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revealed through stage-structured disease transmission dynamics
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Abstract

The purpose of this study was to assess the effects of mercury (Hg) on birnavirus infection in the farmed hard clam (Meretrix
lusoria) populations. A stage-structured matrix population model was linked with a nonlinear epidemiological dynamics of host–
pathogen model to quantify the effects of increased Hg-stressed birnavirus on population dynamics of disease in hard clam
populations. Bioenergetics was incorporated into population stage-structured model to enhance life cycle toxicity assessment on
constraining reproduction and growth in life stages of hard clams. We delineated three qualitatively distinct scenarios of virus only,
Hg+virus, and virus+Hg. Within a range of disease transmissibility drawn from analysis of Hg-stressed birnavirus in hard clams,
different transmissibility led to simulated outbreaks characterized by basic reproductive number (R0) depicting the allowance
population numbers to contain disease spread for all three scenarios. This study suggested that recognizing which of the scenarios
best describing a situation in the field could aid in planning disease management and in choosing the most efficient and feasible
strategy. The present simple model captured the essential dynamics and its flexible enough to integrate effects occurring at varying
temporal scales based on biologically plausible and empirically grounded dynamical models. We were confident that the model
could be easily adapted for other aquaculture species and encourage researchers to use the model to diagnose the population-level
risk of toxic chemical-stressed pathogen on these species.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Increasing evidence both from field observations and
experimental studies showed that a strong correlation
existed between risk of infection establishment and
spread associated with serious economic and ecological
problems in aquaculture species (Murray and Peeler,
2005). Chou et al. (1998) demonstrated that an increase in
heavy metal stresses such as Cu, Cd, Hg, and Zn had a

marked effect on the susceptibility of hard clam (Meretrix
lusoria) to a low pathogenic infectious pancreatic nec-
rosis virus (IPNV)-like aquaculture birnavirus infection.
Chou et al. (1999) further indicated that an infectious
pancreatic necrosis virus (IPNV) with only low pathoge-
nicity could cause high mortality in groupers (Epinephe-
lus sp.) when combined with heavy metal stressors such
as Zn, Cd, and Cu. Heinonen et al. (1999) indicated that
trematode parasite infection affected accumulation of
xenobiotics in freshwater clam Pisidium amnicum, sug-
gesting that natural stress factors like parasite infections
and environmentally relevant abiotic factor should be
better understood and applied in ecotoxicological studies.
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Arkoosh et al. (1994, 1998, 2001) and Loge et al. (2005)
revealed that pollution-stressed immunodysfunction in
juvenile Chinook salmon (Oncorhynchus tshawytscha)
might lead to increased susceptibility to infection by a
virulent marine pathogen Vibrio anguillarum. Hall et al.
(2006a) indicated that the risk of death from infectious
disease in harbor porpoises was associated with increas-
ing polychlorinated biphenyls (PCBs) exposure.

Great potential benefits would be gained from any
appropriate management able to control the spread of
the infectious diseases and eliminate it from the aqua-
culture species populations. On the other hand, miti-
gation of environmental stressors that increased the risk
of host susceptibility to the spread of emerging disease,
however, posed a challenge to the design of an effective
control strategy. Analysis of infectious disease ecology
and host–pathogen interactions including pathogen
transmission and disease manifestations were central
to successful control strategies (Anderson and May,
1991). Environmental chemical stresses affected eco-
logical endpoints such as intrinsic rates of increase,
carrying capacity, and density dependence of popula-
tions involving in density-toxicant interactions (Sibly
et al., 2000; Forbes et al., 2001; Hendriks et al., 2005).
Here we employed the matrix population model to
account for the population dynamics (Caswell, 2001).
Disease models based on the matrix population models
not only allowed asymptotic analysis to estimate the net
reproduction rate of the disease and growth rate of the
population, but also provided a flexible framework for
modeling epidemiological processes of the disease and
population dynamics and infection control program
(Liao et al., 2006; Oli et al., 2006).

In the recent years the concept of assimilated energy
utilization had been extensively employed to determine
the growth of organisms and the productivity of eco-
systems and the life cycle toxicity assessment (Jager
et al., 2004; Nichols et al., 2004; Tsai and Liao, 2006;
Klanjscek et al., 2006; Péry et al., 2006). The basic
insight was that exposure to toxicants could be under-
stood as a change in energetic parameters, such as an
increase in the maintenance (including detoxification)
costs or a decrease of the assimilation of energy from
food (Péry et al., 2003; Jager et al., 2004; Klanjscek et al.,
2006). Aquaculture species constantly consumed energy
in order to maintain life and offset effects of multiple
stressors such as daily fluctuations of water temperature,
availability of food, and pollutants in the environment.
Therefore, assessing the impact of chronically exposure
to chemicals by using the energy metabolism as a per-
formance response could be a rigorous physiological and
ecological approach to toxicity assessment. Péry et al.

(2006) further argued that bioenergetics-based models
provided appropriate kinetics estimates, which made
actual kinetics measurements unnecessary.

