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The purpose of this study was to estimate quantitatively the excess mortality for driver/passenger in
long-distance buses in terms of long driving time and inhaled particulate matters (PMs) concentrations.
This study used an area under the curve (AUC) approach integrating the driving time and a predicted
single pulsed PM concentration to estimate the fluctuating PM exposures in long-distance buses.
Different peak functions were used to fit a unique fluctuating PM dataset adopted from previous study in
Taiwan. We showed that gamma distribution had a best-fitting performance with the minimum values of
coefficient of variation (CV) for PM2.5 and PM10 of 2.9% and 11.7%. The results also indicated that the
predicted CV values for PM2.5 (5.3%) and PM10 (14.0%) from fitted normal distributions were also
agreeable compared with the original dataset. The results indicated that the PM2.5-associated excess
mortality estimates ranged from 0.64 to 1.04 and 4103e6833 individuals per 105 population for
passengers under short-term and drivers under long-term PM exposures. Moreover, the interquartile
ranges of the excess mortality estimate in the proposed model were 2.5e5.6 times less than that in the
original dataset. We concluded that our AUC-based model may successfully reduce the variations in PM
exposure estimates, and thereby provide more accurate values for improving risk estimation of future
excess mortality attributable to traffic-related air pollutants.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Growing evidence has linked long-term exposure to inhaled
traffic-related pollutants with increases in the risk of cardiovascular
disease mortality (Chen et al., 2005; Tie et al., 2009; Tsai et al.,
2010). Long-term exposure to traffic-related pollutants might also
induce lung function decrement and respiratory diseases exacer-
bations (Suglia et al., 2008; Shankardass et al., 2009). Occupational
cohort studies showed that there were higher cancer risks for
professional drivers (Hansen et al., 1998; Soll-Johanning et al., 1998;
Chen et al., 2005). Significant correlation were obtained between
lung cancer and other diseases and traffic-related pollutions in
China (Tie et al., 2009), Denmark (Hansen et al., 1998; Soll-
Johanning et al., 1998), Korea (Hong et al., 2002), Spain (Perez
et al., 2009), Taiwan (Chen et al., 2005; Tsai et al., 2010), and USA
(Pope and Dockery, 2006).
x: þ886 2 2362 6433.
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The traffic-related pollutants include particulate matters (PM),
carbon oxides (CO and CO2), sulfur oxides (SO2 and SO3), nitrogen
oxides (NO and NO2), volatile organic compounds (VOCs), poly-
cyclic aromatic hydrocarbons (PAHs), and bioaerosols (Lee and Jo,
2005; Adar et al., 2008; Rim et al., 2008; Hsu and Huang, 2009).
Pope et al. (2002) showed the associations between long-term
exposure to the classical pollutants (PM, SO2, NO2, and O3) and
adverse health endpoints of respiratory and cardiovascular diseases
mortality. However, several time-series and epidemiological
studies focused on the health impacts for short-term exposure to
air pollutants (Katsouyanni et al., 1995, 2001; Dominici et al., 2006;
Rosenlund et al., 2006; Stieb et al., 2009; Strickland et al., 2010;
Sicard et al., 2011).

PM characteristics measured from vehicle exhaust or in-cabin
include the mass or number concentrations, size distributions,
and chemical components, depending on ventilation conditions,
indoor and outdoor interactions, driving patterns and vehicle types
(Chan, 2003; Chan and Chung, 2003; Huang and Hsu, 2009;
Mohammadyan et al., 2009). These affecting factors could cause
a fluctuating pattern while monitoring the PM mass concentration
of excess mortality for drivers and passengers exposed to particulate
.1016/j.atmosenv.2012.01.015
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which was enough to affect the quantifications of PM exposures for
drivers, passengers, and even commuters.

Recently, the time-averaged concentration with the range and
standard deviation (sd) or real-time concentration can be used to
represent the measurements of PM exposure in bus in-cabin (Adar
et al., 2008; Kaminsky et al., 2009; Mohammadyan et al., 2009). In
practice, the PM time-averaged measurements might have large
variations, whereas the monitored data point represents only the
value in short moment in the real-time measurements. Therefore,
this study proposed an area under the curve (AUC) approach
incorporated with a linear combination method (Adar et al., 2008)
to overcome the underlying drawback. Adar et al. (2008) indicated
that a series continuously monitored data of the fluctuating PM
exposure in each journey measured in long-distant buses could be
transformed into a single pulsed PM exposure data by using a linear
combination method.

