Lung cancer risk in relation to traffic-related nano/ultrafine particle-bound PAHs exposure: A preliminary probabilistic assessment

Chung-Min Liaoa, Chia-Pin Chio, Wei-Yu Chen, Yun-Ru Ju, Wen-Hsuan Li, Yi-Hsien Cheng, Vivian Hsiu-Chuan Liao, Suz-Chieh Chen, Min-Pei Ling

A R T I C L E I N F O

Article history:
Received 15 December 2010
Received in revised form 21 February 2011
Accepted 5 March 2011
Available online xxx

Keywords:
Polycyclic aromatic hydrocarbons
Nanoparticles
Particulate matter
Lung cancer
Population attributable fraction
Risk assessment

A B S T R A C T

Exposures to carcinogenic polycyclic aromatic hydrocarbons (PAHs) have been linked to human lung cancer. The purpose of this study was to assess lung cancer risk caused by inhalation exposure to nano/ultrafine particle-bound PAHs at the population level in Taiwan appraised with recent published data. A human respiratory tract model was linked with a physiologically based pharmacokinetic model to estimate deposition fraction and internal organic-specific PAHs doses. A probabilistic risk assessment framework was developed to estimate potential lung cancer risk. We reanalyzed particle size distribution, total-PAHs, particle-bound benzo[a]pyrene (B[a]P) and PM concentrations. A dose–response profile describing the relationships between external B[a]P concentration and lung cancer risk response was constructed based on population attributable fraction (PAF). We found that 90% probability lung cancer risks ranged from 10−5 to 10−4 for traffic-related nano and ultrafine particle-bound PAHs, indicating a potential lung cancer risk. The particle size-specific PAF-based excess annual lung cancer incidence rate due to PAHs exposure was estimated to be less than 1 per 100,000 population, indicating a mild risk factor for lung cancer. We concluded that probabilistic risk assessment linked PAF for limiting cumulative PAHs emissions to reduce lung cancer risk plays a prominent role in future government risk assessment program.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Laboratory experiments, field observations, and epidemiological studies all link atmospheric polycyclic aromatic hydrocarbons (PAHs), a carcinogenic chemical, to increases in human exposure risks, suggesting that atmospheric PAHs have strong association with human lung cancer [1–10].

Lung cancer has been ranked as the second and first leading cause of cancer death in Taiwan males and females, respectively. The age-adjusted mortality rate for lung cancer was nearly 38 per 100,000 among males and 17 among females in 2007 [11]. Several significant contributor to PAHs sources had been sampled such as stationary industrial combustion of steel and iron industries [12] with a mean total-PAHs concentrations measured to be 1020 μg m−3, and traffic vehicles exhaust of motorcycle [13] and highway toll station [14] with a mean total-PAHs concentrations ranged from 8280 to 12,300 ng m−3. Fang et al. [15–17] indicated that mean total PAHs levels at industrial, urban, and rural area in central Taiwan region ranged from 1232 to 1850, 700 to 1740, and 610 to 831 ng m−3, respectively.

Nanoparticles have been previously shown to induce lung inflammation by stimulating pulmonary epithelial cells to produce proinflammatory cytokines and by causing endothelial cells to express leukocyte adhesion molecules and recruit circulating leukocytes [18–22]. Recently, the issues of health effects linked to fine particles–bound PAHs keeps growing. Bocskay et al. [23] indicated that the newborn babies of New York City mothers exposed to PM2.5 (Dp ≤ 2.5 μm) containing higher levels of PAHs had more chromosomal damage that can later lead to cancer than did the babies of mothers with lower PAH exposures.

