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S U M M A R Y

Objective: The objective of this study was to link transmission dynamics with a probabilistic risk model

to provide a mechanistically explicit assessment for estimating the multidrug-resistant tuberculosis

(MDR TB) infection risk in regions of Taiwan.

Methods: A relative fitness (RF)-based MDR TB model was used to describe transmission, validated with

disease data for the period 2006–2010. A dose–response model quantifying by basic reproduction

number (R0) and total proportion of infected population was constructed to estimate the site-specific

MDR TB infection risk.

Results: We found that the incidence rate of MDR TB was highest in Hwalien County (4.91 per 100 000

population) in eastern Taiwan, with drug-sensitive and multidrug-resistant R0 estimates of 0.89 (95% CI

0.23–2.17) and 0.38 (95% CI 0.05–1.30), respectively. The predictions were in apparent agreement with

observed data in the 95% credible intervals. Our simulation showed that the incidence of MDR TB will be

falling by 2013–2016. Our results indicated that the selected regions of Taiwan had only �1% probability

of exceeding 50% of the population with infection attributed to MDR TB.

Conclusions: Our study found that the ongoing control programs implemented in Taiwan may succeed in

curing most patients with MDR TB and will reduce the TB incidence countrywide.

� 2012 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

A recent World Health Organization (WHO) report documented
that approximately one-third of the human population is infected
with Mycobacterium tuberculosis, with 8.8 million new cases and
1.1 million deaths in 2010, and that the bacterium is becoming
increasingly resistant to antibiotic therapy.1 Therefore, tuberculo-
sis (TB) remains a leading cause of death and results in high
morbidity and mortality worldwide.1 On the basis of these
statistics, TB is among the top 10 causes of death worldwide.
Despite predictions of a decline in global incidence, the number of
new cases continues to grow.

The emergence of strains resistant to multiple drugs has led to
situations where treatment is no better than before the discovery
of antibiotics.2 The diagnosis of TB remains a major barrier to the
control of the disease, because the standard method – the acid-fast
smear using sputum – does not become positive until a few months
after transmission has occurred.3 Culture-based techniques are
more sensitive, but still take weeks before providing results.4
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Multidrug-resistant tuberculosis (MDR TB) has been documen-
ted in 114 countries and regions worldwide and has emerged as a
global public health problem.5 MDR TB is caused by strains
resistant to at least isoniazid and rifampin, the two principal first-
line drugs used in combination chemotherapy.6 The treatment of
MDR TB patients requires the use of second-line drugs for at least
24 months.7 Thus, MDR TB is increasingly becoming a serious
threat to TB control, and the recognition of extensively drug-
resistant TB (XDR TB) has further highlighted this threat.8

Over 50% of global TB cases are found in Southeast Asia and the
Western Pacific. In Taiwan, an estimated 149–164 new MDR TB
cases emerged in the period 2007–2010.9 Although MDR TB
represents only 1.2% of total new TB cases in Taiwan, controlling
MDR TB is challenging because it is difficult to diagnose and treat.

The simplest mathematical model for modeling MDR TB
epidemics is that of Blower et al.10 Over the past two decades,
many expanded and sophisticated models have been used to
predict the future burden of MDR TB.2,11–15 In view of these
models, it is recognized that the assumptions about the relative
fitness (RF) of drug-resistant (DR) strains play a crucial role in
describing drug resistance dynamics.16,17 Moreover, accurate
estimates of the underlying parameters such as detection rates
and treatment success rates are of critical importance for
predicting the spread of MDR TB.2
nsmission risk of multidrug-resistant Mycobacterium tuberculosis
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Figure 1. Drug-sensitive and drug-resistant two-strain TB model describing MDR

TB population transmission dynamics in the present study.
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The transmission and population dynamics of MDR TB in the
regions of Taiwan are poorly understood. To examine the MDR TB
population dynamics and potential risk of infection in the Taiwan
epidemic, a well-established mathematical model of MDR TB
transmission built on previous MDR TB models2,11–15 was adopted
to study the potential impact of MDR TB transmission. Although
many excellent models for the transmission of MDR TB have been
produced, an integrative, mechanistically explicit assessment on a
regional scale for estimating the MDR TB infection risk is urgently
needed.

Given the importance of this question with regard to a large
percentage of MDR TB cases that have resulted from recent
transmission, we sought to extend previously published models of
MDR TB transmission dynamics to incorporate a disease risk
model. Therefore, a probabilistic risk assessment model linked
with the MDR TB transmission model was developed to estimate
MDR TB infection risks and to assess the potential impact of control
measures on the emergence of a new DR strain in the regions of
Taiwan.

