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Assessing the Exacerbations Risk of Influenza-Associated
Chronic Occupational Asthma

Chung-Min Liao,1,∗ Nan-Hung Hsieh,1 Chia-Pin Chio,1 and Szu-Chieh Chen2,3

The purpose of this article was to conduct a risk-based study based on a linkage of experimen-
tal human influenza infections and fluctuation analysis of airway function to assess whether in-
fluenza viral infection was risk factor for exacerbations of chronic occupational asthma. Here
we provided a comprehensive probabilistic analysis aimed at quantifying influenza-associated
exacerbations risk for occupational asthmatics, based on a combination of published distri-
butions of viral shedding and symptoms scores and lung respiratory system properties char-
acterized by long-range peak expiratory flow (PEF) dynamics. Using a coupled detrended
fluctuation analysis-experimental human influenza approach, we estimated the conditional
probability of moderate or severe lung airway obstruction and hence the exacerbations risk
of influenza-associated occupational asthma in individuals. The long-range correlation expo-
nent (α) was used as a predictor of future exacerbations risk of influenza-associated asthma.
For our illustrative distribution of PEF fluctuations and influenza-induced asthma exacer-
bations risk relations, we found that the probability of exacerbations risk can be limited to
below 50% by keeping α to below 0.53. This study also found that limiting wheeze scores to
0.56 yields a 75% probability of influenza-associated asthma exacerbations risk and a limit of
0.34 yields a 50% probability that may give a representative estimate of the distribution of
chronic respiratory system properties. This study implicates that influenza viral infection is
an important risk factor for exacerbations of chronic occupational asthma.

KEY WORDS: Asthma; detrended fluctuation analysis; exacerbations risk; influenza; probabilistic risk
assessment

1. INTRODUCTION

Recent studies have demonstrated that bronchial
asthma and chronic obstructive pulmonary disease
(COPD) are the major chronic respiratory diseases
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causing morbidity and mortality among children and
elderly worldwide.(1,2)

Kondo and Abe(3) indicated that influenza-
induced asthma may continuously deteriorate during
the first two days of illness and may require at least
seven days to recover. Murphy et al.(4) reported that
influenza in patients with asthma can cause acute
exacerbations, whereas in patients with COPD can
lead to respiratory distress. Upshur et al.(5) and Mar-
tinello et al.(6) found that exacerbations of COPD are
influenced by influenza. Wilkinson et al.(7) reported
that a total of 70% of COPD exacerbations were
associated with a bacterial pathogen Haemophilus
influenzae and rhinovirus was identified in 20% of
exacerbations. They suggested that changes in airway
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viral load and interactions between multiple
pathogens and airway could modulate exacerba-
tions severity. Wilkinson et al.(8) indicated that the
consequence of respiratory syncytial virus (RSV)
persistence in adult patients with COPD was associ-
ated with airway inflammation and could accelerate
the decline in forced expiratory volume in 1 second
(FEV1).

On assessing the effects of a winter influenza sea-
son on patients with COPD, Gorse et al.(9) found that
laboratory-documented influenza-caused illness was
associated significantly with worsening in FEV1. Ko
et al.(10) reported that the most prevalent viruses de-
tected during acute exacerbations of COPD in Hong
Kong were the influenza A viruses and coronavirus.
They indicated that among 196 patients with mean
age of 76 years, mean FEV1 was 40% of predicted
normal and FEV1/FVC (forced vital capacity) ra-
tio was 58%. Singh and Busse(11) and De Derred
et al.(12) also suggested that influenza virus is a fre-
quent contributor of acute exacerbations of asthma
and COPD. Therefore, the major viral causes of ex-
acerbations of COPD and chronic asthma include in-
fluenza, RSV, and coronavirus.

Diurnal variation in peak expiratory flow (PEF)
has been suggested as a surrogate for bronchial hy-
perreactivity, providing a useful index in the manage-
ment of bronchial asthma.(13−17) Troyanov et al.(15)

indicated that daily variations in PEF and FEV1 were
correlated significantly with lung airway caliber, sug-
gesting that PEF is as satisfactory as FEV1 for de-
scribing circadian variations among normal subjects
and stable asthmatic subjects.

