the current knowledge of multiple factors of asthma
severity and control, we should consider to integrate more in-
dicators to assess and predict asthma events. Therefore, un-
certainties in future predictions of statistical indicators of
environmental stimuli-associated asthma incidence can be quan-
tified by constraining the present predictive model to reproduce
the temporal dynamics of asthma severity and fluctuating envi-
ronmental stimuli (Frey et al., 2011).We think that there is plenty of
room for further improvement, such as the collection of the
completely study data and develop the comprehensive regression
model to predict the asthma events accurately. Moreover, the
experimental investigation may improve the knowledge of disease
prevalence (Wong et al., 2009; Murdoch and Jennings, 2009).

In conclusion, we quantified the statistical properties of air
pollution time-series dynamics to correlate the relationship be-
tween fluctuations in air pollution and age-specific asthma hospital
admission. Our study shows that changes in SD and skewness in
time-series ofmajor air pollutants canprovide advance riskwarning
signals for asthma hospitalization. The proposed Poisson regression
model is capable of forecasting the time-trend of asthma hospital-
ization for pediatric and elderly based on the available data infor-
mation. We suggest that a set of statistical indicators may aid in the
asthma management which depends heavily on continuously
monitoring the dynamics of asthma incidence and environmental
stimuli. We anticipate that our statistical indicators-based disease

Fig. 6. (A) Estimated time-series of excess morbidity for age-specific asthma hospitalization for 0e14, 15e64, and �65 yrs, respectively, in the period 1998e2001. Lognormal (LN)
distribution for the excess asthma hospitalizations for (B) 0e14, (C) 15e64, and (D) �65 yrs, respectively.

Table 4
Estimated fluctuating air pollution-associated excess morbidity (mean with 95%
confidence interval) in Taiwan.

Year Excess morbidity (per 100,000 population)

0e14 15e64 �65

1998 4.5 (1.6e12.4)a 1.2 (0.4e3.6) 14.6 (2.6e82.5)
1999 6.4 (2.4e17.6) 2.0 (0.8e4.9) 24.4 (5.8e98.3)
2000 4.6 (1.5e13.9) 1.5 (0.5e4.9) 20.7 (9.7e43.5)
2001 4.1 (1.6e10.4) 1.5 (0.7e3.6) 21.1 (12.0e37.0)

a Mean (95% CI).
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prediction approach can be extended to the context of other high
asthma epidemic regions to understand the major risk triggers for
asthma severity.
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