2. Materials and methods

2.1. Study data

Monthly data on the disease burden of TB in Taiwan were
obtained from the Centers for Disease Control of Taiwan (Taiwan
CDC) for the period 2005–2008 (http://www.cdc.gov.tw/). The
incidence rate, morality rate, relapse proportion, reinfection
proportion, and reactivation proportion were estimated based
on Taiwan CDC TB data for each county (http://www.cdc.gov.tw/).
In this study counties were geographically designated to four
areas: northern, central, southern, and eastern regions. We found
that the incidence rates were highest in Pingtung County in the
southern region of Taiwan (108 per 100 000 population) and
Hwalien (124 per 100 000 population) and Taitung (104 per
100 000 population) counties in the eastern region of Taiwan.
Taipei City in the northern region of Taiwan had the lowest average
incidence rate (50 per 100 000 population). Therefore, we used the
TB epidemic data of Taipei City and Pingtung, Hwalien, and Taitung
counties to investigate the MDR TB transmission dynamics and
infection risk. Furthermore, the annual disease burden of MDR TB
was adopted from the Taiwan Tuberculosis Control Report18 and
the Taiwan CDC national notifiable disease surveillance system9

for each year during the period 2006–2010 to estimate the MDR TB
incidence rates.

To model drug resistance dynamics, data on the RF of DR strains
had to be determined. One of the methods to measure the RF of
resistant strains is based on the results of genotype clustering
studies, with a cluster defined as two or more cases having the
same genetic fingerprint.6 Based on the genotype clustering
method, RF can be estimated by calculating the odds ratio as
RF = (CR/NR)/(CS/NS) where CR, CS, NR, and NS are the numbers of
resistant (R) and sensitive (S) cases that appear singly (N) or in
clusters (C).6

Garcı́a-Garcı́a et al.,19 recently provided valuable data that can
be used to estimate the RF of MDR TB that is resistant to isoniazid
and rifampin. Briefly, Garcı́a-Garcı́a et al.19 grouped TB patients
with identical DNA fingerprints into clusters, with a cluster
presumed to be epidemiologically linked. Twenty clusters were
identified and investigated. They also excluded the possibility that
resistance had been acquired since transmission by testing
patients for drug susceptibility before treatment. Thus, a single
cluster could only include sensitive or resistant strains.

They found that the overall rate of resistance was 28.4%, with
10.8% having MDR TB. Based on genotype clustering analysis with
multivariate risk factors associated with clustering, the odds ratio
Please cite this article in press as: Liao C-M, Lin Y-J. Assessing the tra
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of MDR TB was estimated to be 0.16 (95% confidence interval (CI)
0.04–0.6). Based on this result, an optimal fitting technique was
used to obtain a best-fitted distribution to capture the uncertainty.
Their results indicated that drug resistance was a strong
independent risk factor for treatment failure. They thus concluded
that patients with DR TB had a dramatically increased probability
of treatment failure and death.

2.2. Resistant TB transmission model

Previously developed DR TB transmission models2,10,11,13,14

were adopted and modified to describe the population dynamics of
MDR TB in Taiwan. The present model captures the five group
dynamics of susceptible (S), latently infected with drug-sensitive
(DS) TB (LS), latently infected with MDR TB (LR), DS infectious TB
(TS), and MDR infectious TB (TR) and can be referred to as the two-
strain TB model. The essential features of the present model are
depicted in Figure 1.

Briefly, (1) susceptible individuals may be infected with either
DS or MDR strains, (2) two types of TB are included – primary
progressive TB (i.e., fast TB) and latently infected TB caused by
endogenous reactivation or exogenous reinfection (i.e., slow TB),
(3) a case may be spontaneously cured at a cure rate and move into
the latent noninfection state, and (4) MDR TB may emerge when
individuals are primary infected/reinfected with an MDR strain
(i.e., primary resistance) or as a result of treatment failure (i.e.,
acquired resistance). Table 1 lists the system of ordinary
differential equations with detailed explanations of the symbols
for the two-strain TB model in Figure 1.

The expressions for the basic reproduction number (R0),14,20

quantifying the transmission potential of M. tuberculosis due to the
subepidemic driven by DS TB (R0S) and MDR TB (R0R), are
summarized in Table 1. R0 is defined as the average number of
successful secondary infection cases generated by a typical
primary infected case in an entirely susceptible population.21

When R0 > 1 it implies that the epidemic is spreading within a
population and the incidence is increasing, whereas R0 < 1 means
that the disease is dying out. An average R0 of 1 means the disease
is in endemic equilibrium within the population. R0 essentially
determines the rate of spread of an epidemic and how intensive a
policy will need to be to control the epidemic.22

2.3. Probabilistic DS/MDR TB risk model

To develop a probabilistic DS/MDR TB risk model, a dose–
response model describing the relationships of the transmission
nsmission risk of multidrug-resistant Mycobacterium tuberculosis
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Table 1
Equations for the proposed two-strain TB model

