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Abstract

The concentration breakthrough curves at a pumping well for solute transport in a radially convergent flow field are governed

by an advective–dispersive second order partial differential equation with a radial distance-dependent velocity and dispersion

coefficient. The Laplace transform is generally first employed to eliminate the temporal derivative to solve the partial

differential equation. The Laplace transformed equations are then converted to the standard form of the special Airy function

through successive applications of variable change. This study presents the solution of the Laplace-transformed equation

without using the special Airy function. A direct power series method and a power series method with variable changes to

eliminate the advection term that usually results in numerical errors for large Peclet numbers are applied to obtain an analytical

solution in the Laplace domain. The obtained solutions are compared to other Airy function-formed solutions to examine the

method’s robustness and accuracy. Analytical results indicate that the Laplace transform power series method with variable

change can effectively and accurately handle the radial advection–dispersion equation of high Peclet numbers, whereas the

direct power series method can only evaluate the solution for medium Peclet numbers. The novel power series technique with

variable change is valuable for future quantitative hydrogeological issues with variable dependent differential equation and can

be extended to higher dimensional problems. q 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The radial dispersion problem refers to the problem

of analyzing the dispersive transport of a contaminant

or tracer in steady radial flow from a recharge well or

pumping well that fully penetrates an homogeneous

confined aquifer of uniform thickness and infinite

lateral extent. Beyond its obvious importance in the

studying solute transport for tracer tests in a radially

divergent/convergent flow field or in aquifer deconta-

mination by pumping, the radial dispersion problem is

distinguished by its being probably the simplest case

for which the dispersion coefficient is a function of a

spatially varying velocity field. Accordingly, the

analytical solution to the problem can be a valuable

means of checking the accuracy of computer codes

that simulate solute transport in porous media.

Deriving the analytical solution of the differential

equation in cylindrical coordinates that describe the

radial dispersion problem is very difficult due to

the dependence of the hydrodynamic dispersion

0022-1694/02/$ - see front matter q 2002 Elsevier Science B.V. All rights reserved.

PII: S0 02 2 -1 69 4 (0 2) 00 1 19 -1

Journal of Hydrology 266 (2002) 120–138

www.elsevier.com/locate/jhydrol

* Corresponding author. Tel.: þ886-2-2362-8067; fax: þ886-2-

2363-9557.

E-mail address: lcw@gwater.agec.ntu.edu.tw (C.W. Liu).

http://www.elsevier.com/locate/jhydrol


coefficient on the spatially varying velocity. Several

researchers have attempted to derive the analytical

solution of the radial advection–dispersion differen-

tial equations. The Laplace transform is normally the

first manipulation to be employed to eliminate the

temporal derivative when solving the partial differ-

ential equations. Tang and Babu (1979) presented an

exact analytical solution for the divergent radial

dispersion problem. Their solution, however,

involved numerical integrations that were difficult to

evaluate. Moench and Ogata (1981) obtained the

quasi-analytical solutions by numerically inverting

the Laplace transform.

Chen (1985) determined the analytical solution of

the radial dispersion problem, by showing how to

transform the governing advection – dispersion

equation to the standard form of the Airy equation

through successive applications of variable change.

Following Chen’s work, several researchers have

obtained similar closed-form analytical or semi-

analytical solutions expressed as the special Airy

function for both conservative and sorbing solute

transport in the divergent/convergent tracer test, for

waste water injection into an aquifer and for aquifer

decontamination by pumping (Chen, 1987; Chen and

Woodside, 1988; Moench, 1989, 1991, 1995; Goltz

and Oxley, 1991; Harvey et al., 1994; Haggerty and

Gorelick, 1995; Chen et al., 1996; Becker and

Charbeneau, 2000).

The Laplace transformed analytical solution for

radially advective–dispersive differential equation

can be expressed as the product of an Airy function

and an exponential function (Chen, 1985), both of

which may be represented as infinite power series.

The power series method is the standard approach for

solving linear differential equations with variable

coefficients. The power series method of solving

differential equations is straightforward in principle

(Wylie and Barrett, 1995; Kreyszig, 1998). To our

knowledge, no researchers have applied power series

techniques to solve the radial advection–dispersion

differential equations. The aim of this work then is to

establish a general Laplace transform power series

technique to solve the radial advection–dispersion

differential equation with a spatially dependent

variable coefficient. The solution of the new analytical

power series will be verified by Moench’s (1989)

solution. The mathematical behavior of the new

solutions will also be analyzed and compared with

that of the special Airy function. The novel power

series method can be extended to more complex, and

multi-dimensional hydrological problem with vari-

able dependent coefficient differential equation.

2. Problem description

The one-dimensional, convergent radial dispersion

transport, investigated by Moench (1989), is con-

sidered in evaluating the applicability and accuracy of

the power series method for a radial advection–

dispersion problem. Moench (1989) thoroughly speci-

fied the assumptions made in the mathematical

statement of the problem. The role of governing

equations, boundary conditions and analytical sol-

ution will be briefly described.

Table 1

Dimensionless parameters

Dimensionless quantity Expression

Timea tD ¼
t

ta

Distance rD ¼
r

rL

Pumped well radius rwD ¼
rw

rL

Peclet number Pe ¼
rL

aL

Concentrationb (slug input) CD ¼
C

Ci

Concentration (continuous input) CD ¼
C

1C0

Pumped well mixing factor mw ¼
r2

whw

fh r2
L 2 r2

w

� �

Injection well mixing factor mi ¼
r2

i hi

fh r2
L 2 r2

w

� �

a ta ¼ phfðr2
L 2 r2

wÞ=q0:
b Ci ¼ M=½phfðr2

L 2 r2
wÞ�:
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The dimensionless mathematical model for this

case is

1

Pe

›2CD

›r2
D

þ
›CD

›rD

¼
2rDR

1 2 r2
wD

� � ›CD

›tD
;

rwD # rD # 1

ð1Þ

CDðrD; 0Þ ¼ 0 ð2Þ

1

Pe

›CD

›rD

¼ mw

›CD

›tD

; rD ¼ rwD ð3Þ

1

Pe

›CD

›rD

¼ G2 mi

›CD

›tD

; rD ¼ 1 ð4Þ

where Pe is the Peclet number; CD is the dimension-

less concentration; tD is the dimensionless time; rD is

the dimensionless radial distance; rwD is the dimen-

sionless radius of the pumped well; mw is pumped well

mixing factor; mi is the injection well mixing factor;

G ¼ dð Þ for a slug input; G ¼ 1 for a continuous

input, and dð Þ is the Dirac delta function. Table 1

defines the dimensionless variables.