Lin et al. [6] reported the relevant measurements of nanoparticle-bound PAHs in a heavily trafficked roadside in a city in southern Taiwan. Lin et al. [6] indicated that the mean content of particle-bound total-PAHs/B[a]Peq$ (benzo(a)pyrene equivalent) and PAH/B[a]Peq-derived carcinogenic potency followed the order of nano (0.01 μm < Dp < 0.056 μm) > ultrafine
(0.01 μm < Dp < 0.10 μm) > fine (PM2.5) > coarse (PM2.5–10). They concluded that traffic-related nano and ultrafine particles are possibly cytotoxic. Kawakana et al. [9] indicated that ultrafine particles were shown to contribute as much as 23–30% and 10–16% to PAH deposition in the alveolar for the roadside and suburban atmosphere, respectively, implicating that ultrafine particles are significant contributors to the deposition of PAHs into the alveolar region of the lung.

The significant variations in respiration rate and genetic susceptibility among populations, and its relationship to PAHs exposure risk, suggests probabilistic lung cancer risk assessment should incorporate this variability [10]. Recently, population attributable fraction (PAF) concept, taking into account variability in respiration rate and genetic susceptibility, was applied successfully to address the global disease burden caused by multiple risk factors [24,25] and the relationship between ambient PAH exposure and lung cancer in China [10]. Parsimoniously, PAF can be defined as $PAF = (R - R_0)/R$ where R is the lifetime cancer risk of the total population and R_0 is the lifetime cancer risk in the population after elimination of the exposure to carcinogens considered [26].

Numerous mathematical models for predicting PM deposition and organic chemicals distribution in human respiratory tract (HRT) and other tissues have been developed in a decade [27–32]. Chen et al. [29] and Liao and Chen [32] developed a complete and realistic PM exposure model for HRT containing airflow dynamic, physiological, lung morphological, and dose cumulated submodels. Dennison et al. [30] and Clewell et al. [31] used physiologically based pharmacokinetic (PBPK) models to describe the absorption, distribution, metabolism, and excretion of individual chemical (perchloroethylene) and chemical mixtures (gasoline) in human.

Currently, no information on the potential health risk assessment of lung cancer related to environmental nano/ultrafine particle-bound PAH is available in Taiwan region. Therefore, in light of the mutagenicity, carcinogenicity and ubiquity of some PAHs in the atmosphere, the setting of air quality standards and guidelines to limit human exposure should be of primary concern for public health policy. However, setting scientifically based limit values is complicated, owing to the difficulties in interpreting heterogeneous experimental and epidemiological findings [7,8].

Despite much recent progress in our understanding of source attribution, emission factors and regulation of PAHs [7], current risk assessment models based on parameterization of laboratory experiments cannot fully explain the magnitude of nano/ultrafine particle-bound PAHs induced lung cancer risk. Here we integrated PAF-based dose–response relationships to better characterize the lung cancer caused by inhalation exposure to nano/ultrafine particle-bound PAHs.

The objective of this study was fourfold: (1) to assess the lung cancer risk caused by inhalation exposure to size-specific environmental PAHs, emphasizing on nano/ultrafine particle-bound PAHs, at the population level in Taiwan appraised with recent published data, (2) to estimate the deposition fractions in different human respiratory tract regions by using the HRT model, (3) to utilize a PBPK model to estimate the time-dependent internal organic-specific PAHs doses, and (4) to integrate a probabilistic risk assessment framework and the PAF-based dose–response profile to estimate excess lung cancer incidence rate in Taiwan population.

2. Materials and methods

2.1. Study data

We reanalyzed quantitatively the particle size distribution, total-PAH, particle-bound B[a]Peq and PM concentrations with sizes of nano, ultrafine, fine, from recent published data. Thanks to Lin et al. [6] who have provided the remarkable dataset related to traffic-related PAHs in southern Taiwan. The PAHs data give us the opportunity to test all theoretical considerations of nano/ultrafine particle-bound PAHs exposure effects and quantify its strength.

