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Abstract

We consider testing normality in a general class of models that admits nonlinear con-
ditional mean and conditional variance functions. We derive the asymptotic distribution
of the skewness and kurtosis coefficients of the model’s standardized residuals and pro-
pose an asymptotic χ2 test of normality. This test simplifies to the Jarque-Bera test only
when: (i) the conditional mean function contains an intercept term but does not depend
on past errors, and (ii) the errors are conditionally homoskedastic. Beyond this context,
it is shown that the Jarque-Bera test has size distortion but the proposed test does not.
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1 Introduction

A typical approach to testing departure from normality is to check the third and fourth
moments of the random variables. The omnibus test proposed by D’Agostino and Pear-
son (1973) and Bowman and Shenton (1975) is an early example. Jarque and Bera (1980,
1987) and White and MacDonald (1980) showed that this test is applicable to the ordi-
nary least squares residuals of linear regressions with an intercept term and i.i.d. errors.
This test, now also known as the Jarque-Bera (JB) test in the econometrics literature,
is a popular diagnostic tool in practice. Despite its original context, the JB test is
usually applied to various general models, such as nonlinear regressions and conditional
heteroskedasticity models. Yet its applicability to such models has not been carefully
examined.

This paper is concerned with testing normality in a general class of models that ad-
mits nonlinear conditional mean and conditional variance functions. We first derive the
asymptotic distribution of the sample skewness and kurtosis coefficients of the model’s
standardized residuals. We then construct an asymptotic χ2 test of normality based on
this result. The proposed test may be interpreted as a generalized JB test because it sim-
plifies to the JB test when: (i) the conditional mean function contains an intercept term
but does not depend on past errors, and (ii) the errors are conditionally homoskedas-
tic. Beyond this context, our simulation shows that the JB test suffers from serious size
distortion but the proposed test does not.

This paper is organized as follows. In Section 2, the main distribution result is
derived and a normality test is proposed. In Section 3, we discuss the implementation of
the proposed test and the limitation of the JB test. Simulation results are reported in
Section 4. The paper is concluded by Section 5.

2 The Proposed Normality Test

Let yt be the variable of interest and xt be a vector of exogenous variables taken from
the information set at time t. Consider the following general model of yt that admits
nonlinear conditional mean and conditional variance functions:

yt = m(xt, γ; δ) + ut,

ut = εth(xt, δ; γ)1/2,
(1)

where γ ∈ Γ ⊆ R
p and δ ∈ ∆ ⊆ R

q are parameter vectors, ut denotes the regression error,
and εt is the standardized error. Here, mt := m(xt, γ; δ) is the conditional mean function
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of yt which explicitly depends on the parameter γ, and ht := h(xt, δ; γ) is the conditional
variance function which explicitly depends on the parameter δ. Moreover, mt (ht) may
also implicitly depend on δ (γ) through the presence of lagged conditional variances ht−j

and/or lagged regression errors ut−j for some j ≥ 1. For example, ht in GARCH models
depends on ht−j and u2

t−j , and mt depends on functions of ht−j (or ut−j) when there is
GARCH in mean (or bilinearity).

Throughout this paper, our maintained assumption is:

[A] The postulated model is correctly specified in the sense that εt are i.i.d. with mean
zero and variance one and are independent of xs for all s.

Bollerslev and Wooldridge (1992) imposed the same condition to establish consistency
and asymptotic normality of the Gaussian quasi-maximum-likelihood estimator (QMLE)
for model (1). The condition [A] is also crucial for other conditional distribution tests; see
e.g., Jarque and Bera (1980) and Bai and Ng (2001). Testing whether yt are conditionally
normally distributed amounts to testing

H0 : εt ∼ N(0, 1).

It is well known that under the null hypothesis,

IE(εn
t ) =

{
0, n = 1, 3, 5, . . .∏n/2

i=1(2i − 1), n = 2, 4, 6, . . .
(2)

It is thus natural to check if the sample counterparts of IE(ε3
t ) and [IE(ε4

t ) − 3] are
sufficiently close to zero.

Let T be the sample size and θ̂T := (γ̂′
T , δ̂′T )′ be the QMLE for θ := (γ′, δ′)′, obtained

by maximizing the Gaussian quasi-log-likelihood function:

LT (γ, δ) = −1
2

log 2π − 1
2T

T∑
t=1

log ht −
1

2T

T∑
t=1

[
yt − mt√

ht

]2

.