Applying the Laplace transform with respect to tD

in Eqs. (1)–(4) yield

1

Pe

d2 �CD

dr2
D

þ
d �CD

drD

¼
2rDR

1 2 r2
wD

� � s �CD;

rwD # rD # 1

ð5Þ

1

Pe

› �CD

›rD

¼ mws �CD; rD ¼ rwD ð6Þ

1

Pe

› �CD

›rD

¼ c2 mis �CD; rD ¼ 1 ð7Þ

where �CD is the Laplace transform of CD; s is the

Laplace transform parameter; c ¼ 1 for a slug input,

and c ¼ 1=s for continuous input.

For this radial advection–dispersion problem,

Moench (1989) used an Airy function to derive the

analytical solution in the Laplace domain. The

Fig. 1. Comparison of dimensionless breakthrough curves for a step tracer input without well bore mixing effect of the direct power seires

solution and Moench’s solution.
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Laplace transform particular solution at the pumped

well may be written as

�CDðrwD; sÞ ¼ c exp
Pe

2
ð1 2 rwDÞ

� �
�GðsÞ ð8Þ

where

�GðsÞ ¼
A1B2 2 A2B1

F þ Fw þ Fi þ Fiw

;

F ¼ s1=3ðA1B3 2 A3B1Þ þ 0:5ðA3B2 2 A2B3Þ

þ0:5ðA1 2 B2Þ þ 0:25s21=3ðB2 2 A2Þ;

Fw ¼ mws ðA3B2 2 A2B3Þ þ 0:5s21=3ðB2 2 A2Þ
h i

;

Fi ¼ mis ðA1 2 B1Þ þ 0:5s21=3ðB2 2 A2Þ
h i

;

Fiw ¼ mimws2s21=3ðB2 2 A2Þ;

A1 ¼ Ai s1=3y0

� �h i
0=Ai s1=3yL

� �
;

A2 ¼ Ai s1=3y0

� �
=Ai s1=3yL

� �
;

A3 ¼ Ai s1=3yL

� �h i
0=Ai s1=3yL

� �
B1 ¼ Bi s1=3y0

� �h i
0=Bi s1=3yL

� �
;

B2 ¼ Bi s1=3y0

� �
=Biðs1=3yLÞ;

B3 ¼ Bi s1=3yL

� �h i
0=Bi s1=3yL

� �
y0 ¼ Pe rwD þ 0:25s21; yL ¼ Pe þ 0:25s21

3. Power series solution

The transformed ordinary differential Eq. (5) can

be directly solved by the power series method. The

Fig. 2. Comparison of dimensionless breakthrough curves for a Dirac delta tracer input without well bore mixing effect of the power series

solution and Moench’s solution.
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first spatial derivative of Eq. (5), however, is often

generally a source of numerical error for large Peclet

numbers (Xu and Brusseau, 1995). Accordingly, two

power series solution approaches are presented and

examined to evaluate the numerical error that results

from large Peclet numbers. One solution is obtained

by directly applying the power series method. The

other solution is determined using the power series

method after a variable change is employed to

eliminate the first spatial derivative.

3.1. Direct power series solution

The solution of Eq. (5) is assumed to be in the

form of a power series with unknown coefficients.

The power series solution of governing Eq. (5)

subject to boundary conditions (6) and (7), then

can be derived as

�CD ¼
X1
m¼0

amrm
D ð9Þ

and substitute this series along with the series

obtained by term-wise differentiation of Eq. (9),

› �CD

›rD

¼
X1
m¼1

mamrm21
D ð10Þ

›2 �CD

›r2
D

¼
X1
m¼2

mðm 2 1Þamrm22
D ð11Þ

into Eq. (5), yielding the following equation

1

Pe

X1
m¼2

mðm 2 1Þamrm22
D þ

X1
m¼1

mamrm21
D

2
2Rs

1 2 rwD

rD

X1
m¼0

amrm
D

¼ 0 ð12Þ

Fig. 3. Comparison of dimensionless breakthrough curves for a step tracer input with well bore mixing effect (mw, mi ¼ 0.25) of the direct power

series solution and Moench’s solution.
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Shifting the summation indices of Eq. (12) yields

1

Pe

X1
m¼0

ðm þ 2Þðm þ 1Þamþ2rm
D þ

X1
m¼0

ðm þ 1Þamþ1rm
D

2
2Rs

1 2 r2
wD

X1
m¼1

am21rm
D

¼ 0

ð13Þ

Setting the coefficients of each power of rD to

zero, for m ¼ 0;

a2 ¼
1

2A
a0 ð14aÞ

and in general, when m ¼ 1; 2; 3;…;

amþ2 ¼ 2
m þ 1

Peðm þ 2Þðm þ 1Þ
amþ1

þ
2Rs

Pe 1 2 r2
wD

� �
ðm þ 2Þðm þ 1Þ

am21 ð14bÞ

the general solution can be yielded by inserting

the appropriate values of the coefficients into the

following equation:

�CDðrD; sÞ ¼ b1F1ðrD; sÞ þ b2F2ðrD; sÞ ð15Þ

where F1ðrD; sÞ and F2ðrD; sÞ are two linearly indepen-

dent general functions in the form of infinite series as in

Eq. (9). The values of the series coefficients ðamÞ of

F1ðrD; sÞ and F2ðrD; sÞ are determined by Eqs. (14a) and

(14b) in that we set a0 ¼ 1; a1 ¼ 0 and a0 ¼ 0; a1 ¼ 1;

Fig. 4. Comparison of dimensionless breakthrough curves for a step tracer input without well bore mixing effect of the power series solution

with variable change and Moench’s solution for large Peclet numbers.
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Fig. 5. Plot of (a) F1 versus rD for various Peclet numbers and s; (b) F0
1 versus rD for various Peclet numbers and s.
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Fig. 6. Plot of (a) F2 versus rD for various Peclet numbers and s; (b) F0
2 versus rD for various Peclet numbers and s.
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Fig. 7. Plot of (a) F3 versus rD for various Peclet numbers and s; (b) F0
3 versus rD for various Peclet numbers and s.
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Fig. 8. Plot of (a) F4 versus rD for various Peclet numbers and s; (b) F0
4 versus rD for various Peclet numbers and s.
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respectively. The unknown coefficients, b1 and b2 of Eq.