Hard clam M. lusoria, being cultured in large quan-
tities in intertidal sandflats and ponds, was chosen for
study mainly because of its economic importance in
Taiwan and heavymetal pollution issues. The production
of hard clams was currently nearly 24,000 ton per year
(http://www.fagov.tw/chn/index.php). Data obtained
from previous published bioaccumulation and acute
and chronic toxicity bioassays were reanalyzed to recon-
struct concentration–response profiles and to examine
the survival and growth performances. These data pro-
vided stage-specific schedules of vital rates that are used
to parameterize a matrix population model for hard
clams. Simulations were carried out to produce popu-
lation abundance changes over time under different ex-
posure scenarios. Asymptotic population growth rates
were estimated from matrix population models along
with stage-specific mode of action (MOA) to further
provide population-level ecotoxicological endpoints. A
deterministic susceptibility–infectious–mortality model
linking with a population dynamics of disease model was
used to estimate the epidemiologically relevant endpoints
such as transmissibility and basic reproductive number.

The objectives of this paper were twofold: (1) to link
a stage-structured population growth method with a
nonlinear epidemiological dynamics of host–pathogen
model to investigate the effects of increased Hg-stressed
birnavirus on the population dynamics of disease in hard
clam populations and (2) to incorporate a bioenergetics-
based model into the population stage-structured model
to enhance the life cycle toxicity assessment of the
effects of Hg-stressed birnavirus on reproduction and
growth for life stages of hard clams.

2. Materials and methods

2.1. Stage-structured matrix model

To develop the stage-structured population growth
model of hard clam, a four-stage (embryos/larvae to ju-
veniles to sub-adults to adults) matrix model was used to
project offspring production through two generations
based on the body weight as suggested by Fisheries
Administration, Council ofAgriculture, ROC (http://www.
fagov.tw/chn/index.php), indicating that the duration of
each life stage of hard clamwas estimated to be 3, 5, 8, and
16 months, respectively, yielding a life span of 32 months.

Based on the stage-specific survival and life stage
transition rates and fecundity through sub-adults and
adults, a four-stage matrix population model (MPM)
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could be constructed and described by using a state-
space representation as (Fig. 1A),
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where ni(t) is the number of hard clam in stage i at time t
and matrix [A] is a population projection matrix where

Pi is the probability of surviving and staying in stage i,
Gi is the probability of surviving and growing from
stage i to stage i+1, and Fi is the per capita fertility of
stage i within each projection interval in that Pi, Gi, and
Fi are referred to as the life cycle parameters or tran-
sition probabilities. Matrix [A] can be used to estimate
an asymptotic population growth rate, λ (the dominant
eigenvalue of [A]), reflecting the temporal trend in
population abundance (Caswell, 2001). When λ exceeds
1.00, the population was projected to increase over time,
whereas the population was projected to decline when λ

Fig. 1. Schematic diagrams of the model structure. (A) A four-stage life cycle graph of an individual hard clam M. lusoria for a disease-free and
disease-induced SIM dynamics. (B) Process of hard clamM. lusoria exposed to Hg and virus showing disease transmission, mortality, and production
sequentially within-summer of the year (see Table 1 for detail symbol descriptions).
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is less than 1.00. Population growth rate; λ was analogy
of “r,” the intrinsic growth rate of increase: r=lnλ.
Table 1 summarizes the essential mathematical equa-
tions of the life cycle parameters of Pi, Gi, and Fi.

A three-parameter Hill equation model (Eq. (T-1),
Table 1) was used to describe the relationship between
hard clam whole body burden and mortality to estimate

the stage-specific vital rate of survival probability in
Eq. (T-4) (Table 1). The time-dependent damage-based
lethal body concentration (CL50(t)) in Eq. (T-1) (Table 1)
could be derived from the first-order damage accumu-
lation model or known as damage assessment model
(DAM) (Eq. (T-3), Table 1) (Bedaux and Kooijman,
1994; Lee et al., 2002).

Table 1
Mathematical expressions of Hill model, transmission probabilities in [A], and West growth model used in the paper (see Table 2 for detail symbol
meanings)

Hill concentration–response model

M tð Þ ¼ MmaxCn
f ðtÞ

½CL50ðtÞ�n þ Cn
f ðtÞ

(T-1)

Cf ðtÞ ¼ BCFCwð1−e−k2 tÞ (T-2)

CL50 tð Þ ¼ DL50=ka
e−kr t−e−k2 t

kr−k2
þ 1−e−k2 t

kr

� � 1−e−k2 t
� � (T-3)

Transition probabilities
Pi=σi(1−γi) (probability of surviving and staying, day−1) (T-4) a

GI=σiγi (probability of surviving and growing, day−1) (T-5) a

Fi= feiEFmi (fertility of stage i within each interval, day−1) (T-6) b

ri ¼ SiðtþTÞð1−MiðtÞÞ
SI ðtÞT (probability of vital rate of survival, day−1) (T-7) c

gi ¼ WiðtþTÞ−WiðtÞ
WI ðtÞT � 100 (probability of vital rate of growth, day−1) (T-8) c

S tð Þ ¼ 1−at
1þbt

� �k
(intrinsic survival rate) (T-9) d

fei ¼ dFeiðtÞ
Fe0dt

� 100 (number of eggs per mature female per unit time, day−1) (T-10) c

FeðtÞ ¼ m0½W ðtÞ�n0 (fecundity at age t) (T-11) e

West growth model

W tð Þ ¼ Wmax0 1− 1−
W0

Wmax0

� �1=4
" #

e−A0 t=4W
1=4
max0

( ) (T-12)