We will not state explicitly the regularity conditions required for our asymptotic result.
For simplicity, we simply assume that the data (and its functions) are stationary and
ergodic and obey suitable law of large numbers and central limit theorem. Moreover,
T 1/2(θ̂T − θ) is asymptotically normally distributed. In what follows, when mt (ht) is
evaluated at θ = θ̂T , we write m̂t (ĥt). The standardized residual is thus ε̂t = (yt −
m̂t)/ĥ

1/2
t . The test we consider is based on

ST =
1
T

T∑
t=1

ε̂3
t and KT =

1
T

T∑
t=1

ε̂4
t ,
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the sample skewness and kurtosis coefficients of the standardized residuals.

Define the (p + q) × 1 vectors:

wt =

[
wγt

wδt

]
=

[
∇γmt/

√
ht

∇δmt/
√

ht

]
,

zt =

[
zγt

zδt

]
=

[
∇γht/ht

∇δht/ht

]
,

which are determined by the specifications of mt and ht. Also let

Υ = IE(wtw
′
t) +

1
2
IE(ztz

′
t),

κww = IE(w′
t)Υ−1IE(wt), κzz = IE(z′t)Υ−1IE(zt), and κwz = IE(w′

t)Υ−1IE(zt). In Ap-
pendix it is shown that

T 1/2ST =
1√
T

T∑
t=1

φs(εt, xt) + op(1),

T 1/2(KT − 3) =
1√
T

T∑
t=1

φk(εt, xt) + op(1),

(3)

where

φs(εt, xt) = ε3
t − 3IE(w′

t)Υ
−1
[
wtεt +

1
2
zt(ε

2
t − 1)

]
,

φk(εt, xt) = (ε4
t − 3) − 6IE(z′t)Υ

−1
[
wtεt +

1
2
zt(ε

2
t − 1)

]
,

both are martingale difference sequences. From (2) we know that the odd moments of εt

are all zero and the even moments are: IE(ε4
t ) = 3, IE(ε6

t ) = 15, IE(ε8
t ) = 105. We thus

have

var[φs(εt, xt)] = IE(ε6
t ) − 6κwwIE(ε4

t ) + 9κww = 15 − 9κww.

It can also be shown that

var[φk(εt, xt)] = IE(ε8
t ) − 6IE(ε4

t ) + 9 − 6κzz[IE(ε6
t ) − IE(ε4

t ) − 3IE(ε2
t ) + 3)] + 36κzz

= 96 − 36κzz,

and that cov[φs(εt, xt), φk(εt, xt)] = −18κwz . By invoking a central limit theorem for
martingale difference sequences (e.g., Billingsley, 1961), we obtain the main distribution
result below.
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Theorem 2.1 When [A] holds for model (1),[ √
TST√

T (KT − 3)

]
d→ N

([
0
0

]
,

[
15 − 9κww −18κwz

−18κwz 96 − 36κzz

])
,

under the null hypothesis.

Theorem 2.1 shows that for the general model (1), T 1/2ST and T 1/2(KT − 3) are not
asymptotically independent unless κwz = 0. Even when they are independent, their
asymptotic variances depend on the parameters κww and κzz. Basing on this result,
a generally applicable test of normality can be easily constructed. Let Vo denote the
asymptotic variance-covariance matrix in Theorem 2.1 and ṼT its consistent estimator;
the computation of ṼT will be discussed in next section. The proposed test of conditional
normality for model (1) is

NT := T [ST , KT − 3] Ṽ −1
T

[
ST

KT − 3

]
. (4)

The result below is immediate from Theorem 2.1 and the continuous mapping theorem.

Corollary 2.2 When [A] holds for model (1), NT
D−→ χ2(2) under the null hypothesis.