Equationa Meaning

Two-strain TB modelb

ṠðtÞ ¼ p � ðbSTS þ bRTR þ mÞS (T1) Susceptible individuals

L̇SðtÞ ¼ ð1 � pÞbSTSS þ cSTS � ðn þ psbSTS þ sbRTR þ mÞLS (T2) Latently infected individuals with DS TB

L̇RðtÞ ¼ ð1 � pÞbRTRS þ ð1 � pÞsbRTRLS þ cRTR

�ðn þ psbSTS þ psbRTR þ mÞLR
(T3) Latently infected individuals with MDR TB

ṪSðtÞ ¼ pbSTSS þ ðn þ psbSTSÞLS � ðcS þ m þ mS þ ð1 � cSÞcF ÞTS (T4) DS infectious TB

ṪRðtÞ ¼ pbRTRS þ psbRTRLS þ ðn þ psbSTS þ psbRTRÞLR

þð1 � cSÞcF TS � ðcR þ m þ mRÞTR
(T5) MDR infectious TB

Basic reproduction number

R0S ¼ bSN pðmþnÞ
ðmþnÞðmþmSþcSþð1�cSÞcF Þ�cSn

(T6) Basic reproduction number of DS TB

R0R ¼ bRN pðmþnÞ
ðmþnÞðmþmRþcRÞ�cRn (T7) Basic reproduction number of MDR TB

TB, tuberculosis; DS, drug-sensitive; MDR, multidrug-resistant.
a Symbols: p = Nd is the recruitment rate (per person-year) where d is the birth rate (per year) and N is the total population size; p is the probability of new infections that

develop progressive primary active TB within 1 year; n is the progression rate from latency to active TB (per year); m is the background mortality rate (per year); mS is the DS

TB caused mortality rate (per year); mR is the MDR TB caused mortality rate (per year); s is the factor reducing the risk of infection as a result of acquired immunity to a

previous infection with sensitive and resistant TB; cs is the cure rate of active DS TB (per year); cR is the cure rate of active MDR TB (per year); cF is the proportion of DS TB

treatment failure acquiring resistance; ECR is the effective contact rate (per year); bS is the transmission rate for DS TB (per person per year); bR is the transmission rate for

MDR TB (per person per year).
b See Figure 1.
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potential of DS/DR M. tuberculosis quantifying by R0 and the total
proportion of infected population has to be constructed. Generally,
the probability of infection for each susceptible person each day is
based on the transmission probabilities for each potentially
infected contact. According to Anderson and May,21 in a homoge-
neous and unstructured population, the total proportion of
infected population during the epidemic (I) depends only on R0,
and can theoretically be expressed as,

I ¼ 1 � expð�R0IÞ (1)

Equation 1 cannot be solved analytically. Thus, we solved
Equation 1 numerically using a nonlinear regression model to best-
fit the profile describing the relationship between I and R0

21 for R0

ranging from 1 to 5. Finally, I can be expressed as a function of R0

only,

IðR0Þ ¼ 1 � expð1:63 � 1:66R0Þ; 1 < R0 < 5; r2 ¼ 0:99 (2)

Equation 2 can be seen as a conditional response distribution
describing the dose–response relationship between I and R0 and
can be expressed as: P(IjR0). Thus, followed by Bayesian
inference, the DS/DR TB infection risk (the posterior probability)
can be calculated as the product of the probability distribution
of R0 (the prior probability) and the conditional response
probability of the proportion of the population expected to be
infected, given R0 (the likelihood P(IjR0)). This results in a joint
probability distribution or a risk profile. This can be expressed
mathematically as,

RðIÞ ¼ PðR0Þ � PðIjR0Þ; (3)

where R(I) is the cumulative distribution function (cdf)
describing the probabilistic infection risk of a TB epidemic in a
susceptible population at specific R0, and P(R0) is the probability
density function (pdf) of R0. The exceedance risk profile can be
obtained by 1 � R(I). Each point on the exceedance risk curve
represents both the probability that the total proportion will be
infected and also the frequency with which that level of infection
would be exceeded. The x-axis of the exceedance risk curve can be
interpreted as a magnitude of effect (total proportion of infection),
Please cite this article in press as: Liao C-M, Lin Y-J. Assessing the tra
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and the y-axis can be interpreted as the probability that an effect of
at least that magnitude will occur.

2.4. Model parameterization and validation

The likely values of key parameters in the two-strain TB model
(Table 1, equations T1–T5) can be parameterized based on
available site-specific TB data provided by the Taiwan CDC,
Department of Statistics, Ministry of the Interior, Taiwan,23 and
otherwise based on data adopted from the literature.24–28 We used
the model to project future site-specific TB incidence dynamics for
2006–2016 with the 95% credible interval.