MOA1 : W tð Þ ¼ Wmax 1− 1−
0:05
Wmax

� �1=4
" #

e−A0 t=4W
1=4
max

( )4

Wmax ¼ Wmax0 1−bðCf ðtÞ−IEC10Þ
� �

(T-13)

MOA2 : W tð Þ 1þ s tð Þ½ � ¼ 52:5 1− 1−
0:05
52:5

� �1=4
" #

e−A0 t=4�52:51=4

( )4 (T-14)

MOA3 : W tð Þ ¼ 52:5 1− 1−
0:05
52:5

� �1=4
" #

e−At=4�52:51=4

( )4

A ¼ A0ð1þ sðtÞÞ−1

(T-15)

a Adapted from Caswell (2001).
b Adapted from Simas et al. (2001).
c Adapted from Chen and Liao (2004).
d Adapted from Klok and De Roos (1996).
e Adapted from Blanchard et al. (2003).
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The West ontogenetic model was adapted as hard
clam growth model under nonexposed conditions (West
et al., 2001) (Eq. (T-12) in Table 1). West et al. (2001)
developed a mechanistic model to describe ontogenetic
growth trajectories of organisms instead of the conven-
tional growth model based on the biometric approach.
West growth model was a general quantitative model
based on fundamental principles for the utilization of the
consumed energy between maintenance of existing tis-
sue and the reproduction of new biomass that had de-
scribed the growth of many diverse species successfully
(West and Brown, 2004). The model characterized the
slowing of growth as the body size increases to limi-
tations on the capacity to supply sufficient resources to
support further increase in body mass.

In light of DEBtox theory (Jager et al., 2004) and
energetics of freshwater clam (Jokela et al., 1993), three
modes of toxic action was distinguished on the Hg
growth inhibition of hard clam population model
(Fig. 1A): (1) before production of offspring, uninfected
hard clams allocated energy to shell growth and gly-
cogen storage, i.e., increase growth cost (MOA3) on
embryo/larva and sub-adult stages; (2) during offspring
production shell growth slows down, hard clams lost
weight and consume the stored glycogen, i.e., decreased
assimilation (feeding) (MOA1) on adult stage; and (3)
the fat content of hard clams increased on juveniles
indicating increased the maintenance costs (MOA2) on
that stage. The basic assumption of the DEBtox theory
was that chemicals had to be uptake by the organism
firstly before they could exert an effect. Once the chem-
ical got inside the target tissues, it increased the
probability of adverse response and affected a parameter
of the general ontogenetic growth model (e.g., the assi-
milation rate). Kooijman and Bedaux (1996) and Péry
et al. (2003) introduced a stress function s(t)=b[Cf(t)−
IEC10(t)] to describe the extent of adverse effect. IEC10
is the 10% effect threshold for chronic growth inhibition
and b accounts for the level of toxicity (g g−1) for Cf

exceeds IEC10.
We defined mechanistically the MOA1, MOA2, and

MOA3 as follows (Table 1) (Tsai and Liao, 2006).
MOA1: When feeding was decreasing, growth reduc-
tion acted through reducing the incoming energy. The
maximum assimilation rate did not appear in the West
growth model, yet it could be captured by the maximum
weight (Wmax) as suggested by Kooijman and Bedaux
(1996) (Eq. (T-13), Table 1). MOA2: When mainte-
nance energy cost was increasing, chemicals were like-
ly to increase in maintenance costs for compensating
for the effects of exposure (Beyers et al., 1999). Be-
cause maintenance cost had priority over growth, such

an increase led to a reduction of growth rate. Body
weight was multiplied by (1+ s(t)) to account for an
increase in the maintenance costs, resulting in the re-
duction of time-dependent body weight as suggested by
Kooijman and Bedaux (1996) (Eq. (T-14),Table 1).
MOA3: In case of increase growth energy cost, i.e., Cf

exceeded IEC10, we assumed that the metabolic ener-
gy (Ec) required to create a new cell were multiplied by
(1+ s(t)) and could be expressed as Ec=Ec0(1+ s(t))
where Ec0 was the growth energy cost in control con-
dition. When Cf≤ IEC10, it led to s(t)=0 and Ec=Ec0

(Eq. (T-15), Table 1).

2.2. Hard clam−Hg-birnavirus system

Here the disease model was built around the biology
of a particular hard clam (M. lusoria)–Hg-stressed
birnavirus system to explore the interaction between
environmental chemical stressor and disease trans-
mission explaining the host–pathogen interactions
presented in the immunomodulating chemicals contam-
inated aquaculture systems. We used interplay between
a nonlinear disease model and published laboratory
experiments to parameterize the M. lusoria–Hg-
stressed birnavirus system. Chou et al. (1998) indicated
that the hard clam M. lusoria that are cultured in Tai-
wan have suffered high mortality each spring/summer
since 1969. Here we presumed that the disease-related
processes of transmission and production of infected
individuals occurred during summer to construct the
model presenting the sequence of the events during a
year (Fig. 1B).