3 Implementing the Proposed Test

To compute ṼT for the proposed N test, we may replace the parameters κww, κwz, and
κzz in Vo with their sample counterparts:

κ̃ww =

[
1
T

T∑
t=1

ŵ′
t

][
1
T

T∑
t=1

ŵtŵ
′
t +

1
2T

T∑
t=1

ẑtẑ
′
t

]−1 [
1
T

T∑
t=1

ŵt

]
,

κ̃zz =

[
1
T

T∑
t=1

ẑ′t

][
1
T

T∑
t=1

ŵtŵ
′
t +

1
2T

T∑
t=1

ẑtẑ
′
t

]−1 [
1
T

T∑
t=1

ẑt

]
,

κ̃wz =

[
1
T

T∑
t=1

ŵ′
t

][
1
T

T∑
t=1

ŵtŵ
′
t +

1
2T

T∑
t=1

ẑtẑ
′
t

]−1 [
1
T

T∑
t=1

ẑt

]
,

where ŵt and ẑt are, respectively, wt and zt evaluated at the Gaussian QMLE θ̂T . It is
not too difficult to see that, when the QMLE is consistent and the functions above all
satisfy a uniform law of large numbers, these sample counterparts are consistent for the
true parameters; we omit the details.
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The proposed test may be simplified in some special cases of model (1). Consider
first the case that mt does not depend on δ and ht does not depend on γ:

yt = m(xt, γ) + ut,

ut = εth(xt, δ)
1/2.

(5)

This model excludes bilinear models, GARCH models, and models with conditional vari-
ance in mean. In this case, wt = (w′

γt, 0′)′ and zt = (0′, z′δt)
′. It follows that

κ̃ww =

[
1
T

T∑
t=1

ŵ′
γt

][
1
T

T∑
t=1

ŵγtŵ
′
γt

]−1 [
1
T

T∑
t=1

ŵγt

]
,

κ̃zz = 2

[
1
T

T∑
t=1

ẑ′δt

][
1
T

T∑
t=1

ẑδtẑ
′
δt

]−1 [
1
T

T∑
t=1

ẑδt

]
,

(6)

and κ̃wz = 0. The N test (4) now becomes

TS2
T

15 − 9κ̃ww

+
T (KT − 3)2

96 − 36κ̃zz

, (7)

and Corollary 2.2 applies. In fact, as κwz = 0 for model (5), there is no need to estimate
κwz anyway. The test (7) is therefore a natural simplification of the N test.

In view of (7), the N test would further reduce to the JB test

JBT =
TS2

T

6
+

T (KT − 3)2

24
, (8)

provided that κ̃ww = 1 and κ̃zz = 2. This is the case when the conditional mean function
of (5) contains an intercept term and the errors are conditionally homoskedastic:

yt = γo + m1(xt, γ1) + ut, ut = εtδ
1/2
o . (9)

To see this, note that κ̃ww in (6) is the sample average of the fitted values for the regression
of the constant one on ŵγt = ∇γm̂t/ĥ

1/2
t , where ∇γm̂t is ∇γmt evaluated at θ̂T . When

ŵγt contains a constant term, this average equals the sample average of the dependent
variable which is one. Clearly, model (9) is a case that ŵγt does contain a constant term.
Similarly, κ̃zz in (6) is 2 times the sample average of the fitted values for the regression
of the constant one on ẑδt = ∇δĥt/ĥt, where ∇δĥt is ∇δht evaluated at θ̂T . It can then
be seen that for model (9), ẑδt contains a constant term due to homoskedasticity, so that
κ̃zz = 2.
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Straightforward calculation shows that for model (9), the true parameters κww = 1
and κzz = 2, so that[ √

TST√
T (KT − 3)

]
d→ N

([
0
0

]
,

[
16 0
0 24

])
.

This result also justifies that model (9) is the context in which the JB test is valid.
Comparing with Jarque and Bera (1980, 1987), model (9) is more general and allows
nonlinear conditional mean functions, as long as it does not depend on δ and includes
an intercept term. On the other hand, conditional heteroskedasticity, even correctly
modeled, would invalidate the JB test. The examples below illustrate.

Example 3.1: Consider a conditionally homoskedastic AR(1) model without the inter-
cept term:

yt = γyt−1 + ut, ut = εtδ
1/2
o .

Estimating this model yields wγt = yt−1/δ
1/2
o which has mean zero. Thus, κww = 0, and

the asymptotic variance of T 1/2ST is 15 by Theorem 2.1, instead of 6. As zδt = 1/δo and
κzz = 2, the asymptotic variance of T 1/2(KT −3) remains 24. Consequently, the statistic

TS2
T

15
+

T (KT − 3)2

24

has a limiting χ2(2) distribution, but the JB test does not. Note also that, as κ̃ww

converges to κww = 0 and κ̃zz = 2, the N test (7) for this model is asymptotically
equivalent to the statistic above.