For accurately assessing the PM exposure for driver/passenger,
this study employed an innovative concept to improve the esti-
mation of PM exposures and associated assessment. The objectives
of this study were threefold: (i) to use the AUC approach to
improve the PM exposure assessment for driver/passenger, (ii) to
develop a single pulse pattern-based estimation model for
describing a fluctuating exposure pattern, and (iii) to compare the
excess mortality estimates for driver/passenger with current and
proposed methods. Our model was validated against an available
fluctuating dataset. The excess mortalities for driver and passenger
exposed to in-cabin PM in long-distance buses were also esti-
mated. In this study, we considered passengers and drivers as
vulnerable persons to assess the excess mortality under short-
(daily basis) and long-term (annual basis) PM exposures.

2. Materials and methods

2.1. Data acquisition and reanalysis

In order to validate the proposed models, an available dataset,
from previous study in Taiwan, was used (Huang and Hsu, 2009).
Briefly, the total distance and time spent of one-way trip between
Taipei and Tainan Cities were estimated to be 300 km with 4 and
5 h, respectively. According to the results from Huang and Hsu
(2009), the sample size of the one-way trip was 30 from August,
2004 to July, 2005. The selected real-time data in our study was on
September, 2004, with the trip started at 19:30 from Taipei and
ended at 00:30 to Tainan. The meteorological conditions of indoor
microenvironment were recorded (temperature: 25.3 � 2.1 �C and
relative humidity: 59.1 � 5.7%) based on simulation from one-floor
roadside house. The recorded results showed that the numbers of
passenger in the bus ranged from 2 to 23. Five bus companies, in
that two thirds of investigated buses were less than 3 years old and
the others were less than 6 years old, were used as the measured
buses, except for one bus was 9 years old. The real-time spent of
one-way journey depended on many factors including starting
time, stop frequency, traffic density, and weather conditions.
Although the meteorological conditions in indoor environments,
CO2 level, bus characteristics, and driver and passenger activities
were recorded. In parallel, PM2.5 and PM10 mass concentrations
were measured.

Huang and Hsu (2009) used two TSI 8520 DustTrak aerosol
monitors (TSI Inc., St. Paul, MN, USA) to determine in-cabin PM2.5
and PM10 mass concentrations. A well quality assurance/quality
control (QA/QC) protocol was also performed. Based on the study
design of Huang and Hsu (2009), they calibrated the DustTrak
sampler with a Tapered Element Oscillating Microbalance (TEOM)
gravimetric sampler plus PM10 or PM2.5 inlet over a 3-day period.
Results showed that the determination coefficients (r2) between
Please cite this article in press as: Chio, C.-P., et al., Quantitative estimation
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the two samplers were 0.93 and 0.90 for PM10 and PM2.5. During
the sampling period, the sampler was installed in the forward third
of the bus with nearly 1.2 m height to take into account homoge-
neous in-cabin microenvironment and breathing zone sampling.

The average PM10 mass concentration were 39.2 � 26.2 mg m�3

with a geometric mean (gm) of 32.9 mg m�3 and a geometric
standard deviation (gsd) of 1.8. For PM2.5, the average mass
concentration were 24.4 � 17.8 mg m�3 with a gm of 19.8 mg m�3

and a gsd of 1.9 (Huang and Hsu, 2009). These two datasets showed
that large variations existed in the in-cabin PM measurements,
indicating higher coefficient of variation (CV) values. The CV values
of PM10 and PM2.5 were 66.8 and 73.0% (Huang and Hsu, 2009).
Here the reported PM10 and PM2.5 measurements are referred to as
the “Total Mean” settings.

Because there weremeasured mean values with large variations
in in-cabin PM10 and PM2.5, it is not impossible that the PM expo-
sure may be overestimated or underestimated with large uncer-
tainties in the exposure assessment issues. Huang and Hsu (2009)
reported a fluctuating pattern-based PM exposures monitored by
real-time samplers on September 15, 2004. They showed 12 peak
events occurred in the 5-hour one-way journey. Each event had
been categorized by the driver activity.

We designated the sequence of events in the recorded data and
synthesized the information for the analyses. Here, we adopted and
discussed four categories of peak events defined by Huang and Hsu
(2009): (i) door-opened get on, (ii) window opened, (iii) toll station
and window opened, and (iv) door-opened get off.