A disease-induced mortality-based susceptible–
infectious–mortality (SIM) model was used to capture
the essence of this M. lusoria–Hg-stressed birnavirus
system. We used a deterministic SIM model with ho-
mogeneous mixing to estimate the force of infection.
The dynamics of the susceptible (S), the infected (I),
and the mortality state (M) for hard clams exposed to
a pollution-stressed disease could be described as
(Fig. 1B),

Embryo/larva:

dS1
dt

¼ S3F3 þ S4F4−S1 1−P1ð Þ−kF1 S1P1ð Þ

dI1
dt

¼ kF1 S1P1ð Þ þ I3F
V
3 þ I4F

V
4−I1 1−P V

1

� �
−a1 I1P

V
1

� �
;

dM1

dt
¼ a1 I1P

V
1

� � ð2Þ
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Juvenile:

dS2
dt

¼ S1G1−S2 1−P2ð Þ−kF2 S2P2ð Þ

dI2
dt

¼ kF2 S2P2ð Þ þ I1G
V
1−I2 1−P V

2

� �
−a2 I2P

V
2

� �
;

dM2

dt
¼ a2 I2P

V
2

� � ð3Þ

Sub-adult:

dS3
dt

¼ S2G2−S3 1−P3ð Þ−kF3 S3P3ð Þ

dI3
dt

¼ kF3 S3P3ð Þ þ I2G
V
2−I3 1−P V

3

� �
−a3 I3P

V
3

� �
;

dM3

dt
¼ a3 I3P

V
3

� � ð4Þ

Adult:

dS4
dt

¼ S3G3−S4 1−P4ð Þ−kF4 S4P4ð Þ

dI4
dt

¼ kF4 S4P4ð Þ þ I3G
V
3−I4 1−P V

4

� �
−a4 I4P

V
4

� �
;

dM4

dt
¼ a4 I4P

V
4

� � ð5Þ

where Pi′, Gi′, and Fi′ are probabilities of surviving and
staying, surviving and growing, and fertility within each
projection interval in stage i at an infected condition.
The force of infection, λF, that is the infection pressure
experienced by one susceptible individual is then given
by λF=β (C)I(t) where β (C) is the concentration (C)-
dependent transmissibility, and α(C) is the C-dependent
disease-specific mortality rate (Liao et al., 2006).

Pollution-stressed basic reproductive number (R0(C))
could be calculated based on β (C) and α(C) (Anderson
and May, 1991),

R0 Cð Þ ¼ Nð0ÞbðCÞ
aðCÞ ; ð6Þ

where N(0) is the initial host population size (ind). The
relationship between I and R0(C) could be revealed by a
fitted equation for R0(C) ranging from 0.98 to 5 as (Liao
et al., 2006),

I ¼ 1−expð1:63−1:66R0ðCÞÞ: ð7Þ

The effect of environmental stressor on host suscep-
tibility and subsequently modulation of disease dynam-
ics in hard clam populations could be characterized by a
nonlinear pollution-stressed population dynamics of
disease model (Liao et al., 2006),

N t þ 1ð Þ
¼ N tð Þexp lnk Cð Þ þ 1:63ð Þ 1−

1:66
1:63þlnkðCÞ
NbðCÞ=aðCÞ

� �
0
@

1
A

2
4

3
5;
ð8Þ

where N(t+1) and N(t) are the population size in gene-
rations of t and t+1 (ind), and λ(C) is the C-dependent
population growth rate.

2.3. Reconstructing disease data

The published data were adopted from the labora-
tory disease challenge experiments in studying the
effects of heavy metal on the susceptibility of hard
clam (M. lusoria) to clam birnavirus infection (Chou
et al., 1998). Chou et al. (1998) conducted two experi-
ments to examine the effects of Hg on the disease
transmission in hard clam: In experiment I (denoting
as V+Hg), group of 60 clams were immersed in
birnavirus solution for 24 h and subsequently exposed
to different Hg concentrations. In experiment II
(denoting as Hg+V), clams were exposed to Hg for
7 days and then infected with birnavirus in that
controls were only exposed to Hg. The major results in
experiment I indicated that cumulative mortalities of
clams were 20–50% in most of the experimental
groups after 5 weeks, whereas in experiment II the
survival time shortened and the mortalities ranged
from 65% to 90%.