(15) are determined by the boundary conditions (6) and

(7), to obtain a particular solution of Eq. (5).

A particular solution is obtained straightforwardly

by imposing boundary conditions (6) and (7) on the

general solution specified as Eq. (15). Therefore, the

new Laplace transform power series solution at the

pumping well may be expressed as

�CDðrwD; sÞ ¼ c
JðsÞ

HðsÞ
ð16Þ

where

JðsÞ ¼ ð2AQ21 þ CQ11ÞP11

þðAP21 2 CP11ÞQ11;

HðsÞ ¼ ðAP21 2 CP11ÞðAQ22 þ DQ12Þ

2ðAP22 þ DP12ÞðAQ21 2 CQ11Þ

A ¼
1

Pe
; C ¼ mws; D ¼ 1 þ mis

P11 ¼ F1ðrwD; sÞ; P21 ¼
›F1ðrwD; sÞ

›rD

;

P12 ¼ F1ð1; sÞ; P22 ¼
›F1ð1; sÞ

›rD

Q11 ¼ F2ðrwD; sÞ; Q21 ¼
›F2ðrwD; sÞ

›rD

;

Q12 ¼ F2ð1; sÞ; Q22 ¼
›F2ð1; sÞ

›rD

3.2. Power series solution with variable change

The governing Eq. (5) involves the advection term

that generally leads to a numerical error in numerical

calculation for large Peclet numbers (Xu and

Brusseau, 1995). Therefore, a variable change is

used to eliminate the first derivative and convert Eq.

(5) to

1

Pe

d2G

dr2
D

2
Pe

4
þ

2rDR

1 2 r2
wD

s

 !
G ¼ 0 ð17Þ

where

G ¼ exp
Pe

2
ð1 2 rDÞ

� �
�CD

Expressing the boundary conditions (6) and (7) in

terms of G;

1

Pe

dG

drD

2
1

2
þ mws

� 
G ¼ 0 ð18Þ

and

1

Pe

dG

drD

þ
1

2
þ mis

� 
G ¼ 1 ð19Þ

The governing Eq. (17) is a self-adjoint operator

which asserts a complete orthornormal set in Hilbert

space and can be solved using the power series

method (Gustafson, 1980) by substituting

G ¼
X1
m¼0

cmrm
D ð20Þ

and its first and second derivatives into Eq. (17), and

imposing boundary conditions (18) and (19). Follow-

ing the procedure outlined in Section 3.1 in shifting

the summation indices and equating every power of

rD; we yield a recurrence relation among the

coefficients of each power of rD as follows.

c2 ¼
Pe

8
c0 ð21aÞ

cmþ2 ¼
Pe

ðm þ 2Þðm þ 1Þ

Pe

4
cm þ

2Rs

1 2 r2
wD

cm21

 !

m ¼ 1; 2; 3;…

ð21bÞ

The general solution to the governing Eq. (17) may be

written as

GðrD; sÞ ¼ d1F3ðrD; sÞ þ d2F4ðrD; sÞ ð22Þ

where F3ðrD; sÞ and F4ðrD; sÞ are two linearly

independent general functions obtained by substitut-

ing the recurrence relations (21a) and (21b) into Eq.

(20). Eqs. (21a) and (21b) determine the series

coefficients of F3ðrD; sÞ and F4ðrD; sÞ in that we set

c0 ¼ 1; c1 ¼ 0 and c0 ¼ 0; c1 ¼ 1; respectively.

Particular solutions can be uniquely determined by

boundary conditions (18) and (19). Thus, the new

Laplace transform power series solution with variable

J.-S. Chen et al. / Journal of Hydrology 266 (2002) 120–138130



change at the pumping well can be written as

�CDðrwD; sÞ ¼ c exp
Pe

2
ð1 2 rwDÞ

� �
KðsÞ

LðsÞ
ð23Þ

where

KðsÞ ¼ ð2AT21 þ CT11ÞR11 þ ðAR21 2 CR11ÞT11;

LðsÞ ¼ ðAR21 2 CR11ÞðAT22 þ DT12Þ

2ðAR22 þ DR12ÞðAT21 2 CT11Þ;

A ¼
1

Pe
; C ¼ 1

2
þ mws; D ¼ 1

2
þ mis;

R11 ¼ F3ðrwD; sÞ; R21 ¼
›F3ðrwD; sÞ

›rD

;

R12 ¼ F3ð1; sÞ; R22 ¼
›F3ð1; sÞ

›rD

;

T11 ¼ F4ðrwD; sÞ; T21 ¼
›F4ðrwD; sÞ

›rD

;

T12 ¼ F4ð1; sÞ; T22 ¼
›F4ð1; sÞ

›rD

The inverse Laplace transform of Eqs. (17) and (23)

provides the temporal concentration at the pumping

well. In this work, a numerical inverse Laplace

transform is adopted to yield the solution. The de

Hoog et al. (1982) algorithm is used to execute the

numerical inversion because it is accurate for a wide

range of functions and it also performs reasonably

well in the neighborhood of a discontinuity (Moench,

1991). A FORTRAN subroutine, DINLAP/INLAP,

provided by IMSL Subroutine Library (Visual

Numerical Inc., 1994) and based on the de Hoog et

al. algorithm, is employed to perform the numerical

Laplace inversion.

4. Results and discussion

4.1. Validation of two power series solutions

The obtained solutions are compared with

Moench’s (1989) solution to demonstrate the accu-

racy of the developed Laplace transform direct power

series solution and the power series solution with

variable change. Figs. 1 and 2 plot curves at the

pumping well for step and slug inputs of the tracer

using various Peclet numbers, and compare those

curves to Moench’s (1989) solution. The pumping

well mixing factor and injection well mixing factor

are set to zero so that well bore mixing exerts no

influence on breakthrough curves. Dimensionless

concentrations obtained from the new Laplace trans-

form direct power series method agree with those

obtained from the Laplace special Airy function

solution (Figs. 1 and 2). Fig. 3 depicts the effects of

large well bore mixing of the concentration break-

through curves for both solutions. The two solutions

agree well with each other.