2.2. Model concepts and descriptions

To reduce the large variations from original PM exposure with
multi-waves fluctuating pattern, an AUC-based approach for PM
exposure model was proposed. An equivalent single pulsed wave
was used to represent the fluctuating pattern. The study concept
was shown in Fig. 1, representing the original fluctuating waves
(Fig. 1A) and designed single pulsed wave (Fig. 1B).

There were four assumptions in our model: (i) all schemes were
based on the real exposure pattern, (ii) the source intensity from
outdoor to in-cabinwas random, (iii) the PM exposure in the whole
journey was time-dependent, and (iv) the PM exposure events can
be decomposed following a linear combination.

Based on the linear combination concept, the AUC approach for
PM exposure can be expressed as,

AUCbus ¼ AUCbackground þ AUCevent-1 þ.þ AUCevent-m; (1)

where AUCbus is the total AUC estimate for PM in the bus, AUC-
background is the partial AUC estimate for PM under the background
level, and AUCevent-1 through AUCevent-m are the individual AUC
estimate (above background level) for events 1 to m.

Assuming that the measured fluctuating PM exposure (Fig. 1A)
may be replaced by a AUC-based single pulsed PM exposure
(Fig. 1B), the time-dependent PM concentration for each event i
(Ct,i) and the total AUC (AUCT) in the whole journey can be
expressed as,

Ct;i ¼ C0;i þ i$Cei$d½t � TiðteiÞ�; (2)

AUCT ¼
XT
t¼0

Xm
i¼1

Ct;i ¼ C0T þm$te$Ce; (3)

where C0,i is the corresponding background PM level to Ct,i, i, the
event occurred number, Cei , the PM mass concentration above the
background level in event i, d½t � Tiðtei Þ� is the pulsed function
occurred at t ¼ Ti with consequent duration tei for event i, T, the
of excess mortality for drivers and passengers exposed to particulate
.1016/j.atmosenv.2012.01.015
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Fig. 1. Schematic concept of this study showing the (A) fluctuating pattern, and (B)
single pulsed pattern PM concentrations monitored in long-distance bus. Where C0 is
the background concentration, Ce, the event concentration, te, the duration of event,
and the small case i and j represent the event numbers.
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total time spent in the whole journey, and m, the total number of
window/door opened or closed events in the whole journey.

We treated probabilistically the background PM mass concen-
tration (C0), duration of event (te), and event PM mass concentra-
tion above the background level (Ce). Therefore, C0wDistðmC0

; sC0
Þ is

the probability distribution of the background concentration with
mean mC0

and standard deviation (sd) sC0
. CewDistðmCe

; sCe
Þ shows

the probability distribution of the event concentration, whereas
tewDistðmte ; ste Þ shows the probability distribution of the event
duration. The probability distributions of C0, te, and Ce were best
fitted to the original data from Huang and Hsu (2009).

2.3. Peak functions and parameter optimization

Four peak functions, including normal (N), lognormal (LN),
gamma (G), and triangular (T) distributions, were selected,

Nða;b; c; dÞ : y ¼ aþ b exp
�
� 0:5

�
x� c
d

�2�
; (4)

LNða;b;c;d;eÞ : y ¼ aþbexp

2
664
�ln2

�
ln
�
1þðx�cÞ�e2�1

�
de

��2

ðlneÞ2

3
775;

(5)
Gða; b; c; d; eÞ : y ¼ aþ bexp
��ðx� cÞ

d

����
x� c
d

�
þ e� 1

��
ðe� 1Þ

�e�1

; (6)
where the independent variable x is the driving time of each event
in the journey (min), the dependent variable y is the real-time
Please cite this article in press as: Chio, C.-P., et al., Quantitative estimation
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monitored PM mass concentration (mg m�3), and a, b, c, d, and e
are the fitted parameters. Here, a is defined as an interception, b is
a peak height above the background level, c is a location parameter
of the peak in x-axis, and d and e can be used to determine the
variations.

Triangular distribution function can be expressed as,

Tða; b; c; dÞ : y ¼ 2a
d� b

�
x� b
c� b

u½ðx� bÞðx� cÞ�

þ d� x
d� c

u½ðx� cÞðx� dÞ�
	
; ð7Þ

where a and c represent the peak height and corresponding loca-
tion parameter arriving the peak height in x-axis, respectively, and
b and d are the values of the minimum start time of the event and
the maximum stop time of the event in x-axis, respectively. Here,
the duration of each event can be calculated as d � b. Function u
[(x � x0)] indicates the unit step function. Practically, we used two-
step linear fit concept to fit manually the triangular distribution
based on Microsoft Excel spreadsheet.