It has been suggested that airborne viral infec-
tions have been responsible for the major risk factor
for exacerbations of chronic asthma and COPD.(18,19)

In additional to their well-characterized role in trig-
gering the exacerbations of COPD and chronic
asthma, airborne virus infections enhanced virus-
induced damage and innate inflammation.(20−22)

Mallia and Johnston(18) indicated that airborne res-
piratory viruses are a major cause of exacerbations
of both asthma and COPD, suggesting that exacer-
bations were associated with virus-induced airway
diseases. Papi et al.(23) indicated that COPD exac-
erbations were significantly associated with respira-
tory viral infections that caused reduction of FEV1

and airway inflammation. Donaldson et al.(24) and
Fuhlbrigge et al.(25) indicated that patients with fre-
quent exacerbations had a significantly faster decline
in FEV1 and PEF, suggesting that the frequency
of exacerbations contributes to long-term decline in

lung function of patients with moderate to severe
COPD or asthma.

Recently, a method used in statistical physics
called detrended fluctuation analysis(26,27) was used
to predict the risk of severe asthma and COPD ex-
acerbations based on the knowledge of the temporal
patterns of fluctuations in lung airway function.(28−30)

Frey et al.(28) indicated that chronic asthma could be
treated as a dynamic disease of the respiratory sys-
tem. Frey et al.(28) employed the detrended fluctua-
tion analysis to predict the risk of worsening airflow
obstruction by calculating the conditional probabil-
ity. Their model can predict a severe obstruction that
will occur within 30 days at a given current airway
condition characterized by PEF. They also revealed
that the detrended fluctuation analysis could charac-
terize the long-range correlation properties of pre-
vious temporal patterns of lung-function PEF mea-
surements. Therefore, the severe asthma episodes
can be monitored by the long-range correlations that
are characterized by the time series of PEF.

Thus, Frey(29) and Frey and Suki(30) suggested
that the correlation properties can be used to as-
sess the risk of future asthma episodes and to im-
prove the assessment of asthma severity for children
and adults. Little research so far has been done to
link lung function analysis and experimental human
influenza-associated chronic respiratory diseases for
estimating the exacerbations risk of chronic respira-
tory diseases. The dynamics of viral shedding and
symptoms following influenza virus infections are
key factors when considering epidemic control mea-
sures.(31−33)

Recently, a growing issue concerning the work-
exacerbated asthma caused by occupational expo-
sures has been noticed.(34) Occupational asthma is a
disease characterized by variable airflow limitation
and/or airway hyper-responsiveness due to causes
and conditions attributable to a particular occupa-
tional environment.(35) A longitudinal study reported
that nearly 16% of all adult-onset asthma was caused
by occupational exposures.(34) PEF monitoring for
periods at work and away from work has proved to be
a valuable means for assessing occupational asthma
on an individual basis.(34) Thus, in this study we fo-
cused our analysis on chronic occupational asthma as
the chronic respiratory disease considered.

The purpose of this study was threefold: (1) to
construct a relationship between respiratory symp-
toms scores and PEF in chronic respiratory disease
individuals based on a linkage between experimen-
tal human influenza data and the effects of influenza
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virus infection on decrease in PEF, (2) to provide
a probabilistic risk assessment framework for in-
tegrating viral shedding and symptoms scores data
of influenza virus infections and fluctuation anal-
ysis of lung function to assess the exacerbations
risk of influenza-associated chronic respiratory dis-
eases, and (3) to develop a detrended fluctuation
analysis-based risk predictive model to predict future
influenza-associated obstructive events.

2. MATERIALS AND METHODS

2.1. Experimental Human Influenza and
Influenza-Induced Asthma Data

Two valuable datasets provided by Carrat et
al.(33) and Kondo and Abe(3) give us the unique op-
portunity to examine the linkage between experi-
mental human influenza and the effects of influenza
virus infections on PEF decreasing in chronic respi-
ratory diseases individuals. Carrat et al.(33) have re-
viewed the published studies describing the courses
of influenza virus infection in placebo-treated and
untreated volunteers challenged with wild-type in-
fluenza A (H1N1), A (H3N2), A (H2N2), and type
B. Overall, the first dataset was reconstructed by
taking into account 56 different studies with 1,280
healthy participants aged between 18 and 40 or
50 years. A total of 532 volunteers were challenged
with an A (H1N1) virus, 473 with an A (H3N2) virus,
86 with an A (H2N2) virus, and 189 with a type B
virus. The inoculum ranged from 103–107.2 TCID50
(50% tissue culture infective dose) ml−1. Most stud-
ies included daily follow-up with daily nasal washing
and collection of clinical signs and symptoms.

The proportion of volunteers who developed
clinical illness of upper and lower respiratory symp-
toms after experimental influenza virus infection
were estimated to be 58.8% (95% confidential inter-
val (CI): 45.5–70.8) and 21% (95% CI: 14.0–30.3),
respectively.(33) In their study, upper respiratory
symptoms most frequently appeared as nasal stuffi-
ness, runny nose, sore throat, sneezing, hoarseness,
ear pressure, or earache, whereas lower respiratory
symptoms defined as cough, breathing difficulty, and
chest discomfort, were most frequent.