The best fitted model of Hg-specific transmission and
mortality rates based on mortality data obtained from the
laboratory disease challenge experiments (Chou et al.,
1998) had the form as: y=a(1−1 / (1+abx)) (Liao et al.,
2006). For experiment I (V+0.005 ppm Hg): (1) trans-
mission rate (β): a=0.00980, b=136136.233 (r2 =
0.994), and β=0.00852 (95% CI=0.00736−0.00960)
day−1 ind−1 (Fig. 2A) and (2) mortality rate (α): a=
0.594, b=2264.239 (r2 =0.994), and α=0.517 (95%
CI=0.444−0.582) day−1 (Fig. 2B). For experiment II
(0.005 Hg+V): (1) transmission rate (β): a=0.0231,
b=49903.576 (r2 =0.992), and β=0.0197 (95% CI=
0.0165−0.0226) day−1 ind−1 (Fig. 2C), and (2) morta-
lity rate (α): a=1.357, b=874.249 (r2 =0.992), and
α=1.161 (95% CI=0.970−1.337) day−1 (Fig. 2D). The
R0(C) estimates for experiments I and II in Hg-stressed
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birnavirus infection settings showed the median values
were greater than 0.98 (Fig. 2E), indicating that epi-
demic were potentially spread throughout the hard
clam populations without any effective control mea-
sures. The Hg-specific population growth rate (λ(C))
could be estimated by fitting exponential growth
model: ln(N(t+1) /N(t))= lnλ(C) to the published cu-
mulative mortality data (Chou et al., 1998), resulting
in a fitted model as: lnλ(C)=−0.00192−0.000033 lnC
(r2 =0.994) (Fig. 2F). We incorporated the above es-
timated disease data into the pollution-stressed disease
model in Eq. (8) to predict cumulative mortality

profiles revealing a significantly best fitted with the
published cumulative mortality data of experiments I
and II in Hg-stressed birnavirus infection settings
(Fig. 2G).

2.4. Vital rate parameters and simulation scheme

Table 2 gives the used input parameters in estimating
vital rates for hard clam populations. To manipulate the
simulation of stage-structured population growth model,
a projection interval of 1 day was used. Caswell (2001)
pointed out that the initial condition had no influence on

Fig. 2. Estimated disease transmission and mortality rates as a function of Hg concentrations for experiment I (A, B) and for experiment II (C, D). (E)
Box and whisker plot representations of the estimated basic reproductive number (R0) for V+Hg and Hg+V settings. (F) Optimal fitted intrinsic
growth rate profiles. (G) Time-varying pollution-stressed population dynamics of disease model against the published data of V+Hg and Hg+V
obtained from Chou et al. (1998).
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the stable age distributions as well as population growth
rate. Here, 60 hard clams were used as the initial number
in each stage in accordance with the experimental
condition conducted by Chou et al. (1998). Model
simulations and the determinations of asymptotic popu-
lation growth rate under different scenarios were per-
formed using the MATLAB® software (The Mathworks
Inc., MA, USA).

Optimal statistical models were selected on the basis
of least squared criterion from a set of generalized
linear and nonlinear autoregression models provided by
TableCurve 2D package (Version 5, AISN Software
Inc., Mapleton, OR, USA) fitted to the data. A value of
pb0.05 was judged significant. We used a Monte Carlo
simulation to quantify our uncertainty. We used the
Kolmogorov–Smirnov (K-S) statistics to optimize the
goodness-of-fit of distributions. We employed Crystal
Ball software (Version 2000.2, Decisioneering, Inc.,
Denver, CO, USA) to analyze data and to estimate
distribution parameters. For this study, 10,000 itera-

tions were sufficient to ensure stability of results. The
95% confidence interval (CI) is defined as the 2.5th
and 97.5th percentiles obtained from the Monte Carlo
simulation.

3. Results

3.1. Survivorship and fecundity

Natural growth rate of M. lusoria in Taiwan could be
obtained by fitting West growth model (Eq. (T-12),
Table 1) to the published data from Jeng and Tyan
(1982) (Fig. 3A). The optimal MOAwas determined by
fitting Eqs. (T-13) to (T-15) (Table 1) to the published
data regarding chronic effects of Hg on M. lusoria
growth inhibition (Chin, 1993), resulting in MOA2 of
maintenance was the optimal MOA (Fig. 3B). We then
used Eq. (T-14) (Table 1) of MOA2 to fit Hg-growth
profiles to estimate Hg concentration-specific vital rate
of growth (γi) by Eq. (T-8) (Table 1) (Fig. 3C).

Table 2
Input parameters used to calculate vital rates of individual hard clam

Growth probability

Exposure concentration (μg L−1) Growth cost model, A0 (g
1/4 day−1) Maintenance cost model, s(t) Feeding decrease model, Wmax (g)

0 0.0277±0.00053 a 0 38.23±4.60
5 0.0272±0.00050 0.047±0.045 37.52±4.51
10 0.0271±0.00051 0.057±0.047 37.38±4.50
30 0.0267±0.00053 0.096±0.052 36.79±4.43
60 0.0263±0.00056 0.135±0.057 36.19±4.36

Survival probability

a (constant) 0.00104
b (constant) 0.017
k b (constant) 0.365
Mmax (%) (maximum mortality rate) 100
n c (Hill coefficient) 2.31
BCF (mL g−1) d (bioaccumulation factor) 1417
K2 (day

−1) e (depuration rate constant) 0.0343
DL,50/ka (μg h g−1) f (coefficient reflects compound equivalent toxic damage
level required for 50% mortality where ka is uptake rate constant)