Briefly, Lin et al. [6] have chosen a heavily trafficked roadway in a city of southern Taiwan as the sample site to collect all of the atmospheric PM samples by using collectors of a MOUDI and a nano-MOUDI. They divided deliberately the PMs into four size groups: nano (PM0.01-0.056 μm, 0.01 μm < Dp < 0.056 μm), ultrafine (PM0.01-0.1 μm, 0.01 μm < Dp < 0.10 μm), fine (PM2.5), and coarse (PM2.5–10).

Of 15 PAH compounds of middle (4-ring) and high (5-/6-/7-ring) molecular weights were identified and quantified by a gas chromatograph/mass spectrometer (GC/MS) and a mass–selective detector: four 4-ring (fluoranthene, pyrene, benzo(a)anthracene, and chrysene), six 5-ring (cyclopenta(c,d)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(e)pyrene, benzo(a)pyrene, and perylene), four 6-ring (indeno(1,2,3-cd)pyrene, dibenzo(a,h)anthracene, benzo(b)chrysene, and benzo(g,h,i)perylene), and one 7-ring (coronene). The limits of detection of GC/MS ranged from 0.023 to 0.106 ng m$^{-3}$, whereas the limits of quantification ranged from 0.122 to 0.561 ng m$^{-3}$ for the identified 15 PAH compounds. The samplings were performed during August 2004–May 2006. The daily sampling time was from 07:00 to 22:00 (15 h).

Table 1 summarizes the size-specific measured concentrations of PM, total PAHs, and B[a]Peq.

2.2. Exposure models

We divided human respiratory tract (HRT) into five major compartments from the suggestion of ICRP66 [27]: (i) the nasal passage (ET1), comprising the anterior nose and the posterior nasal passages; (ii) the pharynx (ET2), comprising the larynx and mouth; (iii) the bronchial region (BB), comprising the airway from the trachea, main bronchi, and intrapulmonary bronchi; (iv) the bronchiolar region (BB), comprising the bronchioles and terminal bronchioles; and (v) the alveolar-interstitial region (AI), comprising the airway from the respiratory bronchioi through the alveolar sacs.

Followed by the principle of mass balance, the dynamic equations of inspiratory oral cavity varying with particle size range k and time t to each regional compartment are given by a state-space realization form of a linear dynamic representation [29,33] (Appendix A). The reference values for anatomical and physiological parameters, including volumes, breathing rates, transfer coefficients, and clearance rate, are taken from ICRP66 [27]. More details for HRT model developments and constructions have been described in elsewhere [29,33].

For simulating the inhalation pharmacokinetics of PAH, we used a basic human compartment structure that has been previously used in many PBPK models [34,35]. The tissue compartments included in the model were: alveolus, lung, richly perfused tissues (brain, gut, kidney, spleen, and heart), fat, slowly perfused tissues (bone, muscle, and skin), and liver. Each tissue compartment was interconnected by arterial and venous blood (Appendix B). The mathematical descriptions of pharmacokinetic processes...
employed in the PBPK model were provided in Appendix B. The physiological and biochemical parameters were listed in Appendix C (Table C1). The tissue:blood partition coefficients were calculated based on the published data [36,37]. The metabolic constants were determined by using the allometric scaling for interspecies extrapolation [38].

2.3. Dose–response models

To construct a dose–response profile describing the relationships between external B[a]Peq concentration and lung cancer risk response, the population attributable fraction (PAF) concept that builds on past well-defined models [10,26] is used. Specifically, environmental PAHs exposure-deduced PAF distribution used to estimate lung cancer risk has the form as [10,26],

\[PAF = \frac{rr(C_{\text{BaP,e}}) - 1}{rr(C_{\text{BaP,e}})} \]
(1)

\[rr(C_{\text{BaP,e}}) = 1 + \left[\frac{URR((IR/BW)/IR_m) \times C_{\text{BaP,e}} \times (70/100)}{1} \right] \times \text{sus}, \]
(2)