To investigate the essential time course of
bronchial caliber day by day in uncomplicated in-
fluenza infection, Kondo and Abe(3) examined FEV1

values from five days before to ten days after the
onset of illness in asthmatic children aged 8 to
12 years with tolerable respiratory symptoms. In

their study, influenza infection was defined as nasal
stuffiness, cough, sore throat, huskiness, throat injec-
tion, and headache with fever of >38 ◦C for at least
two days during an influenza epidemic. Kondo and
Abe(3) found an insignificant difference in the time
course of FEV1 of the acute stage between influenza
A and B infections, showing that 15 of 20 patients
had decrease in FEV1 more than 20% from baseline
during the acute stage.

To ensure data homogeneity in age, we adopted
an empirical linear relationship of FEV1 (%) =
0.77 PEF (% predicted) + 5.06 (r2 = 0.83, p <

0.001) based on airflow obstruction measurements(36)

for converting FEV1 to PEF (% predicted) values.
Table I summarizes used daily viral shedding and res-
piratory symptoms scores data obtained from the ex-
perimental influenza virus infections together with
measured decrease in PEF after the onset of in-
fluenza in asthmatics.

2.2. Time Series of Peak Expiratory Flow

The series of PEF measurement data used in this
study were obtained from Malo et al.(37) Malo et al.(37)

carried out PEF measurements every two hours in 74
occupational asthmatic subjects (most subjects were
men and nonsmokers or ex-smokers). Subjects were
asked to record their values approximately every two
hours from first thing in the morning until going to
bed in the evening. The duration of recording was
23 ± 20 (mean ± SD) days for periods at work and
37 ± 22 days for periods away from work. Smok-
ing habits of all subjects were 14%, 42%, and 44%
for smokers, ex-smokers, and nonsmokers, respec-
tively. Baseline anthropometric, clinical, and func-
tional results of the 74 subjects were assessed before
the study, indicating that mean FEV1 value was 91 ±
18% predicted in that 12 subjects (16%) < 80% pre-
dicted. The majority were on bronchodilators only at
the time of assessment and had a normal FEV1 in
that 40 of 66 (61%) showed increased bronchial re-
sponsiveness. The graphs of PEF recordings were as-
sessed in a randomized, cross-over, and double-blind
study.

We reanalyzed the above-mentioned series PEF
measurements in the presence and in the absence
of occupational asthmatic individuals and used a
time series representation by characterizing PEF as
a function of number of measurements. A Monte
Carlo technique was performed to best fit the distri-
butions of PEF corresponding to the reanalyzed time
series PEF data.
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Table I. Experimental Influenza Virus Infection Data and Time-Course of Mean Decrease in FEV1 Values After the Onset of Influenza
in Asthmatic Children Used in the Present Study

Days Post Infection

1 2 3 4 5 6 7 8 9

Viral Titer (LogTCID50 mL−1)a

1.88 2.98 2.61 2.14 1.53 1.06 0.72 0.27 0.32

Respiratory Symptoms scoresa,b

0.15 0.67 0.95 0.91 0.81 0.56 0.49 0.36 0.13

Decrease in FEV1 (%)c

22.6 ± 16.4 30.3 ± 10.9 25.4 ± 11.9 15.0 ± 6.8 19.8 ± 8.4 14.1 ± 10.3 10.6 ± 11.8 8.2 ± 13.0 8.2 ± 10.5
(15) (15) (15) (8) (4) (10) (14) (13) (13)

Decrease in PEF (% Predicted)d

29.4 ± 21.4 39.4 ± 14.1 33.0 ± 15.5 19.5 ± 8.9 25.7 ± 11.0 18.3 ± 13.4 13.8 ± 15.3 10.6 ± 17.0 10.6 ± 13.7

aData are adopted from Carrat et al.(24)

bA score of 1 corresponds to the maximum reported score value.
cData are adopted from Kondo and Abe(3) in that value is presented as mean ± SD with sampling numbers in parenthesis.
dConversion of FEV1 (%) to PEF (% predicted) based on the empirical fitted equation (Kelley and Gibson)(25): FEV1 = 0.77 PEF (%
predicted) + 5.06.