Only the direct power series solution and

Moench’s solution are compared. The power series

solution with variable change gives exactly the same

results as Moench’s solution. Comparing the two

developed solutions reveals that the new Laplace

transform direct power series method and the power

series method with variable change can accurately

solve the radial advection–dispersion equations.

4.2. High Peclet numbers

The direct series method, however, did not yield

the solution for large Peclet numbers when the rate of

transport of the tracer by advection far exceeds that by

dispersion. Such conditions cause breakthrough

curves with a steep front. Transport in a single

fracture or in a particularly homogeneous granular

aquifer may involve large Peclet numbers (Moench,

1991). The power series method with variable change,

however, can handle transport conditions of large

Peclet numbers. Fig. 4 gives a comparison of the

theoretical breakthrough curves from Moench’s

solution with that of the Laplace transform power

series solution with variable change to eliminate the

first derivative for a step tracer input using Peclet

numbers of 50, 100, and 200. The two solutions agree

excellently for large Peclet numbers. This result

suggests that the new Laplace transform power series

technique with variable change to eliminate the first

spatial derivative, is robust and can be adopted to

solve the radial advection – dispersion equation

because it yields accurate solutions to radial dis-

persion problems that have large Peclet numbers and

generally have a sharp front.

Both of the proposed Laplace transform power

J.-S. Chen et al. / Journal of Hydrology 266 (2002) 120–138 131



series techniques and the special Airy function

solution can accurately handle the radial dispersion

problems of large Peclet numbers. The proposed

method, however, benefits from the fact that it is the

standard approach to solving linear differential

equations with variable coefficients and the solution

procedures are straightforward in principle. Further-

more, the developed power series method with

variable change does not suffer from the need to

derive the analytical solution of the special functions

in that the analytical solution is generally an unknown

priori or unavailable. The proposed technique is

parsimonious and easy to code into a program. The

power series method with variable change was used to

solve the one-dimensional radial advection–dis-

persion equation with variable-dependent coefficients.

It is also valuable in modeling other hydrogeological

problems with variable-dependent governing

equations when the special function’s analytical

solutions are not available yet a continuous temporal

and spatial solution is demanded. Consequently, the

developed technique can be extended to solve higher-

dimensional radial dispersion problems or a scale-

dependent dispersion problem with variable depen-

dent differential equation.

4.3. Mathematical behavior of power series functions

Two Laplace transform power series solutions, one

with and one without the variable change include four

new functions. These four functions are in the form of

infinite series. Such an infinite series can be

Table A1

The dependence of the numbers of the required series term ðmÞ for convergences of functions F1; F0
1; F2 and F0

2 ðPe ¼ 1Þ

m F1 F0
1 F2 F0

2

Coeff. Sum Coeff. Sum Coeff. Sum Coeff. Sum

0 1.00 1.00 0.00 0.00

1 0.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00

2 0.00 1.00 0.00 0.00 2 5.00 £ 1021 5.00 £ 1021 2 1.00 2 1.49 £ 1028

3 3.33 £ 1021 1.33 1.00 1.00 1.67 £ 1021 6.67 £ 1021 5.00 £ 1021 5.00 £ 1021

4 28.33 £ 1022 1.25 23.33 £ 1021 6.67 £ 1021 1.25 £ 1021 7.92 £ 1021 5.00 £ 1021 1.00

5 1.67 £ 1022 1.27 8.33 £ 1022 7.50 £ 1021 27.50 £ 1022 7.17 £ 1021 23.75 £ 1021 6.25 £ 1021

6 1.94 £ 1022 1.29 1.17 £ 1021 8.67 £ 1021 2.36 £ 1022 7.40 £ 1021 1.42 £ 1021 7.67 £ 1021

7 26.75 £ 1023 1.28 24.72 £ 1022 8.19 £ 1021 2.58 £ 1023 7.43 £ 1021 1.81 £ 1022 7.85 £ 1021

8 1.44 £ 1023 1.28 1.15 £ 1022 8.31 £ 1021 23.00 £ 1023 7.40 £ 1021 22.40 £ 1022 7.61 £ 1021

9 3.80 £ 1024 1.28 3.42 £ 1023 8.34 £ 1021 9.89 £ 1024 7.41 £ 1021 8.90 £ 1023 7.70 £ 1021

10 21.88 £ 1024 1.28 21.88 £ 1023 8.32 £ 1021 24.16 £ 1025 7.41 £ 1021 24.16 £ 1024 7.69 £ 1021

11 4.32 £ 1025 1.28 4.76 £ 1024 8.33 £ 1021 25.08 £ 1025 7.41 £ 1021 25.59 £ 1024 7.69 £ 1021

12 2.16 £ 1026 1.28 2.59 £ 1025 8.33 £ 1021 1.92 £ 1025 7.41 £ 1021 2.31 £ 1024 7.69 £ 1021

13 22.58 £ 1026 1.28 23.35 £ 1025 8.33 £ 1021 22.01 £ 1026 7.41 £ 1021 22.62 £ 1025 7.69 £ 1021

14 6.59 £ 1027 1.28 9.23 £ 1026 8.33 £ 1021 24.14 £ 1027 7.41 £ 1021 25.80 £ 1026 7.69 £ 1021

15 22.34 £ 1028 1.28 23.51 £ 1027 8.33 £ 1021 2.11 £ 1027 7.41 £ 1021 3.16 £ 1026 7.69 £ 1021

16 22.00 £ 1028 1.28 23.20 £ 1027 8.33 £ 1021 22.99 £ 1028 7.41 £ 1021 24.79 £ 1027 7.69 £ 1021

17 6.02 £ 1029 1.28 1.02 £ 1027 8.33 £ 1021 21.29 £ 1029 7.41 £ 1021 22.19 £ 1028 7.69 £ 1021

18 24.87 £ 10210 1.28 28.77 £ 1029 8.33 £ 1021 1.45 £ 1029 7.41 £ 1021 2.61 £ 1028 7.69 £ 1021

19 29.13 £ 10211 1.28 21.73 £ 1029 8.33 £ 1021 22.51 £ 10210 7.41 £ 1021 24.77 £ 1029 7.69 £ 1021

20 3.63 £ 10211 1.28 7.25 £ 10210 8.33 £ 1021 5.80 £ 10212 7.41 £ 1021 1.16 £ 10210 7.69 £ 1021