where \(rr(C_{\text{BaP,e}}) \) is the external B[a]Peq concentration \(C_{\text{BaP,e}} \) associated relative risk that can be estimated from a dose–response model developed by Armstrong et al. [4], URR is the unit relative risk at a benchmark of 100 \(\mu \text{g m}^{-3}\cdot\text{year} \) of B[a]P exposure [4], IR is the respiration rate (m\(^3\) d\(^{-1}\)), BW is the body weight (kg), \(IR_m \) is the mean value of per unit body weight respiration rate (m\(^3\) d\(^{-1}\) kg\(^{-1}\)), \text{sus} is the genetic susceptibility [10], and 70 is the lifelong exposure period (year). Here IR, BW, \(C_{\text{BaP,e}} \), and \text{sus} were treated probabilistically.

A joint probability technique can be used to link probability distributions of external B[a]Peq concentration \(P(C_{\text{BaP,e}}) \) and PAF \(P(PAF) \) to construct a dose–response model as

\[P(PAF|C_{\text{BaP,e}}) = P(C_{\text{BaP,e}}) \times P(PAF), \]
(3)

where \(P(PAF|C_{\text{BaP,e}}) \) is a conditional probability distribution used to represent the relationships between PAF and external B[a]Peq concentration.

Here we used a three parameters Hill equation model to optimal fit epidemiological data to reconstruct a dose–response profile describing the relationship between PAF and external B[a]Peq concentration. We combined the exposure analysis with the analysis of biological effects expected at various concentrations to calculate individual risk. We employed the joint probability function to describe the probability of an external concentration and internal dose exceeding a concentration that resulted in particular magnitude of biological effect. This results in a joint probability function or exceedance risk profile as

\[R_{\text{BaP,e}} = P(C_{\text{BaP,e}}) \times P(PAF|C_{\text{BaP,e}}), \]
(5)

where \(R_{\text{BaP,e}} \) is the risk at the specific external concentration of B[a]Peq, \(P(C_{\text{BaP,e}}) \) is the probability density function of measured \(C_{\text{BaP,e}} \), and \(P(PAF|C_{\text{BaP,e}}) \) is the conditional cumulative distribution functions given ambient concentration of B[a]Peq.

2.4. Lung cancer risk models

We combined the exposure analysis with the analysis of biological effects expected at various concentrations to calculate individual risk. We employed the joint probability function to describe the probability of an external concentration and internal dose exceeding a concentration that resulted in particular magnitude of biological effect. This results in a joint probability function or exceedance risk profile as

\[R_{\text{BaP,e}} = P(C_{\text{BaP,e}}) \times P(PAF|C_{\text{BaP,e}}), \]
(5)

where \(R_{\text{BaP,e}} \) is the risk at the specific external concentration of B[a]Peq, \(P(C_{\text{BaP,e}}) \) is the probability density function of measured \(C_{\text{BaP,e}} \), and \(P(PAF|C_{\text{BaP,e}}) \) is the conditional cumulative distribution functions given ambient concentration of B[a]Peq.

2.5. Uncertainty and data analysis

Optimal statistical models were selected on the basis of least squared criterion from a set of generalized linear and nonlinear autoregression models provided by TableCurve 2D packages (AISN Software Inc., Mapleton, OR, USA) fitted to the study data. A value of \(p < 0.05 \) was judged significant. To quantify the uncertainty and its impact on the estimation of expected risk, a Monte Carlo (MC) technique was implemented. A MC simulation was also performed with 10,000 iterations to generate 2.5- and 97.5-percentiles as the 95% CI for all fitted models. The Crystal Ball® software (Version 2000.2, Decisionerring, Inc., Denver, Colorado, USA) was employed to implement MC simulation. The MATLAB® software (The Mathworks Inc., MA, USA) was used to perform the simulations of HRT and PBPK models.