2.4. Data and uncertainty analyses

The model fittings and AUC estimates were performed by
TableCurve 2D (Version 5, AISN Software Inc., Mapleton, OR, USA)
andMathematica (Version 5,Wolfram Research Inc., Champaign, IL,
USA), respectively. The single pulsed PM exposure estimates for
lognormal and gamma distributionsmay be estimated based on the
different occupied proportion (P) and same fitted peak height (H)
adopted from normal distribution. The occupied proportion P is an
index to represent the fitness magnitude comparing with the best-
fit distribution at same fitted peak height H. The occupied
proportion P for normal, lognormal, and gamma distributions
can be estimated from the “Probability Distribution Calculator”
program of Statistica software (Version 6.0, StatSoft Inc., OK, USA).

2.5. Excess mortality model and adjust factors

The excess mortality (EM, ind) can be calculated as (Tainio et al.,
2005),

EMj ¼ Mj �


ebjDE � 1

�
; (8)

where M is the background mortality (ind), b represents the PM2.5
exposure-mortality coefficient (% per 10 mg m�3) (Pope and
Dockery, 2006), DE is the excess PM2.5 exposure (mg m�3), and
indices j ¼ 1 and 2 represent the short- (daily basis) and long-term
(annual basis) exposures.

For background mortality M, we adopted the background
epidemiological data in Taiwan during 2009 (Taiwan DOH, 2010)
for estimating the disease-specific excess mortality induced by
PM2.5 exposure. The daily mortalities for all causes, cardiovascular
disease (CVD), and respiratory disease (RD) are 390 (standard
mortality ratio (SMR): 1.28 per 105 population), 41 (SMR: 0.11 per
105 population), and 14 (SMR: 0.04 per 105 population) individuals,
whereas annual mortalities for all cause, CVD, and lung cancer (LC)
are 142 240 (SMR: 466.7 per 105 population), 15 093 (SMR: 47.7
per 105 population), and 7951 (SMR: 25.3 per 105 population)
of excess mortality for drivers and passengers exposed to particulate
.1016/j.atmosenv.2012.01.015
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individuals. Here we did not calculate and show the SMR values for
daily mortality because the values were 2e3 orders of magnitudes
lower than the annual data.

We treated the dose-response range as the 1- to 99-percentile
for estimating the excess mortality. In addition, two adjusted
factors were used based on real exposure duration of 5 h in each
journey: one for passenger subgroup (5/24 ¼ 0.208) and the other
for driver subgroup ((10/24) � (250/365) ¼ 0.285). We assumed
that the working hours of bus driver subgroup were at least 10 h
per day, 250 days per year, for over 10 years. Here the adjusted
factors of 0.208 and 0.285 were used to reasonably represent the
daily (short-term) and annually (long-term) exposure settings for
passengers and drivers.
Door opened
get on

Window
opened 

Toll station
and window

opened 

Door opened
get off

Event
average

Fig. 2. Different event categories of PM2.5 and PM10 in mass concentrations and
duration.
3. Results and discussion

3.1. Events classifications and characteristics

Table 1 shows the data extraction and reanalysis for all events
in a long-distance bus. The mass concentrations of PM2.5 and
PM10 under background situations were estimated to be 10.2 � 1.5
and 33.5 � 10.1 mg m�3. The event mass concentrations of
PM2.5 and PM10 were estimated to be 126.88 � 41.06 and
164.75 � 56.27 mg m�3. The event concentrations of PM2.5 and
PM10 were nearly 12 and 5 times higher than that in background,
respectively. The duration of occurred events was 0.21 � 0.04 h
ranging from 0.10 to 0.32 h. The starting and ending points were
defined to be the two minimums in each event.

Fig. 2 shows the different event categories of PM2.5 and PM10
mass concentrations and duration. There were highest mean PM2.5
and PM10 mass concentrations during the “Door-opened get off”,
followed by “Window opened”, “Toll station and window opened”,
and “Door-opened get on” events. We found that higher variations
of PM2.5 and PM10 mass concentrations occurred in the “Door-
opened get on” and “Window opened” events. Their CV values were
greater than 50%, showing that the traditional calculations of PM
exposures for driver/passenger might not be accurate and could
cause uncertainties in risk assessment.
Table 2
Best fitted parameters estimated for four selected representative events by using
triangular, normal, lognormal, and gamma distribution functions.