Suppose that we estimate the AR(1) model with the intercept term even when the
true intercept is zero. This model is still correctly specified in the sense of [A], so that the
N and JB tests are algebraically equivalent and have asymptotic χ2(2) distribution. In
contrast with the discussion above, wγt now reads (1/δ1/2

o , yt−1/δ
1/2
o )′. It can be verified

that κww = 1, so that the asymptotic variance of T 1/2ST is still 6. This illustrates how
different specifications may affect the asymptotic variance.

Example 3.2: Consider now the model that contains an intercept term and conditionally
heteroskedastic errors:

yt = γ + ut, ut = εtht(xt, δ)
1/2.

It can be verified that IE(wt) = (IE[h−1/2
t ], 0)′, IE(zt) = (0, IE[zδt])

′, and

Υ =

[
IE[h−1

t ] 0
0 1

2IE[z2
δt]

]
.
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Then as long as ht and zδt are nondegenerate random variables (with positive variances),
we have

κww =
[IE(h−1/2

t )]2

IE(h−1
t )

< 1, κzz = 2
[IE(zδt)]2

IE(z2
δt)

< 2.

The asymptotic variance of T 1/2ST is thus greater than 6, and that of T 1/2(KT − 3) is
greater than 24. Consequently, the JB test is not valid and would reject the null more
often than it should.

4 Monte Carlo Simulation

In this section, we conduct a Monte Carlo simulation to compare the finite sample per-
formance of the JB test and the N test. We consider the following models:

ARc yt = γo + γ1yt−1 + ut, ut = εtδ
1/2
o ;

ARn yt = γ1yt−1 + ut, ut = εtδ
1/2
o ;

Bilinear yt = γo + γ1yt−2ut−1 + ut, ut = εtδ
1/2
o ;

ARCH yt = γo + γ1yt−1 + ut, ut = εth
1/2
t , ht = δo + δ1u

2
t−1;

IGARCH yt = γo + γ1yt−1 + ut, ut = εth
1/2
t , ht = δo + δ1ht−1 + (1 − δ1)u2

t−1;

MD yt = ut, ut = εth
1/2
t , ht = δo + δ1u

2
t−1.

These models are quite common in practice. In particular, ARc and ARn are familiar
dynamic models but differ by the intercept term; Bilinear is a nonlinear model that
depends on ut−1; the ARCH-type models involve conditionally heteroskedastic errors.
Note that Bilinear and ARCH-type models are usually employed to characterize volatility
clustering in empirical studies; see e.g., Bera and Higgins (1997). As discussed earlier,
the JB and N tests are algebraically equivalent for ARc, a special case of model (9), but
not for the other models.

In our simulation, the data are generated from the models above with the parameters
(γo, γ1, δo, δ1) = (0, 0.5, 1, 0.9) and the sample sizes T = 200, 1000. The innovations εt are
i.i.d. N(0, 1) random variables in the size experiments, but they are i.i.d. standardized
t random variables with the degrees of freedom seven in the power experiments. The
number of replications is 1000. The empirical sizes (at the 5% and 10% nominal levels)
and empirical powers (at the 5% level) of the JB and N tests are summarized in Table 1.

From Table 1 we can see that for ARc, the JB test (and hence the N test) is slightly
under-sized for T = 200 and has good power properties. For all other models, the JB
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Table 1: The empirical sizes and powers of the JB test and the N test.

JBsize(5%) Nsize(5%) JBsize(10%) Nsize(10%) JBpower∗ Npower

model T = 200 1000 200 1000 200 1000 200 1000 200 1000 200 1000

ARc 3.8 4.3 3.8 4.3 7.7 9.1 7.7 9.1 − − 65.5 99.5

ARn 16.4 17.5 4.7 5.2 22.9 24.0 8.3 8.8 58.2 98.6 64.1 99.8

Bilinear 9.6 11.6 5.9 5.1 15.5 17.3 9.6 9.9 62.9 99.4 64.2 99.8

ARCH 9.2 10.2 6.0 5.4 14.4 17.2 8.9 10.1 57.8 99.5 60.5 99.7

IGARCH 13.8 19.3 6.1 6.5 21.3 28.5 10.6 11.3 47.5 95.6 47.4 95.5

MD 17.1 17.9 4.6 5.7 24.6 25.2 8.4 10.2 65.5 98.1 61.6 99.8

Note: The entries are rejection frequencies in percentages. The column “JBpower∗” reports the size-

corrected powers of the JB test.