3. Results

3.1. Quantitative analysis of data

A bimodal distribution was found for size distributions of total APHs and PM measurements (Fig. 1). The lognormal (LN) distribution was successfully fitted to the size distribution measurements of total PAHs with a geometric mean (gm) 0.03 \(\mu \text{m} \) and a geometric standard deviation (gsd) 2.26 for ultrafine size range (LN(0.03 \(\mu \text{m}, 2.26), r^2 = 0.96) and LN(1.23 \(\mu \text{m}, 7.27) for fine size range (r^2 = 0.63) (Fig. 1A). On the other hand, for PM size distribution, the optimal fits were estimated to be LN(0.03 \(\mu \text{m}, 2.27) for ultrafine size range...
range ($r^2 = 0.99$) and LN(2.10 μm, 5.42) for fine size range ($r^2 = 0.78$) (Fig. 1B).

The optimal fitted probability distributions of size-specific $B[a]P_{eq}$ were estimated to be LN(1.35 ng m$^{-3}$, 1.44), LN(1.60 ng m$^{-3}$, 1.40), LN(3.41 ng m$^{-3}$, 1.30), and LN(0.64 ng m$^{-3}$, 1.31) for nano, ultrafine, fine, and coarse sized particles, respectively (Fig. 2A). Meanwhile, for PM concentrations, the best-fitted distributions were found to be LN(12.36 μg m$^{-3}$, 1.40), LN(16.14 μg m$^{-3}$, 1.24), LN(88.33 μg m$^{-3}$, 1.38), and LN(42.11 μg m$^{-3}$, 1.60) for nano, ultrafine, fine, and coarse sized particles, respectively (Fig. 2B).

3.2. HRT PM deposition and target organ $B[a]P_{eq}$ doses

Because the airborne PM concentrations within the four regions reached the steady state in 5–10 s for all the size ranges, it is more important to understand the size-specific equilibrium PM concentration than the dynamics of airborne PM in HRT. Generally, ET1 experienced the largest PM equilibrium concentration for all size range than those of BB, bb, and AI regions (Fig. 3A). Specifically, fine PMs had the highest concentration deposited in all lung regions with 70 ± 20 (mean ± sd) μg m$^{-3}$ in ET1, 45 ± 15 μg m$^{-3}$ in BB, 20 ± 10 μg m$^{-3}$ in bb, and 10 ± 5 μg m$^{-3}$ in AI regions (Fig. 3A).

Noted, however, that coarse PM concentrations were unlikely to have reached in deeper regions of bb and AI. A comparison of the equilibrium PM concentrations in four regions indicated that PM concentrations are much lower in the deeper AI region, suggesting that the deposition effect makes PM no longer airborne especially in larger size ranges (Fig. 3A). In view of PM deposition fraction, larger size PM experienced higher deposition fraction in upper lung regions ET1, BB, and bb, whereas in deep region of AI, nano-sized PM gave a much higher deposition fraction than those of ultrafine, fine, and coarse PMs (Fig. 3B).

Fig. 4 shows the simulated time-course concentrations of $B[a]P_{eq}$ in human tissues following inhalation exposure to nano- and ultrafine particle-bound PAHs. Peak exposure (12 h d$^{-1}$ on 50 consecutive days (Fig. 4B)) was clearly reflected by fluctuating concentrations in human tissues which increased with duration of exposure and reached steady-state. The highest nano and ultrafine $B[a]P_{eq}$ concentrations were observed in fat with an order of magnitude of 10^{-7} mg L$^{-1}$, followed by richly perfused tissues, slowly perfused tissues, liver, and lung, indicating that $B[a]P$ is the highly lipophilic compound and accumulates easily in human (Fig. 4A and C). Moreover, the fat tissue has the highest concentration, whereas the lung and liver tissues experienced the lowest concentration which was attributable to the properties such as lipophilicity and metabolic clearance of tissues.