21 24.05 £ 10212 1.28 28.50 £ 10211 8.33 £ 1021 6.62 £ 10212 7.41 £ 1021 1.39 £ 10210 7.69 £ 1021

22 22.11 £ 10213 1.28 24.65 £ 10212 8.33 £ 1021 21.39 £ 10212 7.41 £ 1021 23.06 £ 10211 7.69 £ 1021

23 1.53 £ 10213 1.28 3.51 £ 10212 8.33 £ 1021 8.33 £ 10214 7.41 £ 1021 1.92 £ 10212 7.69 £ 1021

24 22.10 £ 10214 1.28 25.05 £ 10213 8.33 £ 1021 2.05 £ 10214 7.41 £ 1021 4.92 £ 10213 7.69 £ 1021

25 1.37 £ 10216 1.28 3.42 £ 10215 8.33 £ 1021 25.45 £ 10215 7.41 £ 1021 21.36 £ 10213 7.69 £ 1021

26 1.21 £ 10214 8.33 £ 1021 4.66 £ 10216 7.41 £ 1021 1.21 £ 10214 7.69 £ 1021

27 22.08 £ 10215 8.33 £ 1021 1.11 £ 10215 7.69 £ 1021

28 8.72 £ 10217 8.33 £ 1021 24.45 £ 10216 7.69 £ 1021
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straightforwardly evaluated. We have to consider,

however, the behavior of the series that requires

sufficient terms to be summed to obtain accurate

results. The dependence of the required numbers of

the series term on Peclet numbers provides insight

into the convergence of two power series solutions.

We have performed the computation to present the

dependence of the required numbers of the series term

on Peclet numbers (detailed computation results are

provided in Appendix A). For a fixed tolerance error,

the number of the required terms to be summed

generally increase with increase of the Peclet number.

For a fixed tolerance error of 1026, the required

number of series terms for F1 and F2 in the direct

power series method, is around 10, 34, and 280 for

Pe ¼ 1; 10, and 100, respectively; whereas for F3 and

F4 in the power series method with variable change,

the required number of series term is about 7, 16, and

80 for Pe ¼ 1; 10, and 100, respectively. Comparing

this convergence behavior of the evaluation of the

developed functions with that of the generally used

special Airy function yields interesting results. For the

small Peclet number, the correspondingly small

arguments of the Airy function, AiðzÞ and BiðzÞ; are

determined by (Abramowitz and Stegun, 1972, p. 446,

Eqs. 10.4.2–5)

AiðzÞ ¼ b1f ðzÞ2 b2gðzÞ ð24Þ

BiðzÞ ¼ 31=2½b1f ðzÞ þ b2gðzÞ� ð25Þ

where

f ðzÞ ¼ 1 þ
1

3!
z3 þ

1 £ 4

6!
z6 þ

1 £ 4 £ 7

9!
z9 þ · · · ð26Þ

gðzÞ ¼ z þ
2

4!
z3 þ

2 £ 5

7!
z7 þ

2 £ 5 £ 8

10!
z10 þ · · ·

ð27Þ

Table A2

The dependence of the numbers of the required series term ðmÞ for convergences of functions F1; F0
1; F2 and F0

2 ðPe ¼ 10Þ

m F1 F0
1 F2 F0

2

Coeff. Sum Coeff. Sum Coeff. Sum Coeff. Sum

0 1.00 1.00 0.00 0.00

2 0.00 1.00 0.00 0.00 25.00 24.00 21.00 £ 10 29.00

4 28.33 24.00 23.33 £ 10 22.33 £ 10 24.00 £ 10 22.73 £ 10 21.60 £ 102 21.19 £ 102

6 22.56 £ 10 21.29 £ 10 21.53 £ 102 29.33 £ 10 21.14 £ 102 26.62 £ 10 26.83 £ 102 24.27 £ 102

8 23.47 £ 10 21.51 £ 10 22.78 £ 102 21.43 £ 102 21.53 £ 102 27.53 £ 10 21.22 £ 103 26.44 £ 102

10 22.43 £ 10 27.84 22.43 £ 102 21.03 £ 102 21.06 £ 102 24.34 £ 10 21.06 £ 103 24.63 £ 102

12 28.34 24.48 £ 1021 21.00 £ 102 22.95 £ 10 23.64 £ 10 21.10 £ 10 24.37 £ 102 21.43 £ 102

14 26.33 £ 1021 2.23 28.86 4.59 22.71 6.22 £ 1021 23.79 £ 10 5.88

16 5.08 £ 1021 2.36 8.13 7.14 2.24 1.20 3.58 £ 10 1.67 £ 10

18 1.68 £ 1021 2.18 3.02 4.28 7.32 £ 1021 4.15 £ 1021 1.32 £ 10 4.18

20 1.11 £ 1022 2.14 2.21 £ 1021 3.39 4.77 £ 1022 2.08 £ 1021 9.54 £ 1021 2.97 £ 1021

22 23.77 £ 1023 2.13 28.28 £ 1022 3.37 21.66 £ 1022 2.03 £ 1021 23.64 £ 1021 1.88 £ 1021

24 27.66 £ 1024 2.14 21.84 £ 1022 3.40 23.34 £ 1023 2.09 £ 1021 28.03 £ 1022 3.16 £ 1021

26 25.76 £ 1026 2.14 21.50 £ 1024 3.40 22.28 £ 1025 2.10 £ 1021 25.93 £ 1024 3.35 £ 1021

28 1.18 £ 1025 2.14 3.31 £ 1024 3.40 5.18 £ 1025 2.10 £ 1021 1.45 £ 1023 3.34 £ 1021

30 9.53 £ 1027 2.14 2.86 £ 1025 3.40 4.15 £ 1026 2.10 £ 1021 1.24 £ 1024 3.34 £ 1021

32 26.84 £ 1028 2.14 22.19 £ 1026 3.40 23.02 £ 1027 2.10 £ 1021 29.66 £ 1026 3.34 £ 1021

34 21.24 £ 1028 2.14 24.20 £ 1027 3.40 25.40 £ 1028 2.10 £ 1021 21.83 £ 1026 3.34 £ 1021

36 24.57 £ 10211 2.14 21.65 £ 1029 3.40 21.76 £ 10210 2.10 £ 1021 26.35 £ 1029 3.34 £ 1021