Fitted peak Functions Best fitted parameters r2

a b c d e

Door-opened get on (#5)
Triangular 196.38 21.08 21.15 21.35 e 0.89a
3.2. Fitted distribution functions

Table 2 summarizes the best fitted parameters for four selected
representative events using normal, lognormal, and gamma
distribution functions. The gamma distributions (r2 ¼ 0.92e0.99)
was fitted better than normal distributions (r2 ¼ 0.87e0.98). The
fitted peak heights H (summation of parameters a and b) of events
Table 1
Data extraction for all events in a long-distance bus on September 15, 2004.

Event No. PM2.5

(mg m�3)
PM10

(mg m�3)
Duration
(h)

Original data from Huang and Hsu (2009)
Door opened get on #1 128.63 185.74 0.25
Door opened get on #2 67.62 83.27 0.19
Window opened #3 66.23 76.24 0.20
Window opened #4 65.46 84.54 0.11
Door opened get on #5 151.36 195.64 0.27
Toll station and window opened #6 115.38 148.71 0.32
Window opened #7 185.80 266.22 0.23
Door opened get on #8 33.73 38.11 0.21
Toll station and window opened #9 87.26 99.78 0.12
window opened #10 181.14 230.74 0.10
Door opened get off #11 208.84 270.96 0.21
Door opened get off #12 231.08 297.11 0.27

aMean (standard deviation).

Please cite this article in press as: Chio, C.-P., et al., Quantitative estimation
matters in long-distance buses, Atmospheric Environment (2012), doi:10
#5, #7, #9, and #12 for normal distribution are estimated as 199.3,
254.7, 92.0, and 287.3 mg m�3 (Table 2). The occurred times of
peak events could be determined by parameter c, showing no
significant difference. The occurred times of peak events in
events #5, #7, #9, and #12 for normal distribution are estimated
to 21 h 12 min, 21 h 48 min, 23 h 00 min, and 00 h 06 min. The
variations of fitted distributions can be calculated by parameters
d and e.

To compare the fitted distributions, we used event #5 and three
selected distribution functions (Fig. 3). The same observation for
hours and minutes of events #5 started at 21 h 04 min, peaked at
21 h 10 min, and ended at 21 h 21 min. (Table 2 and Fig. 3). The
fitted peak heights H of events #5 for normal, lognormal, and
gamma distributions were 199.3, 197.8, and 197.4 mg m�3.

3.3. AUC model

Fig. 4 shows the mass basis AUCs for PM2.5 and PM10 estimated
by using triangular distribution function for selected 12 events in
Normal 33.55 165.72 21.17 0.05 e 0.92
Lognormal 12.97 184.84 21.15 0.13 1.64 0.99
Gamma 21.30 176.08 21.15 0.03 3.88 0.99
Window opened (#7)
Triangular 266.39 21.78 21.84 22.02 e 0.87a

Normal 54.80 199.85 21.85 0.02 e 0.87
Lognormal 41.45 200.06 21.84 0.06 2.06 0.96
Gamma 59.99 186.97 21.84 0.02 1.62 0.92
Toll station and window opened (#9)
Triangular 99.98 22.94 22.98 23.06 e 0.84a

Normal 33.93 58.08 22.98 0.02 e 0.96
Lognormal 32.21 59.15 22.98 0.04 1.26 0.97
Gamma 32.46 58.80 22.98 0.01 13.33 0.97
Door-opened get off (#12)
Triangular 297.52 0.02 0.10 0.21 e 0.90a

Normal 21.29 266.03 0.10 0.03 e 0.98
Lognormal 16.46 270.22 0.10 0.08 1.27 0.99
Gamma 17.26 268.71 0.10 0.01 11.62 0.99

a The calculated coefficients of determination (r2) of triangular distribution are
computed manually based on Microsoft Excel spreadsheet by using two-step linear
fit concept.

of excess mortality for drivers and passengers exposed to particulate
.1016/j.atmosenv.2012.01.015
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the long journey. In the “Door-opened get on” category, the AUCs of
PM2.5 and PM10 ranged from 0.02 to 15.91 and 0.48e21.89 mg hm�3.
In the “Window opened” category, the AUCs of PM2.5 and PM10
ranged from 1.76 to 17.51 and 2.81e26.76 mg h m�3. The estimated
AUCs for PM2.5 in “Toll station and window opened” and “Door-
opened get off” categories ranged from 3.23 to 13.10 and
18.41e26.67 mg h m�3. The estimated AUCs for PM10 in “Toll station
and window opened” and “Door-opened get off” categories ranged
from 3.98 to 18.43 and 24.93e35.59 mg h m�3.