We validated the two-strain TB model by comparing predicted
site-specific MDR TB incidence with observed MDR TB incidence
provided by the Taiwan CDC for 2006–2010. To compare modeled
and observed results, the best fit was evaluated using the root
mean squared error (RMSE), computed from RMSE =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

n¼1 ðIo;n � Is;nÞ2=N
q

where N denotes the number of observa-

tions, Io,n is the observed incidence, and Is,n is the simulation result
corresponding to data point n.

2.5. Sensitivity and uncertainty analyses

A sensitivity analysis was performed to examine the influence
of critical variables on the basic reproduction number. TableCurve
2D package (AISN Software Inc., Mapleton, OR, USA) and Statistica
(version 9; Statsoft, Inc., Tulsa, OK, USA) were used to perform
model fitting techniques and statistical analyses. A Monte Carlo
(MC) technique was implemented to quantify the uncertainty and
its impact on the estimation of expected risk. An MC simulation
was also performed with 10 000 iterations to generate the 2.5 and
97.5 percentiles as the 95% CI for all fitted models. Crystal Ball
software (Version 2000.2, Decisioneering, Inc., Denver, CO, USA)
was employed to implement the MC simulation. Model simula-
tions were performed using Berkeley Madonna 8.0.1 (Berkeley
Madonna was developed by Robert Macey and George Oster of the
University of California at Berkeley).

Figure 2 illustrates the overall computational algorithm of this
study.
nsmission risk of multidrug-resistant Mycobacterium tuberculosis
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Figure 2. Schematic representation of the principal algorithms and approach methodology used in this study.
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3. Results

3.1. Population dynamics of DS/MDR TB

Table 2 summarizes the estimates of the MDR TB incidence rate
for Hwalien, Taitung, and Pingtung counties and Taipei City in the
period 2006–2010. We found that the incidence rate of MDR TB
was highest in Hwalien County (4.91 per 100 000 population).
Taipei City had the lowest average MDR TB incidence rate of 0.43
per 100 000 population.

The results of the model parameterization are listed in Table 3.
Published data19 were optimal-fitted to obtain the likelihood
distribution of RF by MC simulation. This resulted in a normal (N)
distribution of RF with a mean of 0.32 and standard deviation (SD)
of 0.14 (Table 3). We incorporated the estimated probability
distributions of the model parameter with site-specific initial
population sizes (Table 3) into the two-strain TB model (Table 1,
Please cite this article in press as: Liao C-M, Lin Y-J. Assessing the tra
epidemics in regions of Taiwan. Int J Infect Dis (2012), http://dx.doi
equations T1–T5) to project future site-specific population
dynamics of MDR TB incidence for 2006–2016 (Figures 3 and 4).

Figure 3A–D demonstrates the comparison of the MDR TB
incidence rates between predictions adjusted by bS and bR

estimates of the 25th, 50th, and 75th percentiles. The results
indicated that the predictions with the 50th percentile were
consistent with the observed data in Taipei City (Figure 3A),
whereas for Pingtung and Taitung Counties, the predictions with
the 25th percentile were in a good agreement with the observations
(Figure 3C and D) for the period 2007–2010. However, the
observed MDR TB incidence in Hwalien County showed a
decreasing trend of predictions that was fairly consistent with
the 50th percentile data points (Figure 3B). Thus, we modeled based
on the justified bS estimate of the 25th percentile for Pingtung and
Taitung counties and the 50th percentile for Hwalien County and
Taipei City, varying with different RF values to further validate the
model against the justified RF estimate (Figure 4).
nsmission risk of multidrug-resistant Mycobacterium tuberculosis
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Table 2
MDR TB incidence rates (per 100 000 population) during 2006–2010a

Sites 2006 2007 2008 2009 2010 Averageb

Hwalien County 8.66 4.63 2.14 4.99 4.12 4.91 � 2.37

Taitung County 5.85 2.94 1.87 1.29 2.16 2.82 � 1.79

Pingtung County 1.33 1.26 0.99 0.57 0.68 0.97 � 0.34

Taipei City 0.62 0.36 0.46 0.38 0.35 0.43 � 0.11

MDR TB, multidrug-resistant tuberculosis.
a Incidence rate (per 100 000 population): annual region confirmed MDR TB

cases/total regional population number. Adopted from the Taiwan tuberculosis

control report18 and Taiwan CDC national notifiable disease surveillance system.9