2.3. Detrended Fluctuation Analysis

To detect the long-range correlations embedded
in nonstationary PEF time series, this study applied
a detrended fluctuation analysis for minimizing the
effect of nonstationary trends present in physiolog-
ical PEF data. Detrended fluctuation analysis has
been applied successfully to detect long-range corre-
lations in highly complex heart beat time series and
other physiological signals.(26,27,38) A detailed com-
putational algorithm of detrended fluctuation analy-
sis can be found elsewhere.(26,27,38)

The detrended fluctuation function can be de-
scribed by a power law functional form as:

F(n) ≈ nα, (1)

in that F(n) is the detrended fluctuation function
characterizing by a root-mean-square fluctuation of
the integrated and detrended time series as:

F(n) ≡
√√√√ 1

N

N∑
k=1

[y(k) − yn(k)]2, (2)

where y(k) = ∑k
i=1 [PEF(i) − PEFave] is the inte-

grated PEF time series, PEF(i) is the PEF at time
i (L min−1), PEFave is the average PEF, n is the win-
dow size of the integrated time series, yn(k) is the fit-
ted least-squared line in each window size n repre-
senting the trend in that window, N is the number
of measurements, and y(k) − yn(k) represents the
detrended integrated time series. Typically, F(n) in-
creases with increasing of n. The exponent α charac-

terizes the correlation properties of the entire range
of PEF time series. The properties of α indicate that
there is no correlation in the time series at α = 0.5,
whereas for increasingly higher values of α it shows
increasingly stronger long-range correlations.

Here the calculated long-range correlation expo-
nent α that indicates the temporal history of the dis-
ease can be used as a predictor of future obstructive
exacerbations in chronic airway diseases. This im-
plicates that temporal long-term fluctuation of lung
function parameters are not totally random, demon-
strating associations between past and present val-
ues with weak and measurable long-range correla-
tion.(29,30)

2.4. Probabilistic Risk Model

In this study, a biologically based empirical
three-parameter Hill equation was used to recon-
struct the dose-response profile:

y(x) = a

1 +
( x

b

)c , (3)

where y(x) is the response caused by x, a and b are
the fitted coefficients, and the exponent c is the fitted
Hill coefficient. The cumulative distribution function
(cdf) of the predicted dose-response function of res-
piratory symptoms scores (RSS) for a given PEF can
be expressed as the conditional cdf of P(RSS|PEF).

Risk characterization is the phase of risk assess-
ment where the results of the influenza-associated
chronic respiratory diseases and quantitative effect
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assessments are integrated to provide the risk esti-
mates resulted from lung airway obstruction mea-
sured by PEF fluctuations. The risk at the specific
respiratory symptoms scores can be calculated as the
probability density functions (pdfs) of PEF multi-
plied by the conditional probability of P(RSS|PEF).
Therefore, a joint probability function (JPF) can be
used to calculate the risk probability and can be ex-
pressed as:

P(RRSS) = P(PEF) × P(RSS | PEF), (4)

where P(RRSS) represents the exacerbations risk es-
timate for an influenza-associated chronic occupa-
tional asthmatic individual.

A risk profile was generated from the cumulative
distribution of simulation outcomes. Each point on
the risk curve represents both the probability that the
chronic respiratory disease will exacerbate and also
the frequency with which that level of effect would
be exceeded. The x-axis of the risk curve can be in-
terpreted as a magnitude of effect (i.e., respiratory
symptoms scores), and the y-axis can be interpreted
as the probability that an exacerbation effect of at
least that magnitude will occur.

To assess the risk of influenza-associated acute
asthma episodes with significant airflow obstruction,
we linked the correlation exponent (α) that derived
from detrended fluctuation analysis with the con-
ditional probability of P(RSS|PEF) to predict the
probability that exacerbations will occur at a given
current value of PEF. In view of Equations (3)
and (4), a conditional probability of P(R|α) describ-
ing the correlation exponent (α)-based risk predic-
tion can be formulated by relating P(R) to RSS
as:

P(R|α) = f (RSS | α) = f

⎛
⎜⎜⎝ a

1 +
(

α = f (PEF)
b

)c

⎞
⎟⎟⎠ ,

(5)

in that we related the correlation exponent (α) to
PEF as α = f (PEF) using a linear regression model
by first establishing certain bins of the PEF values
and a window of certain points corresponding to cer-
tain time period. Finally, the relationship between
exacerbations risk probability of influenza-associated
asthma and the correlation exponent (α) can be es-
tablished. Because wheezing is the asthma symptom
most predictive of the level of airway obstruction, we
also used the relationship between wheeze and PEF
(% predicted) values to establish a wheeze-based
predictive conditional probability of P(exacerbations

risk|wheeze) based on the data from Teeter and
Bleecker.(39) Here we normalized the wheeze score
of 1 corresponding to the maximum score value
based on the original wheeze scores that were rated
by patients on 0 (none) and 4 (constant) integer
scale.