Fig. 5 shows a mass basis AUC comparison using four selected
distribution functions for four event categories (events #5, #7, #9,
and #12). The AUCs of mass basis PM10 under four selected distri-
bution functions were estimated: 21.89e29.05, 18.18e26.76,
3.98e6.45, and 27.09e35.59 mg h m�3, in “Door-opened get on”,
“Window opened”, “Toll station and window opened”, and “Door-
opened get off” categories. The results showed that the AUC esti-
mates in “Door-opened get on” (p ¼ 0.024), “Toll station and
window opened” (p < 0.001), and “Door-opened get off”
(p ¼ 0.044) categories from triangular distribution were signifi-
cantly different contrary to the other three distributions.

3.4. Model predictions and comparisons

Table 3 shows the comparisons among single pulsedmass basis
AUC estimates for PM2.5 and PM10 computed from four selected
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distribution functions with the adopted values. All predicted
results have been normalized with their corresponding CV
values. For PM2.5, the estimated CVs of their AUCs were 73.0, 18.5,
5.3, 5.0, and 2.9% in “Total Mean”, “Triangular”, “Normal’,
“Lognormal”, and “Gamma” distribution settings. However, CVs
of 66.8, 22.4, 14.0, 14.0, and 11.7% were obtained in “Total Mean”
and the selected four distribution settings aforementioned for
PM10.

Results showed that the gamma distribution had a better
performance with minimum CV values of 2.9% and 11.7% for PM2.5
and PM10. The occupied proportion P values for normal, lognormal,
and gamma distributions in PM2.5 were 0.972, 0.975, and 1.0,
whereas in PM10 we obtained 0.967, 0.967, and, 1.0. The predicted
CV values for PM2.5 and PM10 based on normal distribution were
5.3% and 14.0%, which were much less than the original “Total
Mean” and “Triangular” settings.

3.5. Excess mortality estimates

Fig. 6 shows the excess mortality risk assessment of PM2.5
exposure for passenger and driver. The PM2.5 AUC estimates of
“Total Mean” and “Normal Distribution” (the accepted scenario)
were 122.0 � 89.0 and 123.0 � 6.5 h mg m�3. The 5 h-averaged
AUC-based PM2.5 exposure were 24.4�17.8 and 24.6� 1.3 mg m�3.
By accounting for the background PM2.5 (10.2 � 1.5 mg m�3),
the excess PM2.5 exposure level can be 14.2 � 17.8 and
14.4 � 1.5 mg m�3 for “Total Mean” and “Normal Distribution”
settings.
Table 3
Modeled AUC estimates and their related statistics of PM2.5 and PM10 with four
selected peak functions.

Mean AUC
(h mg m�3)

Standard
deviation
(h mg m�3)

Coefficient of
variation (%)

PM2.5 PM10 PM2.5 PM10 PM2.5 PM10

Total Meana 122.0 196.0 89.0 131.0 73.0 66.8
Peak functions
Triangle 185.1 292.7 34.2 65.7 18.5 22.4
Normal 123.1 209.7 6.5 29.3 5.3 14.0
Lognormal 123.4 209.9 6.2 29.4 5.0 14.0
Gamma 125.9 214.2 3.7 25.0 2.9 11.7

a Values were obtained by using the average exposure concentrations (including
PM2.5 and PM10) adopted from Huang and Hsu (2009) multiplied by exposure
duration of 5-hour.