14.60

kr (h
−1) f (damage recovery rate constant) 4.47

Fertility

Fm (%) (% of mature female) 70
E (%) (egg eclosion rate) 90
m0

g (fitted coefficient) 0.81±0.023
n0

g (fitted coefficient) 1.03±0.0085
a Median±SD.
b Adapted from Klok and De Roos (1996).
c Estimated from Chin and Chen (1993a) by fitting time-dependent mortality then estimating Hill coefficient n by fitting the Hill model.
d Estimated based on Chin and Chen (1993b).
e Calculated from k2= ln 2/t1/2 where t1/2 value is adapted from Chin and Chen (1993b).
f Adapted from Tsai (2005).
g Estimated by fitting the relationship between weight and fecundity data from Mzighani (2005) by power function.
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Fig. 4A depicts a survival curve for stage-specific
hard clam under a nonexposed circumstance by fitting
Eq. (T-9) (Table 1) to the natural survival data from
Chou et al. (1998). The time-dependent mortality pro-
files under different Hg levels (Eqs. (T-1) to (T-3),
Table 1) were incorporated into the daily-basis survival
probabilities (σi) (Eq. (T-7), Table 1) of matrix popu-
lation model to simulate the stage-specific survival
proportions for hard clam subject to Hg concentrations
(Fig. 4B, C). Significant changes on hard clam sur-
vivorship occurred when the waterborne Hg concentra-
tions exceeded 10 μg L−1 for all life stages in that for
juvenile, sub-adult, and adult populations, a notably
decline of survival probability was occurred when they
exposed to Hg concentration larger than 10 μg L−1

(Fig. 4B, C). The infected mortality rate of hard clam
could be obtained by fitting Eq. (T-1) (Table 1) to the
estimated 960 day cumulative mortality data calculated
from the population disease model (Eq. (8)) based on
reconstructed infection data (Fig. 2G) and then used Eq.
(T-7) (Table 1) to estimate the infected survival pro-
bability (Fig. 4D). Fig. 4D indicates that the inhibition
potential on stage-specific hard clam population in the
experiment II (5 μg L−1 Hg+V) was much higher than
that of in the experiment I (V+5 μg L−1 Hg), whereas
birnavirus only had slightly effects on most of hard
clam populations.

3.2. Population abundance without disease

The temporal changes of stage-specific and overall
population abundances of uninfected hard clam ex-

posed to different scenarios of waterborne Hg were
illustrated in Fig. 5. Fig. 5 indicates that at relative
high concentrations of waterborne Hg (N30 μg L−1)
the population abundance decreases sharply. The high
risk of mortality was likely due to the relatively low
overall population growth rate (Fig. 6A, B). In the
absence of disease, population growth rates (λ) of hard
clam populations in response to Hg concentration
showed a significant reduction when Hg concentration
higher than 10 μg L−1 (Fig. 6A). A reference value of
λ=1.0008 (95% CI: 0.9985–1.0053) was obtained for
the population growth rate in the absence of Hg
concentration, indicating a potential growth popu-
lation. A stable growth for hard clam populations was
shown at the Hg concentrations of 10 μg L− 1

(Fig. 6A). Fig. 6A also demonstrates that the po-
pulation growth rate decreased from λ=1.0008 for the
control group to λ=0.9163 (95% CI: 0.8818–0.9527)
for hard clam populations exposed to waterborne Hg
higher than 30 μg L−1, indicating at high levels of
environmental Hg stressor increased the risk of
mortality very considerably (Fig. 6A, B).

In addition, we used three-parameter Hill equation
model (Eq. (T-1), Table 1) to reconstruct a concentra-
tion–response profile between reduction in population
abundance and waterborne Hg for hard clam populations
after a 1-year simulation (Fig. 6C) in that the simulation
time period was determined from a pre-analysis for the
control population to reach its stable age distribution.
The optimal fits of Eq. (T-1) (Table 1) to the predicted
percent reduction in population abundance of hard clam
versus waterborne Hg concentration resulted in the

Fig. 3. Natural growth and MOAs in hard clams. (A) Time-dependent natural growth profile of hard clam. (B) Best fits of the feeding decreasing
model (MOA1), maintenance cost model (MOA2) and growth cost model (MOA3) in juvenile stage. (C) Simulations of growth trajectory of hard
clam life stage vary with different waterborne Hg concentrations.

109C.-M. Liao, C.-H. Yeh / Aquaculture 264 (2007) 101–118



Aut
ho

r's
   

pe
rs

on
al

   
co

py

Fig. 4. Survival probability in hard clam populations. A four-stage survival of hard clam for (A) under natural circumstances, and exposed to (B) 0 to
30 μg L−1 and (C) 60 to 300 μg L−1 waterborne Hg concentrations, and (D) exposed to virus only, V+Hg, and Hg+V settings.
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Fig. 5. Hard clam population abundances without disease. Temporal changes in life stages in (A) Embryo/larva, (B) juveniles, (C) sub-adults,
(D) adults, and (E) overall population abundances of hard clam exposed to waterborne Hg concentrations ranging from 0 to 30 μg L−1.
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estimated effect concentration causing 50% reduction
EC50=12.91 μg L−1 and Hill coefficient n=5.59
(r2 =0.99, pb0.05), indicating a high cooperativity.