b Mean � standard deviation.
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Figure 4A–D shows the comparison of the MDR TB incidence data
with our RF-adjusted model simulation outcomes with 95% credible
intervals, indicating that the predictions were in apparent agree-
ment with the observed data during the period 2007–2010. The
model was also extended to project the MDR TB incidence rate for
the period 2011–2016. Despite the simplicity of the model, we found
a fair quantitative agreement between model predictions and
observed data (the average RMSE ranging from 0.11 to 1.58,
comparable to the data average standard deviation of 0.11–2.37).
Our model had the lowest RMSE values for the predictions with the
75th (RMSE = 1.10), 50th (RMSE = 0.50), 50th (RMSE = 0.16), and 50th

percentiles (RMSE = 0.05) in Hwalien, Taitung, and Pingtung
counties and Taipei City, respectively, indicating that all RMSE
values are less than the standard deviation of the observed data
(Figure 4 and Table 2). Overall, the model captures the transmission
Table 3
Probability distributions (N = normal, LN = log-normal) of parameter values and initial po

estimationsa

Probability distribution

Hwalien County Taitung Co

Model parameter

pb N (0.08, 0.03)

n (per year)c N (0.00392, 0.0007)

m (per year)d LN (0.031, 2.05) LN (0.031, 

mS (per year)e N (0.037, 0.015) N (0.040, 0

mR (per year)f N (0.30, 0.05)

cS (per year)e N (0.64, 0.07) N (0.61, 0.0

cR (per year)f LN (0.10, 2.68) LN (0.08, 2

cF
e N (0.034, 0.018) N (0.024, 0

ECR (per year)c LN (7.40, 1.33)

N (person)d N (345 297, 2748) N (236 156

p (per person year) 2960 2228 

RFg N (0.32, 0.14)

sh 0.25

bS (per person per year)i LN (2.14 � 10�5, 1.33) LN (3.13 �
bR (per person per year)j LN (6.11 � 10�6, 1.91) LN (8.93 �

Initial population sizek

N 346 301 237 450 

S 344 338 236 153 

LS 1262 865 

LR 13 9 

TS 659 409 

TR 30 14 

TB, tuberculosis.
a See Table 1 for symbol meanings.
b Estimated as 0.04 (0.015–0.14) for <15 years old and 0.14 (0.08–0.25) for > 15 yea
c ECR (effective contact rate) and n are estimated based on Blower et al.25

d Estimated based on data from the Department of Statistics, Ministry of the Interio
e Estimated based on Taiwan CDC data (http://www.cdc.gov.tw/).
f Estimated based on Dye and Espinal.26

g RF is the relative fitness estimated based on Garcı́a-Garcı́a et al.19

h Adopted from Rodrigues et al.14

i bS = ECR/N, where N is the total population size.27

j bR = RF � bS.11,13,14

k The initial population sizes in 2006 of N, TS, and TR are adopted from the Taiwan Tub

LR = 0.004 � 0.92 � 0.01 � N, where 0.004 is adopted from Yeh et al.,28 0.92 = (1 � 0.08),24

Please cite this article in press as: Liao C-M, Lin Y-J. Assessing the tra
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and population dynamics of MDR TB in high TB incidence areas in
Taiwan for the period 2007–2010.

3.2. DS/MDR TB infection risk estimates

To estimate the probability of DS/MDR TB infection risk, the
transmission potential quantified by basic reproduction number
(R0S and R0R) had to be determined. The site-specific R0S and R0R

due to a subepidemic driven by primary progression, reactivation/
reinfection, and cure were calculated based on equations listed in
Table 1 (equations T6 and T7) (Figure 5). The MC simulation result
showed that the optimized log-normal distribution was the most
suitable fitted model for R0S and R0R. We found that, for instance, in
the highest TB epidemic area of Hwalien County, the R0S and R0R

estimates were 0.89 (95% CI 0.23–2.17) and 0.38 (95% CI 0.05–
1.30), respectively, whereas R0S and R0R values were estimated to
be 0.94 (95% CI 0.24–2.28) and 0.38 (95% CI 0.05–1.33),
respectively, in Taitung County. The R0S and R0R estimates in
Pingtung County were 0.85 (95% CI 0.21–2.08) and 0.34 (95% CI
0.04–1.13), respectively, whereas Taipei City had the lowest values
with R0S and R0R estimates of 0.84 (95% CI 0.21–2.00) and 0.30 (95%
CI 0.04–0.97), respectively.