of excess mortality for drivers and passengers exposed to particulate
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Fig. 6. Excess mortality estimates due to excess PM2.5 exposure for (A, B) passengers
and (C, D) drivers under “Total Mean” and “Normal Distribution” settings. For annually
basis long-term scenario, the excess mortalities due to all causes, cardiovascular and
lung cancer were considered (A, C), however the all causes, cardiovascular disease, and
respiratory disease associated mortalities were concerned in the daily basis short-term
scenario (B, D).
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The daily excess mortality for passenger (adjusted to 5 h-aver-
aged exposure) were 0.64 (95% CI: 0.08e4.37), 0.06 (0.01e0.43),
and 0.03 (<0.01e0.17) individuals in “Total Mean” setting,
whereas 1.04 (0.54e1.61), 0.10 (0.07e0.14), and 0.04 (0.04e0.06)
individuals in “Normal Distribution” setting for all cause, CVD,
and RD. However, the adjusted excess mortality for driver under
long-term exposure were 4103 (555e30 624), 712 (92e5718), and
589 (77e5174) individuals in “Total Mean” setting, whereas 6833
(3897e10 259), 1180 (640e1831), and 1001 (531e1566) individuals
were estimated in “Normal Distribution” setting for all cause, CVD,
and LC, respectively. That is to say, the SMR estimates for driver
were 13.5 (1.8e100.4), 2.2 (0.3e18.1), and 1.9 (0.2e16.5) per 105

population in “Total Mean” setting, however nearly 22.4
(12.8e33.6), 3.7 (2.0e5.8), and 3.2 (1.7e5.0) per 105 population
were obtained in “Normal Distribution” setting for all cause, CVD,
and LC, respectively. Our results indicated that the median values of
disease-specific excess mortalities in our fitted normal distribution
were 1.3e1.7 times higher contrary to the original dataset in the
“Total Mean” setting.

On the other hand, nearly 2 orders of magnitude between
the upper and lower bounds of 95% CI associated with the excess
mortality estimates in “Total Mean” setting were found, whereas
only 2e3 times of those estimates were found in “Normal
Distribution” setting. The interquartile range (IQR) of the excess
Please cite this article in press as: Chio, C.-P., et al., Quantitative estimation
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mortality values in our predicted model were 2.5e5.6 times
less than that in the original dataset, showing that our
predicted model could successfully reduce the variations in
estimates.

3.6. Data reanalysis and PM exposure

The aim of this paper was to evaluate a single trip-based PM
exposure in a long-distance bus with “door-open get on” and “door-
open get off” events occurred in different locations (or cities).
According to the original data (Huang and Hsu, 2009), the drivers
and passengers get on the bus at Taipei city (including 2 bus stops,
events #1 and #2) and the final destination is Tainan city (including
2 bus stops, events #11 and #12). Because the time spent on single
trip was nearly 5 h, there would be one or two 5- to 10-min breaks
for restroom or store in the intermediate station or rest area in
highway. At the same time, new passengers might be carried after
the breaks in the long-distance bus (events #5 and #8 in this
study). Therefore, the possible factors contributing to the great
differences may due in part to numbers of passengers, PM in
stations or stops, engine status, resident times, and the behaviors of
passengers (Adar et al., 2008; Keogh et al., 2010; Zuurbier et al.,
2010).

Aerosol fine fraction (ratio of PM2.5 to PM10) might be a useful
factor to compare the measurement and estimation. In the original
data set (Huang and Hsu, 2009), the fine fraction of total measured
mean PM was 62.2% (n ¼ 173, 24.4/39.2) with large variations
(w70%), yet the ones computed by journey basis were 61�14%. The
fine fraction values with lesser and greater than 8 times of window
opened were 57 � 14% (n ¼ 20) and 69 � 9% (n ¼ 10) (Huang and
Hsu, 2009). For event analysis, the fine fractions were 76.6, 78.2,
82.6, and 77.5%, respectively, for “Door-opened get on”, “window
opened” (n ¼ 4), “Toll station and window opened” (n ¼ 2), and
“Door-opened get off” (n ¼ 2) categories. However, the fine frac-
tions were 67.9, 69.9, 76.2, and 74.4% under the AUC-based
approach with triangular distribution for above mentioned four
categories.

Overall, the maximum interval ranged from 76.6 to 82.6% for
event peak measurements, followed by 67.9e76.2% based on AUC-
based approaches (n ¼ 12), 62.2% (w70% variation, n ¼ 173)
for all measured data, and 61 � 14% (n ¼ 30) for journey-based
exposures. There was smallest variation but with highest aerosol
fine fraction occurred in event peak measurement setting due
to only accounting the maximum peak concentration. However,
the estimated aerosol fine fraction with our proposed model
almost fell within the range calculated by using journey-based
exposures.