test tends to over-reject under the null; the rejection percentages are even two times
higher than the nominal sizes for ARn, IGARCH and MD. Moreover, the size distortions
deteriorate when the sample size increases. For example, at the 5% level, the JB test has
the empirical size 13.8% (19.3%) for IGRACH when T = 200 (1000). This suggests that
existing applications of the JB test to conditionally heteroskedastic models, e.g., Baillie
and DeGennaro (1990) and Vlaar and Palm (1993), may be vulnerable. On the other
hand, the N test maintains roughly correct empirical sizes in all cases considered. The
powers of the N test are quite high and similar to the size-corrected powers of the JB
test. These results support the analysis in the preceding sections.

5 Conclusion

In this paper, we derive the asymptotic distribution of the sample skewness and kurtosis
coefficients of a general model’s standardized residuals and construct a test of conditional
normality that generalizes the well known JB test. It is shown that the JB test is valid
only when the conditional mean function contains an intercept but does not involve past
errors and when the errors are conditionally homoskedastic. For other models, the JB
test suffers from size distortion in finite samples. In contrast, the proposed test is not
subject to this limitation and, therefore, can serve as a substitute for the JB test in
various empirical applications.
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Appendix

Proof of Equation (3): As ∇θεt = −(wt +2−1ztεt), the first-order expansion of
√

TST

about θ is

√
TST =

1√
T

T∑
t=1

ε3
t − 3

[
1
T

T∑
t=1

ε2
t

(
wt +

1
2
ztεt

)′]√
T (θ̂T − θ) + op(1).

By [A] and the facts that IE(ε2
t ) = 1 and IE(ε3

t ) = 0 under the null, we have, with a
suitable law of large number effect,

1
T

T∑
t=1

ε2
t w

′
t

IP−→ IE(ε2
t ) IE(w′

t) = IE(w′
t),

1
2T

T∑
t=1

ε3
t z

′
t

IP−→ IE(ε3
t ) IE(z′t) = 0,

where IP−→ stands for convergence in probability. It is also easy to calculate the score
function of the Gaussian log-likelihood function as

gT (θ) :=
1
T

T∑
t=1

[
wtεt +

1
2
zt(ε

2
t − 1)

]
.

The first-order expansion of T 1/2gT (θ̂T ) = 0 about θ is

0 =
√

TgT (θ) + ∇θgT (θ)
√

T (θ̂T − θ) + op(1).

where

∇θgT (θ) =
1
T

T∑
t=1

[
(∇θwt)εt + (∇θεt)w

′
t +

1
2
(∇θzt)(ε

2
t − 1) + (∇θεt)z

′
tεt

]
.

It can be verified that, upon taking expectation,

IE[∇θgT (θ)] = −
[
IE(wtw

′
t) +

1
2

IE(ztz
′
t)
]
,

which is just −Υ. The normalized QMLE now can be expressed as

√
T (θ̂T − θ) = Υ−1 1√

T

T∑
t=1

[
wtεt +

1
2
zt(ε

2
t − 1)

]
+ op(1).

Putting these results together, we obtain

√
TST =

1√
T

T∑
t=1

ε3
t − 3 IE(w′

t)Υ
−1 1√

T

T∑
t=1

[
wtεt +

1
2
zt(ε

2
t − 1)

]
+ op(1),
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as asserted in (3). Similarly, the first-order expansion of
√

T (KT − 3) is

√
T (KT − 3) =

1√
T

T∑
t=1

(ε4
t − 3) − 4

[
1
T

T∑
t=1

ε3
t

(
wt +

1
2
ztεt

)′]√
T (θ̂T − θ) + op(1).

Again by [A] and the facts that IE(ε3
t ) = 0 and IE(ε4

t ) = 3 under the null, the terms in
square bracket converges in probability to 3 IE(z′t)/2. We obtain

√
T (KT − 3) =

1√
T

T∑
t=1

(ε4
t − 3) − 6IE(z′t)Υ

−1

[
wtεt +

1
2
zt(ε

2
t − 1)

]
+ op(1),

as the second assertion of (3). �
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