2.5. Uncertainty and Data Analysis

Optimal statistical models were selected on the
basis of least-squared criterion from a set of gen-
eralized linear and nonlinear autoregression models
provided by TableCurve 2D packages (AISN Soft-
ware Inc., Mapleton, OR, USA) fitted to the study
data. A value of p < 0.05 was judged significant.
To quantify the uncertainty and its impact on the
estimation of expected risk, a Monte Carlo (MC)
technique was implemented. A MC simulation was
also performed with 10,000 iterations to generate
2.5- and 97.5-percentiles as the 95% CI for all fitted
models. The Crystal Ball R© software (Version 2000.2,
Decisionerring, Inc., Denver, CO, USA) was em-
ployed to implement MC simulation. Fig. 1 illustrates
the computational algorithm implemented in this
study.

3. RESULTS

3.1. Risk Estimates in Influenza-Associated
Chronic Asthma

We began by combining the respiratory symp-
toms scores and viral shedding dynamics data in
experimental human influenza infections (Fig. 2A).
Fig. 2A shows the similar trend for respiratory symp-
toms scores and viral shedding over time with nearly
1 day delay for respiratory symptoms measured, in-
dicating that as the viral shedding increased, an in-
crease in respiratory symptoms scores was observed.
Our result shows that the optimized Hill-based re-
gression equation y = 1/(1 + (b/x)c) best describes
the dose-response relationship between symptoms
scores and viral load with fitted parameter values of
b = 0.73 logTCID50 mL−1 and c = 1.45 (r2 = 0.86,
p < 0.001) (Fig. 2B). Similar to Fig. 2A, we then in-
tegrated the decrease in% PEF and viral shedding
over time in experimental human influenza infection
to explore the relationship between them (Fig. 3A).
The reconstructed decrease in% PEF and viral load
profile reveals that the Hill function with a 10,000 MC
simulation provided an adequate fit for the data (r2 =
0.90, p < 0.001) with fitted parameter values of b =
6.75 logTCID50 mL−1 and c = 0.77 (Fig. 3B).
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Fig. 2. (A) Influenza viral shedding and
normalized respiratory symptoms scores
dynamics. (B) Reconstructed
relationships between respiratory
symptoms scores and viral shedding fitted
by a three-parameter Hill equation
model with 95% confidence intervals.

Given the dose-response relationships of viral
shedding and respiratory symptoms scores together
with decrease in% PEF for influenza virus infections
in patients with chronic asthma (Figs. 2B and 3B), we
can construct a respiratory symptoms scores−PEF
profile that explains mechanistically the observed
relations. We therefore found out that a best fit-
ted Hill model of y = a/(1 + (x/b)c) describes ade-
quately the relationship between respiratory symp-
toms scores and PEF with fitted parameter values of
a = 0.96, b = 445.81 L min−1, and c = 11.94 (r2 = 0.99,
p < 0.001) (Fig. 4A).

Fig. 4B shows the predicted exceedence risks for
both nonasthmatic and asthmatic individuals given
the measured PEF distributions (Figs. 4C, 4D) based
on respiratory symptoms scores−PEF response pro-

file (Fig. 4A). Our results indicate that the proba-
bilities that 50% or more of the exacerbations risks
induced by influenza infection are estimated to be
0.53 (95% CI: 0.45–0.61) and 0.11 (0.08–0.13) for
asthmatic and nonasthmatic individuals, respectively
(Fig. 4B). On the other hand, for exceedence risks
= 0.1 and 0.8, the asthmatic individuals have 0.90
(0.83–0.98) and 0.17 (0.09–0.25) of estimated respira-
tory symptoms scores caused by influenza infection,
respectively (Fig. 4B).

3.2. Quantification of Risk from PEF Fluctuations

To quantify the influenza-associated exacerba-
tions risk of chronic occupational asthma from
PEF fluctuation, the individual time series of 504



8 Liao et al.

0

10

20

30

40

0 0.5 1 1.5 2 2.5 3 3.5

  Data

  Fitted model

  95% CI

Viral titers (logTCID50 mL-1)

D
ec

re
as

e 
in

 P
E

F
 (

%
) 

a = 100
b = 6.75±4.02 logTCID50 mL-1

c = 0.77 
r2 = 0.90 (p < 0.001) 

])/(1[ cxb

a
y

+
=

B

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7 8 9

0

0.5

1

1.5

2

2.5

3

3.5

4

 Decrease in PEF (%)