3.3. Dose–response analysis

To obtain the PAF cumulative probability distribution, the probability distributions of ambient $B[a]P_{eq}$ concentration ($C_{B[a]P_{eq}}$), genetic susceptibility (sus), respiratory rate (IR), and body weight...
Median Susceptibility
LN(59.78 kg, 1.07)

Describing the relationships between ambient B[a]P concentration and half-maximum response of B[a]P consumption from inhaled particles as PBPK model input. (C) The same simulation but exposed to ultrafine-sized particle-bound PAHs.

Fig. 4. (A) Internal B[a]Peq concentration in human tissues for human exposed to nano-sized particle-bound PAHs by using PBPK model. (B) The 12 h:12 h exposure pattern of B[a]P consumption from inhaled particle as PBPK model input. (C) The same simulation but exposed to ultrafine-sized particle-bound PAHs.

(BW) appeared in relative risk (rr) relations (Eqs. (1) and (2)) have to be estimated (Fig. 5A–D). The resulted relative risk rr had a fitted lognormal distribution with a gm of 1.00049 and a gsd of 1.000702 based on a unit relative risk (URR) of 1.30 that was adopted from Armstrong et al. [4] for Asia continent (Fig. 5E). Fig. 5F presents the estimated cumulative frequency of PAF with variability in respiration rate and genetic susceptibility for lung cancer induced by inhalation exposure to ambient PAHs.

Based on the joint probability technique (Eq. (3)), a linkage of external B[a]Peq concentration and PAF cumulative distribution can then be obtained successfully to present the dose–response profile describing the relationships between ambient B[a]Peq level and PAF (Fig. 6A and B). A fit functionality was derived from MC modeling of a Hill-type equation (Eq. (1)) to represent mathematically the PAF–B[a]Peq dose–response model with cooperativity of Hill coefficient \(n = 2.61 \pm 0.5 \), maximum response \(\text{PAF}_{\text{max}} = 4.3 \times 10^{-3} \), and half-maximum response of B[a]Peq \(EC_{50} = 7.73 \) (95% CI: 7.04–8.42) ng m\(^{-3}\) \((r^2 = 0.99)\) (Fig. 6A and B).

3.4. Lung cancer risk and excess incidence rate estimates

The particle size-specific exceeding thresholds for the probabilities of lung cancer at risks of 0.1, 0.5, and 0.9 induced by inhalation exposure of PAHs are summarized in Table 2. Our results indicated that 50% or more probability (risk = 0.5) of average lung cancer induced by traffic-related PAH exposure were estimated to be \(4.4 \times 10^{-5} \) for nano-, \(6.65 \times 10^{-6} \) for ultrafine-, \(4.45 \times 10^{-4} \) for fine-, and \(6.21 \times 10^{-4} \) for coarse-sized particles (Fig. 7, Table 2).

Fig. 5. The parameters used for population attributable fraction (PAF) based dose–response model. The probability distributions of (A) ambient B[a]Peq concentration, (B) genetic susceptibility, (C) respiratory rate, (D) body weight, and (E) selected relative risk are model inputs. (F) The estimated median (solid line) with 95% CIs (dash lines) of cumulative frequency curves upon varied PAF intensities.

Fig. 6. The reconstructed population attributable fraction (PAF)–B[a]Peq dose–response function. The curves estimated with exposure to (A) the external B[a]Peq ranged from 0 to 10 ng m\(^{-3}\), and (B) the external B[a]Peq greater than 10 ng m\(^{-3}\).

In this study, a population attributable fraction (PAF) concept was applied to address the relationship between PAHs exposure and lung cancer by taking into account the variation in exposure concentration, respiration rate, body weight, and genetic susceptibility. A Hill-type equation representing the \(\text{PAF} - B[a]P_{\text{eq}} \) dose–response model was constructed to estimate lung cancer risk and excess lung cancer incidence rate. In view of fine particle-bound PAHs, estimated geometric mean \(B[a]P_{\text{eq}} \) concentration was 3.41 ng m\(^{-3}\) with corresponding PAF of 0.05% and predicted excess annual lung cancer incidence rate of 0.013 per 100,000 population.