38 7.94 £ 10211 2.14 3.02 £ 1029 3.40 3.48 £ 10210 2.10 £ 1021 1.32 £ 1028 3.34 £ 1021

40 3.03 £ 10212 2.14 1.21 £ 10210 3.40 1.31 £ 10211 2.10 £ 1021 5.25 £ 10210 3.34 £ 1021

42 22.99 £ 10213 2.14 21.25 £ 10211 3.40 21.31 £ 10212 2.10 £ 1021 25.51 £ 10211 3.34 £ 1021

44 22.10 £ 10214 2.14 29.22 £ 10213 3.40 29.13 £ 10214 2.10 £ 1021 24.02 £ 10212 3.34 £ 1021

46 6.38 £ 10216 2.14 2.93 £ 10214 3.40 2.82 £ 10215 2.10 £ 1021 1.30 £ 10213 3.34 £ 1021

48 3.99 £ 10215 3.40 3.63 £ 10216 2.10 £ 1021 1.74 £ 10214 3.34 £ 1021

50 28.78 £ 10217 3.34 £ 1021
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b1 ¼ 322=3=Gð2=3Þ ¼ 0:3550285· · ·; b2 ¼ 321=3=G
ð1=3Þ ¼ 0:25881940· · ·; where Gð†Þ is the gamma

function. As posited by Hsieh (1986), 18 terms for

both f ðzÞ and gðzÞ are required sufficiently to

approximate Eqs. (26) and (27) accurately. The

asymptotic expansion can be used when large Peclet

numbers result in large argument of the Airy function,

(Abramowitz and Stegun, 1964, p. 449, Eq. 10.4.63):

AiðzÞ ¼ 1
2
p21=2z21=4 e2j

X1
k¼0

ð21Þkakj
2k ð28Þ

BiðzÞ ¼ p21=2z21=4 e2j
X1
k¼0

ð21Þkakj
2k ð29Þ

where j ¼ ð2=3Þz3=2; and the coefficients ak are

given by

ak ¼
ð2k þ 1Þð2k þ 3Þ· · ·ð6k 2 1Þ

216kk!
ð30Þ

Hsieh (1986) stated that 14 terms are required

sufficiently for computating Eq. (30) accurately. The

developed functions clearly require more terms than

the Airy function for large Peclet number to obtain

sufficiently accurate calculation. The convergence of

the series can also seemingly be further improved by

developing other series asymptotic expansion

methods, similar to that of Eqs. (28) and (29), for

large Peclet numbers. Efforts to obtain a series

approximation involve a complicated asymptotic

series expansion and are suggested for further study.

Table A3

The dependence of the numbers of the required series term ðmÞ for convergences of functions F1; F0
1; F2 and F0

2 ðPe ¼ 100Þ

m F1 F0
1 F2 F0

2

Coeff. Sum Coeff. Sum Coeff. Sum Coeff. Sum

0 1.00 1.00 0.00 0.00

10 25.48 £ 109 24.98 £ 109 25.48 £ 1010 25.02 £ 1010 22.74 £ 1011 22.49 £ 1011 22.74 £ 1012 22.51 £ 1012

20 27.95 £ 1017 26.61 £ 1017 21.59 £ 1019 21.33 £ 1019 23.97 £ 1019 23.30 £ 1019 27.94 £ 1020 26.66 £ 1020

30 26.96 £ 1023 25.33 £ 1023 22.09 £ 1025 21.61 £ 1025 23.47 £ 1025 22.66 £ 1025 21.04 £ 1027 28.05 £ 1026

40 22.11 £ 1028 21.50 £ 1028 28.45 £ 1029 26.05 £ 1029 21.06 £ 1030 27.50 £ 1029 24.22 £ 1031 23.02 £ 1031

50 25.18 £ 1031 23.44 £ 1031 22.59 £ 1033 21.73 £ 1033 22.59 £ 1033 21.72 £ 1033 21.29 £ 1035 28.64 £ 1034

60 21.70 £ 1034 21.05 £ 1034 21.02 £ 1036 26.36 £ 1035 28.48 £ 1035 25.26 £ 1035 25.09 £ 1037 23.18 £ 1037

70 21.03 £ 1036 26.03 £ 1035 27.24 £ 1037 24.25 £ 1037 25.17 £ 1037 23.01 £ 1037 23.62 £ 1039 22.12 £ 1039

80 21.49 £ 1037 28.18 £ 1036 21.19 £ 1039 26.58 £ 1038 27.42 £ 1038 24.08 £ 1038 25.94 £ 1040 23.29 £ 1040

90 26.01 £ 1037 23.13 £ 1037 25.41 £ 1039 22.83 £ 1039 23.00 £ 1039 21.56 £ 1039 22.70 £ 1041 21.41 £ 1041

100 27.87 £ 1037 23.88 £ 1037 27.87 £ 1039 23.90 £ 1039 23.93 £ 1039 21.94 £ 1039 23.93 £ 1041 21.95 £ 1041

110 23.72 £ 1037 21.74 £ 1037 24.09 £ 1039 21.93 £ 1039 21.86 £ 1039 28.71 £ 1038 22.04 £ 1041 29.63 £ 1040

120 26.93 £ 1036 23.10 £ 1036 28.32 £ 1038 23.74 £ 1038 23.46 £ 1038 21.55 £ 1038 24.16 £ 1040 21.87 £ 1040

130 25.51 £ 1035 22.35 £ 1035 27.16 £ 1037 23.07 £ 1037 22.75 £ 1037 21.17 £ 1037 23.58 £ 1039 21.53 £ 1039

140 21.99 £ 1034 28.12 £ 1033 22.78 £ 1036 21.14 £ 1036 29.93 £ 1035 24.05 £ 1035 21.39 £ 1038 25.70 £ 1037

150 23.43 £ 1032 21.34 £ 1032 25.15 £ 1034 22.02 £ 1034 21.72 £ 1034 26.71 £ 1033 22.57 £ 1036 21.01 £ 1036

160 22.98 £ 1030 21.12 £ 1030 24.77 £ 1032 21.80 £ 1032 21.49 £ 1032 25.59 £ 1031 22.38 £ 1034 28.98 £ 1033

170 21.36 £ 1028 24.89 £ 1027 22.30 £ 1030 28.35 £ 1029 26.77 £ 1029 22.44 £ 1029 21.15 £ 1032 24.17 £ 1031