Days post infection 

V
iral titers (log T

C
ID

50 m
L

-1)

D
ec

re
as

e 
in

 P
E

F
 (

%
) 

A

Viral titer 

Fig. 3. (A) Time course of influenza viral
shedding and decrease in% PEF for
influenza-induced asthma individuals.
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consecutive six-daily PEF values was self-similarity
reproduced for three representative scenarios I, II,
and III (Fig. 5A) based on published measure-
ment data (Figs. 5B–5D). Scenario I represents PEF
dynamics for individuals with occupational asthma
away from work, whereas scenarios II and III show
individual values of PEF taken at one week and two
weeks work, respectively. In comparison with sce-
nario I (average PEF = 506 L min−1), scenarios II
and III had lower estimated PEF values of 422 and
358 L min−1, indicating a sign of increased instability
of airway function (Table II). However, the variabil-
ity (coefficient of variation, COV) of the PEF series
was significantly higher in scenarios II and III than in
scenario I (Table II). Here COV value can be used to

compare the PEF data dispersion among the scenar-
ios I, II, and III.

To assess the variability of PEF, the detrended
fluctuation function F(n) was calculated from time
series of PEF. Results indicate that the fitted
power law function exponents (α) were estimated
to be 0.53, 0.78, and 0.87 for scenarios I, II, and
III, respectively (Fig. 5E; Table II). The present
detrended fluctuation analysis also shows that in
scenarios II and III, there are strong correlations be-
tween past and future PEF values, indicating that
past PEF values have significant effect on the cur-
rent or future values. A linear regression model
(α = −0.014PEFpred + 1.696, r2 = 0.96, p < 0.05)
was found to best describe the relationship between
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Fig. 4. (A) Conditional probability of
P(RSS|PEF) that is optimal fitted by a
Hill equation where RSS denotes
respiratory symptoms scores. (B) The
exceedence risk of respiratory symptoms
scores in asthmatic and nonasthmatic
individuals based on the representative
probability density functions of PEF
shown in (C) and (D), respectively. Two
vertical lines represent 60% and 80% of
predicted PEF values (the normal value
is estimated to be 628.5 L min−1) to
delineate the severe and moderate
regions based on GINA.(2)

predicted PEF values and correlation exponents (α)
(Fig. 5F).

To establish a conditional probability by which
the correlation exponent (α) that can be used as a
predictor to predict the influenza-associated exacer-
bations risk in chronic occupational asthmatics, we
converted appropriately the Fig. 4 of P(RSS|PEF) to
P(exacerbations risk|α) based on fitted α−PEFpred

linear mode (Fig. 5F). We found that influenza-
associated exacerbations risk increased with increas-
ing correlation exponent (α) with a best fitted

Hill model of y = 0.96/(1 + ((x − 1.7)/ − 1.18))11.08)
(r2 = 0.99, p < 0.001) (Fig. 6A). Our results indi-
cate that scenario III had higher influenza-associated
exacerbations risk (0.94, 95% CI: 0.90–0.98) com-
pared with scenarios II (0.91, 95% CI: 0.87–0.95) and
I (0.51, 95% CI: 0.47–0.55) (Fig. 6B).

Here we also used wheezing episodes in oc-
cupational asthmatics to predict the influenza-
associated exacerbations risk. Fig. 6C gives a con-
ditional probability of P(exacerbations risk|wheeze)
based on a linear regression relationship between
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Table II. Peak Expiratory Flows and Fitted Correlation
Exponents (α) of Occupational Asthmatic Subjects in Three

Occupational Scenarios

PEF PEF COVc

Scenario (L min−1) (% Predicted) (%) Skewness α

I 506.4 ± 26.1a 80.6%b 5.2 0.68 0.53
II 421.9 ± 59.9 67.1% 14.2 −0.23 0.78
III 357.7 ± 56.9 56.9% 15.9 0.89 0.87

aMean ± standard deviation.
bAdopted from Nunn and Gregg(11) in that predicted PEF for
men: loge PEF (L min−1) = 0.544 loge age − 0.0151age −
74.7/height (cm) + 5.48. An aged 40 years old with a height of
170 cm male was estimated to be 628.5 L min−1 of predicted PEF.
cCoefficient of variation (COV) = standard deviation/mean.

wheeze symptoms scores and PEF (% predicted) of
the age- and height-predicted normal values as PEF
(% predicted) = −38.14wheeze + 96.4 (r2 = 0.87, p <

0.05) (Fig. 6D). Our results show that limiting wheeze
scores to 0.56 yields a 75% probability of influenza-
associated asthma exacerbations risk and a limit of
0.34 yields a 50% probability (Fig. 6C)