3.7. Model limitations

Our study indicated that the proposed AUC-based models can
obviously improve the uncertainty of exposure assessment. The
CV value was a useful indicator to examine the improvement of
the uncertainty associated mean value estimates. The proposed
methods have some limitations. First, the model is based on the
PM exposure events decomposed as a linear combination.
Although the proposed assumption had been validated, the linear
combination of every peak could not be represented by a single
peak function (or distribution). To resolve this problem, we per-
formed the specific peak function by curve fitting technology and
selected four representative peak functions to validate the
assumption.

We firstly assumed the original data from Huang and Hsu
(2009) is a triangle distribution. The mass AUC estimates were
the basis for comparing with other selected distributions and/or
of excess mortality for drivers and passengers exposed to particulate
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original “Total Mean” setting. However, the results showed that
the gamma distribution is the best fitted distribution. We selected
a simplest basis (triangular distribution) as control setting not
a perfect but complex setting (gamma distribution). However, we
used the occupied proportion P as an index to depict the differ-
ences among normal, lognormal, and gamma distributions. The
occupied proportion P also influence the mass AUC and CV
estimates.

Second, the proposed method still needed to be validated with
further monitoring data. Unfortunately, only limited published data
were available (Huang and Hsu, 2009; Zuurbier et al., 2010).
Therefore, the measurements of in-cabin PM exposure should be
included in the future work. Third, the well-designated monitoring
devices with integrate curve method to estimate accurately the PM
exposure levels are already available but expensive. The used
method may provide an alternative tool that is capable of esti-
mating the in-cabin PM exposures with acceptable level based on
the data from general monitoring devices.

3.8. Excess mortality assessment

The disease-specific excess mortality assessments were strongly
based on the background mortality data, PM2.5-mortality coeffi-
cient, and PM2.5 level. The results were overestimated because the
background epidemiological data of PM2.5 exposure (Taiwan DOH,
2010) we used are higher values contrary to the Helsinki study
(Tainio et al., 2005). The estimated daily excess mortality for
passenger in our study were lower than the observed daily
mortality of 13 (3e32) for CVD and 4 (0e20) individuals for RD in
Barcelona, Spain (Perez et al., 2009) because the observedmortality
was caused by multiple pollutants (e.g. PM10-2.5, PM2.5-1, PM1, O3,
and NO2).

Our results showed that the driver subgroups had 3e4 orders of
magnitude higher in excessmortality risk than that for passenger of
all causes and CVD. For excess mortality of lung cancer (similar to
CVD), our results were consistent with the studies in Demark
(Hansen et al., 1998; Soll-Johanning et al., 1998). Meanwhile, our
excess mortality estimates for driver depended strongly on the
PM2.5-mortality coefficient (b) adopted from Pope and Dockery
(2006) indicated that the range of coefficients (b) for all causes,
CVD, and RD were 0.4e1.4, 0.6e1.1, and 0.6e1.4% per 10 mg m�3

PM2.5 exposure under daily short-term scenario. On the other hand,
those for all cause, CVD, and LC were 6e17, 9e28, and 14e44% per
10 mg m�3 PM2.5 exposure under long-term scenario. Moreover,
b values used in the present study might cause the annual excess
mortality to be overestimated. Soll-Johanning et al. (1998) showed
that the observed all causes and lung cancers for bus drivers and
tramway employees cohort in Demark had a positive correlation
with duration of employment.

4. Conclusions

This study provided a parsimonious approach to reduce the
associated uncertainties for monitored PM levels. The CV value
can be used to examine and to compare the appropriated models
with different distributions. Results showed that the estimated
CV values (%) for single-pulsed PM exposures based on the
“Normal”, “Lognormal”, and “Gamma” distributions were agree-
able compared with the original “Total Mean” and “Triangular”
settings. Furthermore, the disease-specific excess mortality
assessments due to PM2.5 exposure indicated that the predicted
median values in “Normal Distribution” setting were 1.3e1.7 times
higher than that estimated from original dataset in “Total Mean”
setting. Meanwhile, nearly 2 order of magnitude between
the upper and lower bounds of 95% CI associated with the excess
Please cite this article in press as: Chio, C.-P., et al., Quantitative estimation
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mortality estimates in “Total Mean” setting were found, whereas
only 2e3 times of those estimates were found in “Normal Distri-
bution” setting. The IQR of the excess mortality values, however,
were 2.5e5.6 times less than that in the original dataset. There-
fore, our study indicated that more accurate estimates of
the PM level can be obtained by the proposed model. Conse-
quently, the uncertainties of the risk estimates can be reduced
on assessing human health effects posed by PMs in the real
situations.
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