Figure 6A demonstrates the conditional dose–response profile
of P(IjR0) based on Equation 2. Given the site-specific R0S and R0R

distributions (Figure 5) and conditional dose–response relation-
ship P(IjR0) (Figure 6A), the site-specific exceedance risk probabili-
ty of DS/MDR TB infection can then be estimated by Equation 3
(Figure 6B and C). We found that the total DS TB incidences in
pulation sizes used in the two-strain TB model, and basic reproduction number (R0)

unty Pingtung County Taipei City

2.05) LN (0.030, 2.11) LN (0.027, 2.00)

.019) N (0.052, 0.021) N (0.033, 0.013)

8) N (0.68, 0.09) N (0.72, 0.01)

.83) LN (0.18, 1.89) LN (0.28, 1.41)

.022) N (0.017, 0.007) N (0.016, 0.005)

, 3174) N (893 289, 5625) N (2 625 962, 8435)

7284 21217

 10�5, 1.33) LN (8.28 � 10�6, 1.33) LN (2.82 � 10�6, 1.33)

 10�6, 1.91) LN (2.36 � 10�6, 1.91) LN (8.03 � 10�7, 1.91)

893 529 2 624 309

888 554 2 612 793

3241 9561

33 97

1690 1843

12 16

rs old.24

r, Taiwan (http://www.moi.gov.tw/stat/index.aspx).23
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Figure 3. Modeling incidence rates (per 100 000 population) of MDR TB varying with different bR estimates of 25th, 50th, and 75th percentiles during 2006–2016 by two-strain

TB model and the comparison of incidence rates between predictions with bS- and bR-adjusted model simulation outcomes and observed data during 2006–2010 in (A) Taipei

City, (B) Hwalien County, (C) Pingtung County, and (D) Taitung County.
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Figure 4. Incidence rates (per 100 000 population) of MDR TB estimates based on the justified bS estimate varying with different RF values for 2006–2016 and the comparison
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County, and (D) Taipei City.
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Hwalien, Taitung, and Pingtung counties and Taipei City had
respective probabilities of nearly 13%, 16%, 11%, and 9.7% for the
total proportion of infected population exceeding 50%, whereas
there were 18–27% probabilities of having exceeded 20% of the
Please cite this article in press as: Liao C-M, Lin Y-J. Assessing the tra
epidemics in regions of Taiwan. Int J Infect Dis (2012), http://dx.doi
total proportion of infected population (Figure 6B). Our results also
indicated that the selected four regions had only �1% probability of
exceeding 50% of the population with infection attributed to MDR
TB (Figure 6C).
nsmission risk of multidrug-resistant Mycobacterium tuberculosis
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Figure 5. Box and whisker plot illustrating the basic reproduction number of DS TB

(R0S) and MDR TB (R0R) in Hwalien, Taitung, and Pingtung counties and Taipei City.

Figure 6. (A) Dose–response profile representing the estimate of the total

proportion of TB-infected population, P(I), based on R0 estimated from Equation

2. Exceedance risks of the total proportions of TB infections estimated for (B) DS TB

and (C) MDR TB in Hwalien, Taitung, and Pingtung counties and Taipei City.
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3.3. Sensitivity analysis

Our sensitivity analysis indicated that an increase in R0R was
attributed mainly to: (1) relative fitness (RF), (2) the probability of
new infections that develop progressive primary active TB within 1
year (p), and (3) the transmission rate for DS TB (bS) (Table 4).
However, an increase in the cure rate of active MDR TB (cR) can
decrease R0R moderately.

In our four selected study areas, the most important input
variables for R0R appeared to be RF and p, which contributed to
40.51–44.35% and 30.63–32.70% of output variances, respectively
(Table 4). Thus our results indicate that RF is the key parameter in
shaping R0R. Therefore, the rate of spread of an MDR TB epidemic
could be controlled by reducing RF.

4. Discussion

4.1. Population dynamics of DR TB

Although it is recognized that exogenous reinfection plays an
important role in DR TB epidemics,12,13,29 several mathematical
models to predict the future spread of DR TB have not taken it into
consideration.2,10,11 There are a few DR TB models that have
considered reinfection,12,13,29 but the implementations have
varied significantly. Blower and Chou29 and Dye and Williams12

incorporated reinfection at a reduced rate by partial immunity
applying to latently infected individuals only.
Table 4
Probabilistic sensitivity analysis for the basic reproduction number of MDR TB (R0R)

Input

parametera

Contribution (%)

Hwalien

County

Taitung

County

Pingtung

County

Taipei

City

RF 41.20% 40.51% 41.81% 44.35%

p 30.67% 31.98% 30.63% 32.70%

bS 14.59% 14.07% 51.68% 15.45%

n 0.00% 0.02% 0.02% 0.02%

N 0.00% 0.01% 0.00% 0.00%

m �1.18% �0.80% �1.34% �1.34%

mR �3.19% �2.32% �2.05% �1.58%

cR �9.16% �10.29% �8.47% �4.57%

MDR TB, multidrug-resistant tuberculosis.
a See Tables 1 and 2 for symbol meanings.