4. DISCUSSION

In this study, we have conducted a risk-based
study based on a linkage of experimental human in-
fluenza infections and fluctuation analysis of airway
function to assess whether influenza viral infection
was a risk factor for exacerbations of chronic occu-
pational asthma. Here a detrended fluctuation anal-
ysis was used to predict influenza-associated exacer-
bations risk of chronic occupational asthma based on
the long-range PEF dynamics. This study implicates
that influenza viral infection is a major risk factor for
exacerbations of chronic occupational asthma. Our
results show that viral infection was a highly signifi-
cant risk factor for adults with chronic occupational
asthma (exacerbations risk = 0.53, 95% CI: 0.45–0.61
corresponding to exceedence risk = 0.5) compared
with asymptomatic controls (exacerbations risk =
0.11, 95% CI: 0.08–0.13). Overall, this study indi-
cates that severe occupational asthmatics had higher
influenza-associated exacerbations risk (0.94, 95%
CI: 0.90–0.98) compared with mild (0.91, 95% CI:
0.87–0.95) and control individuals (0.51, 95% CI:
0.47–0.55).

To test the rationalities of the dataset used in
our model, we also adopted related literature to sup-
port the explanations as follows. The convex pat-
tern of FEV1 values had been evidenced in asso-

ciation of ages.(40,41) We considered that the PEF
empirical equation for men (loge PEF (L min−1) =
0.544 loge age − 0.0151 age − 74.7/height (cm) +
5.48) was proper for our study (Table II). On the
other hand, the major PEF data adopted from Malo
et al.(37) in our selected three scenarios did not de-
scribe the information of age for participant subjects.
However, we found that the mean duration of ex-
posure for participant subjects was 9.4 years. More-
over, Leroyer et al.(42) also reported that the aver-
aged age and duration of exposure were 40.4 and
12.8 years, respectively. Hence, we reasonably as-
sumed that the average participant age and body
height was 40 years and 170 cm, respectively. Thus
the predicted PEF was estimated to be 628.5 L
min−1, resulting in the PEF (% predicted) values in
Table II of 80.6%, 67.1%, and 56.9%, respectively.
Although Miller(43) proposed the recalculated re-
gression (loge PEF (L min−1) = 0.755 loge age −
0.021 age − 104.1/height (cm) + 5.16) of PEF val-
ues for men, the proposed relative standard devia-
tion (46 L min−1) was higher than the difference of
two predicted PEF values (660.3 L min−1 by using
recalculated regression, difference = 31.8 L min−1).
Thus, results showed that the two PEF values were
not significantly different. Moreover, if the recalcu-
lated PEF values replaced the used one, it did not
affect the outcomes in this study.

By focusing on long-range correlations in daily
PEF fluctuations and their probabilistic implica-
tions for the likelihood of asthma exacerbations,
this study built on an integrating risk assessment
approach. Using a coupled detrended fluctuation
analysis-experimental human influenza approach, we
estimated the conditional probability of moderate
or severe lung airway obstruction and hence the
influenza-associated occupational asthma exacerba-
tions risk in individuals. Here we provided a com-
prehensive probabilistic analysis aimed at quan-
tifying influenza-associated exacerbations risk for
occupational asthmatics, based on a combination of
published distributions of viral shedding and symp-
toms scores and lung respiratory system properties.
We used a pharmacokinetic-based Hill equation to
construct the relationship among respiratory symp-
toms scores, lung function, and viral dynamic because
it is a dose-dependent biological response model. It
also allows us to compare the cooperatively among
different dose-response profiles that can explicitly
show the responses are depending on the maximum
respiratory symptoms scores/peak expiratory flow
and viral titer.(44) We showed that the conditional
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Fig. 5. (A) The reproduced time series of
PEF measurements in three
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Best fitted linear regression model
describing the relationship between
predicted PEF and correlation expo-
nents (α).

probability functions of P(respiratory symptoms
scores|PEF) and P(exacerbations risk|α) are robust
indicators of the probability that severe asthma
episodes will occur for influenza-associated occupa-
tional asthmatics. Based on the calculated correlation
exponent α, this study found that limiting wheeze
scores to 0.56 yields a 75% probability of exacerba-
tions risk of influenza-associated asthma and a limit
of 0.34 yields a 50% probability that may give a rep-

resentative estimate of the distribution of chronic
respiratory system properties.