180 23.34 £ 1025 21.16 £ 1025 26.02 £ 1027 22.10 £ 1027 21.67 £ 1027 25.81 £ 1026 23.01 £ 1029 21.05 £ 1029

190 24.62 £ 1022 21.63 £ 1022 28.78 £ 1024 25.25 £ 1024 22.31 £ 1024 21.43 £ 1024 24.39 £ 1026 22.30 £ 1026

200 23.69 £ 1019 28.34 £ 1020 27.38 £ 1021 22.30 £ 1024 21.84 £ 1021 26.57 £ 1023 23.69 £ 1023 28.27 £ 1025

210 21.74 £ 1016 28.22 £ 1020 23.66 £ 1018 22.30 £ 1024 28.71 £ 1017 26.56 £ 1023 21.83 £ 1020 28.26 £ 1025

220 24.99 £ 1012 28.22 £ 1020 21.10 £ 1015 22.30 £ 1024 22.49 £ 1014 26.56 £ 1023 25.49 £ 1016 28.26 £ 1025

230 28.85 £ 108 28.22 £ 1020 22.04 £ 1011 22.30 £ 1024 24.42 £ 1010 26.56 £ 1023 21.02 £ 1013 28.26 £ 1025

240 29.90 £ 104 28.22 £ 1020 22.38 £ 107 22.30 £ 1024 24.95 £ 106 26.56 £ 1023 21.19 £ 109 28.26 £ 1025

250 27.12 28.22 £ 1020 21.78 £ 103 22.30 £ 1024 23.56 £ 102 26.56 £ 1023 28.89 £ 104 28.26 £ 1025

260 23.34 £ 1024 28.22 £ 1020 28.69 £ 1022 22.30 £ 1024 21.67 £ 1022 26.56 £ 1023 24.34 28.26 £ 1025

270 21.04 £ 1028 28.22 £ 1020 22.81 £ 1026 22.30 £ 1024 25.20 £ 1027 26.56 £ 1023 21.40 £ 1024 28.26 £ 1025

280 22.18 £ 10213 28.22 £ 1020 26.09 £ 10211 22.30 £ 1024 21.09 £ 10211 26.56 £ 1023 23.04 £ 1029 28.26 £ 1025

290 28.98 £ 10216 22.30 £ 1024 24.49 £ 10214 28.26 £ 1025
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Notably, when evaluating the direct power

series solution, some terms of the series F1; F2

and their derivatives exceed 1037 for a Peclet

number of 100. The final sums of the functions,

however, are less than 1021. If the machine’s

precision is insufficient to cover the large numeri-

cal range of the arithmetic operation, the final sum

may be inaccurate owing to the round-off error.

This finding suggests that a high precision

computer is required to ensure the convergence

of the power series and to preserve the accuracy

of the solution. The mathematical characteristics

of the four new functions are examined closely.

Figs. 5–8(a) and (b) plot the four functions,

F1ðrD; sÞ; F2ðrD; sÞ; F3ðrD; sÞ and F4ðrD; sÞ; as well

as their first derivatives versus the increase of rD

for various Pe and s: The four functions and their

first derivatives all increase with the increase of rD

as rD approaches 1. The mathematical behaviors

of the four functions and their derivative are

fundamentally different from that of the special

Airy function because AiðzÞ decreases as z

increases. The proposed method is suggested as

more appropriately applicable to problems with a

finite domain because neither F1 and F3 nor F2

and F4 decreases with increasing rD for large rD:
Conversely, the Airy function is most applicable

to the problem with an infinite domain because

AiðzÞ decreases to zero as z approaches infinity,

whereas BiðzÞ is unbounded as z approaches

infinity. The coefficient of BiðzÞ then can be

cancelled out as the infinite boundary condition is

used to determine the unknown coefficients of the

general solution.

Table A4

The dependence of the numbers of the required series term ðmÞ for convergences of function F3; F0
3; F4 and F0