3.3. Population abundance with disease

The results based on model simulations by integrat-
ing stage-structured matrix population and SIM model
revealed that different experimental settings had signif-
icantly different population abundance dynamics based
on Ni(0)=60 (Figs. 7 and 8). The model predicted that,
in 5 μg Hg L−1 +V setting, all the stages of hard clam
populations decreased sharply nearly 80% of control
number at day 30, then steadily grew to the end of the
year (Fig. 7B). The predicted results were sensitive to
substantial changes in the value of transmission rate that

would affect dynamics most strongly and even to
changes in aspects of model structure (Fig. 8). The result
also indicated that decreased by 20–80% of transmis-
sion rate changed population abundance predictions
significantly in 5 μg Hg L−1 +V setting (Fig. 8B). In
order to understand the effect of host size on the disease
epidemics, three scenarios associated with different
transmission rates were incorporated into the model to
predict the basic reproduction number (R0) and allow-
ance population number (N⁎) to control the outbreak
(Table 3). Table 3 indicates that at relative low disease
transmission rate (50% decreased), the allowance rear-
ing numbers of hard clam to control the potential
outbreak are 389 and 298, respectively, in the 5 μg Hg
L−1 +Vand V+5 μg Hg L−1 settings with the R0 around
1.15–1.19. Table 3 also implicates that limitation of host

Fig. 6. Population growth rate and concentration–response relationship. Asymptotic population growth rate is expressed as a function of exposure Hg
concentrations of (A) 0 to 30 μg L−1 and (B) 0 to 300 μg L−1. (C) A Hill-based dose–response model showing the reduction in population abundance
profiles as the function of waterborne mercury concentration for 1-year simulation.

112 C.-M. Liao, C.-H. Yeh / Aquaculture 264 (2007) 101–118



Aut
ho

r's
   

pe
rs

on
al

   
co

py

Fig. 7. Population abundance dynamics with disease. Hard clam populations that are affected by (A) virus only, (B) 5 μg Hg L−1+virus, and
(C) virus+5 μg Hg L−1 in that simulations for disease-induced infection were one time after 1 year.
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Fig. 8. Controls on hard clams to Hg-stressed birnavirus susceptibility. Control strategies is expressed as the function of transmissibility for different
scenarios of (A) virus only, (B) 5 μg Hg L−1+virus, and (C) virus+5 μg Hg L−1 in reducing disease-induced transmission rate and in improving
population abundances of hard clam.
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size or carrying capacity was one of the most effective
control measures.

4. Discussion

4.1. Dynamics and management of pollution-stressed
infection

Pollution-stressed disease management could be
explored through simulation, using our integrated SIM-
MPM framework. The model could be modified to
evaluate the potential efficacy of the disease manage-
ment strategies. We could further limit the hard clam
population number once the outbreak was recognized. In
the other strategy, vaccination might be used to protect
early-stage hard clam populations (Murray and Peeler,
2005). Because conducting a specific management stra-
tegy (such as vaccination) throughout the entire range of
hard clam farms often were not be feasible, it was useful
to assess feasible strategies. Based on the present find-
ings, we suggested that recognizing which of the sce-
narios and ranges of disease transmissibility in Table 3
best applying to a given situation can aid in designing the
most efficient and feasible disease management strategy.

Having argued for the importance and practical rele-
vance of our control measure framework (Table 3), it was
worthwhile to consider how the applicable scenario
could be determined in a field situation. Future eva-
luation might be focused on the relationships between
potential influences of disease on survival and repro-
duction and physiological movement pattern of infected
individuals of aquaculture species populations. Such
models will also provide tools for evaluating further
management alternatives to improve our ability to res-
pond to future disease outbreaks.

Hard clam populations undergoing Hg-stressed
birnavirus present a unique spread pattern that led us
to study the dynamics of infectious diseases linked with
SIM and MPM. Based on theoretical considerations in a
parsimonious framework, we outlined three qualitative-
ly distinct scenarios of virus only, metal+virus, and
virus+metal. Within a range of disease transmissibility
(β) drawn from analysis of birnavirus in hard clams,
different β values led to simulated outbreaks character-
ized by basic reproductive number (R0) depicting the
allowance population numbers (N⁎) to contain disease
spread for all three scenarios. Thus, the uncertainty
regarding a disease's transmissibility, perhaps inevitable
when considering a disease in a new host species or
environment, could challenge our ability to assess the
likelihood of long-term persistence and the rate of
spread within a population, and hence the threat to other
life-stage species in the aquaculture systems (Pieters and
Liess, 2006).

4.2. Pathogenesis and host sensitivity to metals

Not much was known about the life cycles of the
birnavirus. Infection intensities might depend on the
season (Earn et al., 2000; Harvell et al., 2002). Infor-
mation of the correlation between the Hg toxicity and
the number of the birnavirus pathogens in hard clams
was not available as well. Pathogenic infections might
change the host's behavior in such a way that the
pathogen's chances to complete its life cycle were en-
hanced. Pathogenic infections might also disturb the
normal feeding behavior or the water-pumping rate in
filter-feeding bivalves, which might lower the bioaccu-
mulation of waterborne metals and lead to lower tissue
concentrations in infected clams. The effects of patho-
genic infection on behavior of the host were shown to
depend on the parasite species, but also on the deve-
lopmental stage of the pathogenesis (Levri and Lively,
1996; Lafferty et al., 2006).