Teeter et al.(39) did not clearly describe the
wheeze symptom score. They only presented none
symptom (score 0) to constant (score 4). Therefore,
we adopted Grazzini et al.(45) to support the defini-
tions of a 5-score system for wheeze symptoms in
our study. Grazzini et al.(45) used the score from 0
to 4 to present none, 1–2 per year, monthly, weekly,
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Fig. 6. (A, B) Conditional probability of
P(exacerbation risk|α) fitted by a Hill
model by which the influenza-induced
asthma exacerbations risk for scenarios I,
II, and III can be estimated based on
correlation exponent (α) in which the box
and whisker represent the uncertainty in
three scenarios. (C, D) Conditional
probability of P(exacerbation
risk|wheeze) by which the
influenza-induced asthma exacerbations
risk can be predicted from normalized
wheeze symptoms scores based on the
relationships between wheeze symptoms
scores and PEF (% predict).

and daily, respectively. In our study, we treated the
wheeze symptom scores as normalized values from
0 to 1 for simplified and consistent reasons. Hence,
the normalized wheeze values of 0.11, 0.34, and
0.50 could be considered as mild (none to yearly),
moderate (yearly to monthly), and severe (monthly
to weekly) conditions, respectively. The normalized
value greater than 0.75 could be considered as a very
severe condition (means episode with daily). Yet Mi-
tra et al.(46) proposed a 4-score system (from 0 to 3)
for describing the wheeze symptom. However, if fu-
ture study used the normalized values that we es-
timated by the 4-score system of wheeze symptom,

the severe conditions of patients should be redefined.
That is to say, different score systems for wheeze
symptoms decided the clinical cut-points (such as
yearly, monthly, weekly, or daily).

A limitation of the present analysis is the
adopted study data. The published data that we used
might not all be dependent and not equally likely,
and might not be formally combined. They are used
here to represent the applicable published obser-
vational data whose implications for exacerbations
risk prediction of influenza-associated asthma have
not been analyzed before. On the other hand, de-
termining probabilistic exacerbations risk for future
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occupational asthma episodes caused by influenza
virus infection is challenging, as it requires a synthesis
of uncertainties along the cause-effect chain from vi-
ral infection to lung function variations. For example,
uncertainties may exist in the PEF measurements,
viral shedding and symptoms scores, and asthmatic
responses. Uncertainties in future exacerbation pre-
dictions of influenza-associated asthma can be quan-
tified by constraining the present risk-based predic-
tive model parameters to reproduce temporal history
of lung function fluctuations, asthma severity and sta-
bility, and fluctuating environmental stimuli (e.g., al-
lergens, infections, and pollutants).(30) Future studies
can use DFA to quantify the time-series environmen-
tal stimuli data and to correlate the relationships with
lung function fluctuations.

To represent current knowledge on future viral
infection-induced severe asthma episodes is difficult,
and might be best encapsulated in the wide range
of results from the multidimensional approach that
includes a combination of several clinical and phys-
iological parameters such as symptoms, behavioral
factors, lung function, and inflammatory markers.(30)

Frey and Suki(30) suggested that a fluctuation anal-
ysis approach can be used to identify dynamic pat-
terns in fluctuations of clinical symptoms of com-
plex chronic diseases. To improve risk assessment
of asthma severity, the fluctuation analysis approach
can be applied to analyze the correlation properties
based on observation of the long-term temporal fluc-
tuations of clinical and physiological markers. From
the perspective point of view toward health surveil-
lance of occupational asthma, we hoped that the pro-
posed DFA-based PEF scheme would (i) enable the
early identification of adverse health effects in indi-
viduals, (ii) complement environmental monitoring
in assessing control, and (iii) contribute to the pro-
cess of hazard and risk assessment.

In conclusion, we emulated the detrended fluc-
tuation approach by combining experimental human
influenza infection data with influenza-induced asth-
matic respiratory symptoms, and incorporated these
associations into occupational asthmatic settings with
PEF measurements of lung function responses over
time. For our illustrative distribution of PEF fluctu-
ations and influenza-induced asthma exacerbations
risk relations, we found that the probability of exac-
erbations risk can be limited to below 50% by keep-
ing correlation exponent (α) to below 0.53. If the
acceptable exceedence probability were 50%, this
would limit a wheeze score of 0.34 or lower. Further
theoretical and experimental analyses are required to

achieve a better understanding of influenza-induced
asthma exacerbations risk. However, we think there
is room for further improvement, especially in bet-
ter understanding the experimental human influenza
infection of respiratory symptoms, the effect of in-
fluenza virus infection on PEF/FEV1 in asthmat-
ics, and dynamic disease of respiratory system-based
fluctuation analysis.
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