4 ðPe ¼ 1Þ

m F3 F0
3 F4 F0

4

Coeff. Sum Coeff. Sum Coeff. Sum Coeff. Sum

0 1.00 1.00 0.00 0.00

1 0.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00

2 1.25 £ 1021 1.13 2.50 £ 1021 2.50 £ 1021 0.00 1.00 0.00 1.00

3 3.33 £ 1021 1.46 1.00 1.25 4.17 £ 1022 1.04 1.25 £ 1021 1.13

4 2.60 £ 1023 1.46 1.04 £ 1022 1.26 1.67 £ 1021 1.21 6.67 £ 1021 1.79

5 1.67 £ 1022 1.48 8.33 £ 1022 1.34 5.21 £ 1024 1.21 2.60 £ 1023 1.79

6 2.22 £ 1022 1.50 1.33 £ 1021 1.48 4.17 £ 1023 1.21 2.50 £ 1022 1.82

7 2.23 £ 1024 1.50 1.56 £ 1023 1.48 7.94 £ 1023 1.22 5.56 £ 1022 1.87

8 6.95 £ 1024 1.50 5.56 £ 1023 1.48 3.72 £ 1025 1.22 2.98 £ 1024 1.88

9 6.19 £ 1024 1.50 5.57 £ 1023 1.49 1.43 £ 1024 1.22 1.29 £ 1023 1.88

10 6.89 £ 1026 1.50 6.89 £ 1025 1.49 1.77 £ 1024 1.22 1.77 £ 1023 1.88

11 1.40 £ 1025 1.50 1.54 £ 1024 1.49 1.00 £ 1026 1.22 1.10 £ 1025 1.88

12 9.39 £ 1026 1.50 1.13 £ 1024 1.49 2.51 £ 1026 1.22 3.01 £ 1025 1.88

13 1.11 £ 1027 1.50 1.44 £ 1026 1.49 2.26 £ 1026 1.22 2.94 £ 1025 1.88

14 1.67 £ 1027 1.50 2.34 £ 1026 1.49 1.45 £ 1028 1.22 2.02 £ 1027 1.88

15 8.95 £ 1028 1.50 1.34 £ 1026 1.49 2.66 £ 1028 1.22 3.98 £ 1027 1.88

16 1.10 £ 1029 1.50 1.76 £ 1028 1.49 1.89 £ 1028 1.22 3.02 £ 1027 1.88

17 1.31 £ 1029 1.50 2.23 £ 1028 1.49 1.31 £ 10210 1.22 2.22 £ 1029 1.88

18 5.86 £ 10210 1.50 1.05 £ 1028 1.49 1.89 £ 10210 1.22 3.40 £ 1029 1.88

19 7.38 £ 10212 1.50 1.40 £ 10210 1.49 1.11 £ 10210 1.22 2.10 £ 1029 1.88

20 7.29 £ 10212 1.50 1.46 £ 10210 1.49 8.12 £ 10213 1.22 1.62 £ 10211 1.88

21 2.80 £ 10212 1.50 5.87 £ 10211 1.49 9.66 £ 10213 1.22 2.03 £ 10211 1.88

22 3.59 £ 10214 1.50 7.89 £ 10213 1.49 4.79 £ 10213 1.22 1.05 £ 10211 1.88

23 3.02 £ 10214 1.50 6.94 £ 10213 1.49 3.69 £ 10215 1.22 8.48 £ 10214 1.88

24 1.01 £ 10214 1.50 2.43 £ 10213 1.49 3.72 £ 10215 1.22 8.92 £ 10214 1.88

25 1.32 £ 10216 1.50 3.30 £ 10215 1.49 1.60 £ 10215 1.22 4.00 £ 10214 1.88

26 2.52 £ 10215 1.49 1.28 £ 10217 1.22 3.32 £ 10216 1.88

27 7.82 £ 10216 1.49
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5. Conclusion

This study presents a novel Laplace transform power

series method to solve the variable-dependent radial

advection–dispersion differential equation. Of the two

power series methods presented, one is directly applied

to solve the transformed ordinary differential equation,

whereas the other employs variable change to eliminate

the first spatial derivative and applies the power series

method to solve the transformed ordinary differential

equation. The new solutions are compared with

Moench’s solution that employs the special Airy

function to solve the transform equations. Results

show that the new Laplace transform power series

technique with variable change to eliminate the first

spatial derivative, provides an accurate and robust

solution of the radial advection–dispersion equation

that describes solute transport in porous media in a

radially convergent tracer test. The direct power series

method, however, does not permit evaluation of the

solution for large Peclet numbers, unless the machine’s

precision is sufficiently to cover the large numerical

range of the arithmetic operation. The novel power

series technique with variable change approach is

suggested to solve the radial advection–dispersion

problems over a wide range of Peclet number.

Furthermore, the novel power series technique with

variable change can be extended to higher dimensional

hydrogeological issues that have no analytical solution

yet a temporal and spatial solution is demanded.
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Table A5

The dependence of the numbers of the required series term ðmÞ for convergences of functions F3; F0
3; F4 and F0

4 ðPe ¼ 10Þ
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Appendix A. Appendix

Tables A1–A6 present the computational results of

the dependence of the required numbers of the series

term for rD ¼ 1 and for various Peclet numbers, and

specify power coefficients and partial sums for

functions F1; F2; F3; and F4 and their first derivatives.
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10 2.69 £ 1010 2.80 £ 1010 2.69 £ 1011 2.78 £ 1011 1.72 £ 107 1.28 £ 108 1.72 £ 108 1.17 £ 109

20 3.95 £ 1015 4.86 £ 1015 7.90 £ 1016 9.53 £ 1016 1.13 £ 1013 4.92 £ 1013 2.26 £ 1014 9.33 £ 1014

30 3.68 £ 1018 6.35 £ 1018 1.10 £ 1020 1.84 £ 1020 2.38 £ 1016 9.63 £ 1016 7.15 £ 1017 2.75 £ 1018

40 1.30 £ 1020 3.91 £ 1020 5.18 £ 1021 1.48 £ 1022 1.41 £ 1018 7.17 £ 1018 5.64 £ 1019 2.69 £ 1020

50 4.18 £ 1020 2.97 £ 1021 2.09 £ 1022 1.35 £ 1023 6.23 £ 1018 5.83 £ 1019 3.11 £ 1020 2.64 £ 1021

60 2.06 £ 1020 5.99 £ 1021 1.23 £ 1022 3.01 £ 1023 3.64 £ 1018 1.20 £ 1020 2.19 £ 1020 6.00 £ 1021

70 2.14 £ 1019 6.77 £ 1021 1.50 £ 1021 3.51 £ 1023 4.10 £ 1017 1.35 £ 1020 2.87 £ 1019 7.01 £ 1021

80 5.88 £ 1017 6.83 £ 1021 4.70 £ 1019 3.54 £ 1023 1.16 £ 1016 1.36 £ 1020 9.28 £ 1017 7.09 £ 1021

90 5.00 £ 1015 6.83 £ 1021 4.50 £ 1017 3.55 £ 1023 9.96 £ 1013 1.36 £ 1020 8.96 £ 1015 7.09 £ 1021

100 1.50 £ 1013 6.83 £ 1021 1.50 £ 1015 3.55 £ 1023 3.00 £ 1011 1.36 £ 1020 3.00 £ 1013 7.09 £ 1021

110 1.77 £ 1010 6.83 £ 1021 1.95 £ 1012 3.55 £ 1023 3.53 £ 108 1.36 £ 1020 3.89 £ 1010 7.09 £ 1021

120 8.94 £ 106 6.83 £ 1021 1.07 £ 109 3.55 £ 1023 1.79 £ 105 1.36 £ 1020 2.15 £ 107 7.09 £ 1021

130 2.09 £ 103 6.83 £ 1021 2.72 £ 105 3.55 £ 1023 4.18 £ 10 1.36 £ 1020 5.43 £ 103 7.09 £ 1021

140 2.40 £ 1021 6.83 £ 1021 3.36 £ 10 3.55 £ 1023 4.80 £ 1023 1.36 £ 1020 6.72 £ 1021 7.09 £ 1021

150 1.43 £ 1025 6.83 £ 1021 2.15 £ 1023 3.55 £ 1023 2.86 £ 1027 1.36 £ 1020 4.29 £ 1025 7.09 £ 1021

160 4.63 £ 10210 6.83 £ 1021 7.41 £ 1028 3.55 £ 1023 9.26 £ 10212 1.36 £ 1020 1.48 £ 1029 7.09 £ 1021

170 8.48 £ 10215 6.83 £ 1021 1.44 £ 10212 3.55 £ 1023 2.88 £ 10214 7.09 £ 1021
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