From a conservatism point of view, this study indicates that traffic-related nano and ultrafine particle-bound PAHs are likely to pose potential lung cancer risk. This study thus suggests that an increased risk of lung cancer at the highest exposure levels of fine particle-bound PAHs is alarming. However, the model predicted excess annual lung cancer incidence rate varied between 0.0002 and 0.013 per 100,000 population, indicating a mild risk factor for lung cancer in southern Taiwan region.

The carcinogenic risk assessment for PAHs remains difficult, particularly due to the very high number of these compounds (in the hundreds) present in mixtures to which the general population may be exposed, as well as due to the possible contemporary presence of other risk factors and to possible synergistic and/or antagonistic effects. The choice of \(B[a]P \) as the reference compound to develop the potency equivalency factor (PEF) was presently questioned. Due to the limited number of dose–response data on carcinogenicity [8], and depending on the exposure route (intratracheal administration, intrapulmonary injection, and so on), different PEFs can be obtained. For example, the PEF value used for DB[a]H[A] was 1.0 [6]. This value may underestimate the relevance of this compound, because other authors claimed a PEF of 5.0 [40]. Noted, however, that the \(B[a]P_{\text{eq}} \) concentrations used for this calculation represent an external exposure estimation of carcinogenic compounds and not the effective active concentration at the lung level.

Recently, human health risk assessments have been frequently based on the biologically effective dose rather than the ambient exposure level [8,30]. Taking physiological and biochemical characteristics into account in exposure models can provide true internal doses of chemicals that would correlate more accurately with toxicity in human than that developed solely on external exposure. Considering the prevalence of PAHs in environment and their known carcinogenic potential, it is noted that PBPK modeling on this class of chemicals has been fairly limited.

The following points may give the explanations: (1) PAH exposure often involves exposure to mixtures of PAHs and other chemicals [6]; (2) exposures are typically to low levels of PAHs, exacerbating the difficulties associated with low-level extrapolation from high-level models [41]; (3) at least some of the airborne

ARTICLE IN PRESS

Table 3

<table>
<thead>
<tr>
<th>Particle size</th>
<th>B[a]P_{eq} (ng·m^{-3})</th>
<th>Model predicted PAF</th>
<th>Predicted PAF-based excess annual lung cancer incidence rate (per 100,000 population)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nano (PM_{0.01-0.06})</td>
<td>1.44 ± 0.539</td>
<td>3.37 × 10^{-5}</td>
<td>0.0009</td>
</tr>
<tr>
<td>Ultrafine (PM_{0.01-0.1})</td>
<td>1.69 ± 0.589</td>
<td>5.62 × 10^{-5}</td>
<td>0.0015</td>
</tr>
<tr>
<td>Fine (PM_{0.01-2.5})</td>
<td>3.53 ± 0.924</td>
<td>5.96 × 10^{-4}</td>
<td>0.013</td>
</tr>
<tr>
<td>Coarse (PM_{2.5-10})</td>
<td>0.662 ± 0.181</td>
<td>7.93 × 10^{-6}</td>
<td>0.0002</td>
</tr>
</tbody>
</table>

chemical present is adsorbed to surfaces of particles, complicating the assumption of equilibrium between ambient concentrations and the concentration in lung blood [42]; and (4) dermal exposure is also an important route of exposure [10]. However, combining physiologically based pharmacokinetic aspects with quality data can help us enhance exposure assessment for PAHs.

4.2. Limitations and implications

Mode-of-action of a compound has occasionally been considered in risk assessments, either to help in the determination of the particular carcinogenic effect seen in humans or to support the estimation of acceptable levels for human exposures [42]. Information on the carcinogenic mode-of-action in each target tissue becomes more important. Mechanistic exposure models can provide a valuable insight that considers human variability for risk assessment. An arising of human variability is from a variety of sources, including different activity levels altering physiological parameters and metabolizing enzymes [43–45]. It is believed that it would be interesting to explore mode-of-action information and human variability in the future studies.