Please cite this article in press as: Liao C-M, Lin Y-J. Assessing the tra
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Cohen and Murray13 considered that latent and recovered
individuals have partial immunity against reinfection and have
identical susceptibilities to reinfection. Furthermore, several
epidemiological studies have demonstrated that DR and MDR
strains have heterogeneity in fitness.6,16,17 Most models have
indicated that RF is the most important parameter influencing the
disease burden of DR and MDR TB. However, these did not directly
estimate the impact of heterogeneity of RF for DR strains on
transmission dynamics, especially for MDR strains.10–12,14 A few
studies have allowed for variation in RF of MDR strains to model
the emergence of an MDR TB epidemic.13,29

We constructed a two-strain TB model based on the past well-
developed DR TB transmission models that have incorporated
reinfection, emergence of multidrug resistance during therapy,
heterogeneity of RF of MDR strains, and competition between DS
and MDR strains to describe the transmission and population
dynamics of MDR TB in Taiwan.

Practically, our present model captures the transmission and
population dynamics of MDR TB in high TB incidence areas of
Taiwan for the period 2007–2010. Our study found that the
incidence rate of MDR TB was highest in eastern Taiwan (4.91 per
nsmission risk of multidrug-resistant Mycobacterium tuberculosis
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100 000 population) compared to the lowest average incidence of
0.43 per 100 000 population in northern Taiwan. Several studies
have indicated that MDR TB is a major problem in the aboriginal
population in eastern Taiwan.30–32 However, the observed MDR TB
incidence at our four study sites showed a decreasing trend due to
improvements in TB control measures in Taiwan, in particular the
implementation of the MDR TB program (Multi-Drug Resistant TB
Medicare System) in 2007. Given the high frequency of MDR TB in
eastern Taiwan, our simulation showed that the incidence of MDR
TB will be falling by 2013–2016. Our results also indicated that
there was only a �1% probability of exceeding 50% of the
population with infection attributed to MDR TB. Therefore, the
annual decline in the incidence of MDR TB in Taiwan can be
expected with good TB control programs.

Our results also showed that the basic reproduction number of
MDR strains (R0R) was lower than that of non-MDR strains (R0S),
indicating that the RF of MDR strains is less than 1. If we maintained
this situation, the number of MDR strains could be decreased to the
lower numbers generated by mutation. Our findings also implicitly
provide information that the ongoing control programs implemen-
ted in Taiwan may succeed in curing most patients with MDR TB and
reduce the TB incidence countrywide.

However, TB is a very complex disease and, in addition to host–
pathogen parameters, one has to consider several socio-economic
factors for modeling population dynamics of TB or DR TB.3,15,33,34

Socio-economic factors such as the paucity of medical service
resources, information barriers, financial difficulties, and the
inconvenience of transportation could result in less effective TB
control among aborigines in eastern Taiwan.31

It is also important to consider the immune system that is
affected by co-infections, past therapeutic history, and age.35

Recently, evidence has also indicated a strong association between
smoking and TB. den Boon et al.36 reported that more than 80% of
current smokers or ex-smokers were positive for the TB skin test as
compared to less than 3% of nonsmokers. Aborigines in the eastern
Taiwan region are subpopulations with high smoking frequencies.
We thus anticipate that future studies may include some of these
parameters in the analysis to forecast the reduction in the
incidence of TB or MDR TB.

4.2. Infection risk estimates of DS/MDR TB

Our results on R0 estimates showed that R0S was larger than R0R at
the four study sites. The persistence of both DS and DR TB (i.e.,
coexistence) occurs if R0S > 1 and R0S > R0R. Under these conditions,
the coexistence can even occur when R0R < 1.6,11 We also found that
the incidence of DS TB in Hwalien, Taitung, and Pingtung counties
and Taipei City had respective probabilities of nearly 13%, 16%, 11%,
and 9.7% of the total proportion of infected population exceeding
50%, whereas there was only �1% probability of having exceeded
50% of the population with infection attributed to MDR TB.

Although it appears unlikely that MDR TB will result in an
emergence, the case reproduction numbers of DS TB are alarming
from a conservative point of view. As long as patients carry
sensitive strains, there will always be some relative MDR TB cases,
due to MDR TB arising from treatment failure, mutation at some
constant frequency, and the occasional transmission of MDR
strains. However, in the worst case scenario, when the basic
reproduction number of DR strains exceeds that of DS strains,
resistant cases can out-compete sensitive cases and all patients
will eventually carry resistant strains.

4.3. Limitations and implications

A key weakness of this approach is that in many cases the true
uncertainty around key parameter values may not be captured
Please cite this article in press as: Liao C-M, Lin Y-J. Assessing the tra
epidemics in regions of Taiwan. Int J Infect Dis (2012), http://dx.doi
adequately. It is difficult, if not impossible, to assess the validity of
either the individual adjustment parameters or the final estimate,
because, to our knowledge, well-established standard values for
comparison do not exist. Our sensitivity analysis shows that RF is
the key parameter influencing the basic reproduction number of
MDR TB (R0R). Several studies on the population dynamics of DR TB
have shown RF to be a key determinant in assessing the future
burden of DR TB11 and MDR TB.12,13,26 In the present study, the
most unknown important parameter is RF of MDR strains as
compared with DS strains.