Part of bioaccumulation in gill-breathing aquatic
organisms took place in the gills by equilibrium

Table 3
Scenario-dependent basic reproductive number estimates and
estimated allowance numbers to control outbreak based on three
scenarios of virus (V) only, 5 μg Hg L−1+V, and V+5 μg Hg L−1

varied with transmission rate (β)

Transmission rate
(day−1 ind−1)

Basic reproductive
Number (R0)

Allowance numbers to
control outbreak (N⁎)

Virus onlya

β=βv 5.74 60
β=0.8βv 4.59 75
β=0.6βv 3.44 100
β=0.4βv 2.30 150
β=0.5βv 1.15 300

5 μg Hg L−1+Va

β=β5+ v 5.94 58
β=0.8β5+ v 4.75 72
β=0.6β5+ v 3.56 96
β=0.4β5+ v 2.37 144
β=0.5β5+ v 1.19 389

V+5 μg Hg L−1a

β=βv+ 5 5.77 60
β=0.8βv+ 5 4.62 75
β=0.6βv+ 5 3.46 99
β=0.4βv+ 5 2.31 149
β=0.5βv+ 5 1.15 298

aAdapted from Liao et al. (2006) in that virus (V) only: β=0.00123,
α=0.0752, and N=350; 5 μg Hg L−1+V: β=0.0197, α=1.161, and
N=350; and V+5 μg Hg L−1: β=0.00852, α=0.517, and N=350.
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partitioning between the water and the lipid phase of the
organism (McKim and Erickson, 1991). High tempera-
tures in water generally speed up accumulation because
animals increased water ventilation through the gills and
the permeability of cell membranes increases. There-
fore, the biokinetics in a hard clam–pathogen system
was also the important information. Low average tem-
perature and low food availability associated with
temperature might result in a reduced growth rate of
the clams. Heavy pathogenic infections might also lead
to reduce embryo production. In the future work, we
might incorporate the present model into a model
describing the interplay between temperature-dependent
physiology of host–pathogen and predators in order to
constrain epidemics to warmer, colder, or intermediate
temperatures and further to explain the seasonal phe-
nology of epidemics in aquaculture systems (Heinonen
et al., 1999; Hall et al., 2006b).

4.3. General implications

The employed MPM was a density-independent
growth of a stage-structured population observed at
continuous time intervals. Therefore, the effect of the
self-limitation was negligible. The density-dependent
parameter such as carrying capacity in the present model
was not considered. If population project matrix [A] in
Eq. (1) was density-dependent that could result in most
of the analysis for MPM inapplicable (Caswell, 2001).
Populations no longer grow exponentially, and solutions
could no longer be written in terms of eigenvalues and
eigenvectors. Even the simplest density-dependent mo-
dels were capable of complex dynamic behaviors, and
experiments had confirmed that real populations ex-
hibited at least some of these complexities. The analysis
of nonlinear matrix models could be found in Lima et al.
(2000).

The current study presented how a mechanistic pers-
pective based on the chemical effects on the aquaculture
species energy budget could promote life cycle toxicity
assessment. The present study showed that the bioen-
ergetics-based matrix population methodology could be
employed in a life cycle toxicity assessment framework
to explore the effect of stage-specific MOAs in popu-
lation response to contaminants (Klanjscek et al., 2006;
Péry et al., 2006; Raimondo and McKenney, 2006). An
important implication of the study was that we used
mathematical models to give population stage-structure
and clarity to the analysis of the key population-level
endpoints (the population growth rate (λ) and stage-
specific MOAs) and epidemiological relevant factors
(basic reproductive number (R0) and transmissibility

(β)) of the population dynamics and evaluated the effect
of bioenergetics-based MOAs in field hard clam
populations in response to pollution-stressed disease.
Thus, MOAs and population structure were major
variables governing susceptibility of hard clams to pol-
lution-stressed disease.

The present result was based on biologically plau-
sible and empirically grounded dynamical models. The
analyses showed that demographic modeling could
provide a reasonable analysis of contaminant effects at
the population level, even given uncertainty about the
structure of the system and the hard clam's response to
the environment. The hard clam was a typical example
of population-level risk assessment for which only some
demographic data were available. Although more com-
plex models might be necessary to answer specific
questions regarding risk or particular management stra-
tegies, the present simple model captured the essential
dynamics and it's flexible enough to integrate effects
occurring at varying temporal scales.

The results suggested that even simple models could
provide useful insights into complex ecological, toxi-
cological, and epidemiological interactions in aqua-
culture systems. This was particularly valuable when
manipulative experimental work in the field or labora-
tory at appropriate spatiotemporal scales were often
impossible or prohibitively expensive. We were confi-
dent that the model could be easily adapted for other
aquaculture species and encourage researchers to use the
model to evaluate the potential population-level risk of
toxic chemicals-stressed pathogen on the population
dynamics of disease for these species. Demographic
data for many aquaculture species remained untested by
modern analysis; the present model should provide an
excellent basis for diagnosing population-level status
and trends, including estimating mortality and recovery
probabilities. The present analysis yielded quantitative
insights into the mechanisms and extent of impacts of
metal-stressed disease on population dynamics in farm
fish populations. More generally, the results informed
the development of aquaculture sustainability and di-
sease theory and its application in fisheries and aqua-
culture management.
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