This study did not perform the experimental work. Therefore, the limitation of this study is the data sources that we adopted to interpret and verify our results. Yet, there are a number of areas in which further research could reduce the uncertainties and limit the variability in this study. Among these are three areas that offer an opportunity for the most useful research. First, there is a need to conduct a more extensive characterization of the distribution of exposures within given population groups. This would require the collection of more detailed information on the characterization of occupation probabilities, PAH uptake in the lung and skin, and daily working logs. It would be useful to characterize better the distribution of exposures by age of individuals exposed. Second, there is a need for sensitivity analysis using the Monte Carlo simulation model with the more detailed data sets as inputs. On the basis of the results of the sensitivity analysis, research should be directed to those parameters that, if better characterized, could most effectively reduce variability in the results.

5. Conclusions

Our work emphasizes the need to consider the nano and ultrafine particle-bound PAHs data in addition to genetic susceptibility and respiration data in order to obtain a more complete picture of factors influencing potential lung cancer risk caused by inhalation exposure to ambient PAHs. There were suggestions of an increased risk of lung cancer at the highest exposure levels of fine particle-bound PAHs. Our findings showed that predicted excess annual lung cancer incidence rate estimates ranged between 0.001 and 0.01 per 100,000 population, indicating no increase risk of lung cancer due to inhalation exposure to ambient PAHs in southern Taiwan. It is anticipated that the concept of PAF for limiting cumulative PAH emissions to reduce lung cancer risk should play a prominent role in the future government risk assessment program. Better control program is afforded by a more thorough approach that combines an extensive database of nano/ultrafine particle-bound PAHs with a probabilistic assessment of their interpretive errors. The possible effects of long-term heavy inhalation exposure to ambient PAHs require further investigation.

Appendix A. HRT model

Human respiratory system is divided into four anatomical regions, including (1) the extrathoracic region (ET1), including ET1 and ET2, (2) the bronchial regions (BB), (3) the bronchiolar region (bb), and (4) the alveolar-interstitial regions (AI). The four regions also cover all other tissues in the human respiratory system, such as lymphatic tissue. Two main particle intake pathways are considered in human respiratory system: nasal (ET1) and oral (ET2). And the particles all deposit eventually in the following sequence: BB, bb, and AI during continuous breathing where the deposition mechanisms include gravitational settling, inertial impaction, interception, and diffusion in BB, bb and AI. The diagram of particle transport behavior in HRT was shown in Fig. A1 (Modified from [29]).

The general HRT model can be represented by a matrix form as [29,33].

\[
\frac{dC(k, t)}{dt} = [L]C(t) + [B][u(k, t)]
\]
(A1)

where \(C(k, t) = \{C_1(k, t), C_2(k, t), C_4(k, t), C_5(k, t)\}^T\) is the state variable vector of PAHs concentration in lung regions ET1, BB, bb, and AI, respectively (\(\mu g\,cm^{-3}\)); \([u(k, t) = \{C_1(k, t), 0, 0, 0\}^T\) represents an input vector of ambient PAHs concentration (\(\mu g\,cm^{-3}\)); \([L]\) is the state matrix containing size-specific transport rate coefficients of turbulent diffusive deposition rate, gravitational settling rate, and inertial impaction rate in each lung compartment as well as transition coefficients between lung compartments; and \([B] = diag\{Q/V_1, 0, 0, 0\}\) (s\(^{-1}\)) is the constant input matrix where \(Q\) is the breathing rate (cm\(^3\) h\(^{-1}\)) and \(V_1\) is the volume of ET1 compartment (cm\(^3\)).

Appendix B. PBPK model

The general PBPK model can be written as follows,

Gas exchange compartment

\[C_{A1} = \frac{Q_C C_V + Q_B C_I}{Q_C + Q_B P_b}\]
(B1)
References