We found a wide range of molecular epidemiological RF of MDR
strain estimates.6,16 The RF estimates for MDR TB ranged from an
almost 10-fold higher fitness compared to DS strains in Russia, to a
nearly 10-fold lower fitness in Mexico. The possible reasons for this
high variability in RF of MDR strains are differences in study design
and setting, differences in sample size, and different methodolo-
gies.16 Although, there is a wide range of RF, several research-
ers12,13,26 have used low RF for mathematical modeling of MDR TB.
Dye and Williams12 used a parameter value for RF of MDR strains
ranging from 0.7 to 1.0. Dye and Espinal26 modified their RF

estimates for MDR strains to uniform distribution between 0.04
and 0.6 based on a TB cluster study.19 Cohen and Murray13

assumed that the ‘unfit’ MDR strains had a low fitness (0.3) relative
to the DS strain, whereas the ‘fit’ MDR strain had RF ranging from
0.8 to 1.2.

Garcı́a-Garcı́a et al.19 recently provided valuable data from a
molecular epidemiology study in Mexico that can be used to
estimate RF of MDR TB. The MDR TB incidence rate in Mexico in
2008 was estimated to be 0.6 (95% CI 0.3–0.9) per 100 000
population.37 The average MDR TB incidence rate for Taiwan
during 2007–2010 (0.7 per 100 000 population) provided by the
Taiwan CDC was similar to that of Mexico. Thus, we estimated RF

for MDR strains with a normal (N) distribution of a mean 0.32 and a
standard deviation 0.14 based on Garcı́a-Garcı́a et al.19 Epidemio-
logical studies in Taiwan have demonstrated that MDR TB is
attributed to acquired resistance rather than primary resis-
tance.30,38 Burgos et al.39 estimated the relative secondary-case
ratio of MDR TB to DS TB, indicating that there were no secondary
cases associated with MDR strains. All of the above results indicate
that MDR strains may have lower transmissibility than DS strains.
Thus, MDR strains may have a low RF value.

The proposed two-strain TB model only implicitly accounts for
the patterns of mixing among infectious cases and their contacts,
and the risks of TB among those infected are constant through
time. Styblo40 assumed an average duration of infectiousness of 2
years, suggesting that on average each smear-positive case
contacted 10 individuals per year. A more recent study carried
out in the Netherlands found that the number of individuals
contacted by each TB case had changed over time, declining from
nearly 22 individuals contacted in 1900 to nearly 10 individuals
contacted in 1950.41 In a recent meta-analysis, Trunz et al.42 used
the available data from 11 countries and estimated the contact rate
from the ratio of annual risk of infection/prevalence. There was a
wide range of contact rates ranging from 3.1 to 13.2. Based on
Blower et al.,25 our estimated effective contact rate (ECR) of 7.40
(95% CI 4.20–13.23) is similar to that of Styblo,40 Vynnycky and
Fine,41 and Trunz et al.42

In addition to RF and ECR, model parameters such as the cure
rate of DS (cS) and MDR TB (cR) and treatment failure acquiring
resistance (cF) have also been proposed as important epidemio-
logical factors.11–13,26 The design of effective treatment programs
will need to take into account both the magnitude of the RF and its
future evolution via compensatory mutation.2

The practical implications of this study might be used for
risk management. First, the quality of the local data allowed us a
rare opportunity to generate data-driven models for MDR TB
nsmission risk of multidrug-resistant Mycobacterium tuberculosis
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transmission dynamics. Dynamic models rooted in local data are
important for providing clear recommendations for control
strategies. Second, a theoretical understanding will improve
our ability to interpret data variability. With limited information
on site-specific parameters, numerical simulations can be
undertaken for randomly selected parameter values in an attempt
to discern typical behaviors. Models of the type described in this
paper have largely been explored through simulation in terms of
their predictive power. More data are needed to validate the
model predictions.

In conclusion, the MDR TB transmission model incorporated
with the quantitative risk assessment together with time trends in
DS and DR TB cases in Taiwan can be used to predict the MDR TB
infection risk potential. We suggest that an annual decline in MDR
TB incidence in Taiwan can be anticipated from ongoing control
programs. The models, data on trends in DS/DR TB cases, and
model simulations used in this study can be applied to assess the
efficacy of potential control strategies on the emergence of a new
DR strain.

Conflict of interest: No conflict of interest to declare.
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