
Chapter 8

Nonlinear Least Squares Theory

For real world data, it is hard to believe that linear specifications are “universal” in

characterizing all economic relationships. A straightforward extension of linear specifi-

cations is to consider specifications that are nonlinear in parameters. For example, the

function α+βxγ offers more flexibility than the simple linear function α+βx. Although

such an extension is quite natural, it also creates various difficulties. First, deciding an

appropriate nonlinear function is typically difficult. Second, it is usually cumbersome to

estimate nonlinear specifications and analyze the properties of the resulting estimators.

Last, but not the least, estimation results of nonlinear specification may not be easily

interpreted.

Despite these difficulties, more and more empirical evidences show that many eco-

nomic relationships are in fact nonlinear. Examples include nonlinear production func-

tions, regime switching in output series, and time series models that can capture asym-

metric dynamic patterns. In this chapter, we concentrate on the estimation of and hy-

pothesis testing for nonlinear specifications. For more discussion of nonlinear regressions

we refer to Gallant (1987), Gallant and White (1988), Davidson and MacKinnon (1993)

and Bierens (1994).

8.1 Nonlinear Specifications

We consider the nonlinear specification

y = f(x;β) + e(β), (8.1)

where f is a given function with x an � × 1 vector of explanatory variables and β a

k×1 vector of parameters, and e(β) denotes the error of the specification. Note that for
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214 CHAPTER 8. NONLINEAR LEAST SQUARES THEORY

a nonlinear specification, the number of explanatory variables � need not be the same

as the number of parameters k. This formulation includes the linear specification as a

special case with f(x;β) = x′β and � = k. Clearly, nonlinear functions that can be

expressed in a linear form should be treated as linear specifications. For example, a

specification involving a structural change is nonlinear in parameters:

yt =

{
α + βxt + et, t ≤ t∗,
(α + δ) + βxt + et, t > t∗,

but it is equivalent to the linear specification:

yt = α + δDt + βxt + et,

where Dt = 0 if t ≤ t∗ and Dt = 1 if t > t∗. Our discussion in this chapter focuses on

the specifications that cannot be expressed as linear functions.

There are numerous nonlinear specifications considered in empirical applications. A

flexible nonlinear specification is

yt = α + β
xγ

t − 1
γ

+ et,

where (xγ
t − 1)/γ is the so-called Box-Cox transform of xt, which yields different func-

tions, depending on the value γ. For example, the Box-Cox transform yields xt − 1

when γ = 1, 1 − 1/xt when γ = −1, and a value close to lnxt when γ approaches

zero. This function is thus more flexible than, e.g., the linear specification α + βx and

nonlinear specification α + βxγ . Note that the Box-Cox transformation is often applied

to positively valued variables.

In the study of firm behavior, the celebrated CES (constant elasticity of substitution)

production function suggests characterizing the output y by the following nonlinear

function:

y = α
[
δL−γ + (1 − δ)K−γ

]−λ/γ
,

where L denotes labor, K denotes capital, α, γ, δ and λ are parameters such that α > 0,

0 < δ < 1 and γ ≥ −1. The elasticity of substitution for a CES production function is

s =
d ln(K/L)

d ln(MPL/MPK)
=

1
(1 + γ)

≥ 0,

where MP denotes marginal product. This function includes the linear, Cobb-Douglas,

Leontief production functions as special cases. To estimate the CES production function,

the following nonlinear specification is usually considered:

ln y = ln α − λ

γ
ln

[
δL−γ + (1 − δ)K−γ

]
+ e;
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8.1. NONLINEAR SPECIFICATIONS 215

for a different estimation strategy, see Exercise 8.3. On the other hand, the translog

(transcendental logarithmic) production function is nonlinear in variables but linear in

parameters:

ln y = β1 + β2 ln L + β3 lnK + β4(ln L)(ln K) + β5(ln L)2 + β6(ln K)2,

and hence can be estimated by the OLS method.

In the time series context, a nonlinear AR(p) specification is

yt = f(yt−1, . . . , yt−p) + et.

For example, the exponential autoregressive (EXPAR) specification takes the following

form:

yt =
p∑

j=1

[
αj + βj exp

(−γy2
t−1

)]
yt−j + et,

where in some cases one may replace y2
t−1 in the exponential function with y2

t−j for

j = 1, . . . , p. This specification was designed to describe physical vibration whose

amplitude depends on the magnitude of yt−1.

As another example, consider the self-exciting threshold autoregressive (SETAR)

specification:

yt =

{
a0 + a1yt−1 + · · · + apyt−p + et, if yt−d ∈ (−∞, c],

b0 + b1yt−1 + · · · + bpyt−p + et, if yt−d ∈ (c,∞),

where d is known as the “delay parameter” which is an integer between 1 and p, and c is

the “threshold parameter.” Note that the SETAR model is different from the structural

change model in that the parameters switch from one regime to another depending on

whether a past realization yt−d exceeds the threshold value c. This specification can be

easily extended to allow for r threshold parameters, so that the specification switches

among r + 1 different dynamic structures.

The SETAR specification above can be written as

yt = a0 +
p∑

j=1

ajyt−j +
(
Δ0 +

p∑
j=1

Δjyt−j

)
1{yt−d>c} + et,

where aj + Δj = bj, and 1 denotes the indicator function. To avoid abrupt changes of

parameters, one may replace the indicator function with a “smooth” function h so as
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216 CHAPTER 8. NONLINEAR LEAST SQUARES THEORY

to allow for smoother transitions of structures. It is typical to choose the function h as

a distribution function, e.g.,

h(yt−d; c, δ) =
1

1 + exp[−(yt−d − c)/δ]
,

where c is still the threshold value and δ is a scale parameter. This leads to the following

smooth threshold autoregressive (STAR) specification:

yt = a0 +
p∑

j=1

ajyt−j +
(
Δ0 +

p∑
j=1

Δjyt−j

)
h(yt−d; c, δ) + et.

Clearly, this specification behaves similarly to a SETAR specification when |(yt−d−c)/δ|
is very large. For more nonlinear time series models and their motivations we refer to

Tong (1990).

Another well known nonlinear specification is the so-called artificial neural network

which has been widely used in cognitive science, engineering, biology and linguistics. A

3-layer neural network can be expressed as

f(x1. . . . , xp;β) = g

⎛
⎝α0 +

q∑
i=1

αi h
(
γi0 +

p∑
j=1

γijxj

)⎞
⎠ ,

where β is the parameter vector containing all α and γ, g and h are some pre-specified

functions. In the jargon of the neural network literature, this specification contains

p “inputs units” in the input layer (each corresponding to an explanatory variable

xj), q “hidden units” in the hidden (middle) layer with the i th hidden-unit activation

hi = h(γi0 +
∑p

j=1 γijxj), and one “output unit” in the output layer with the activation

o = g(β0 +
∑q

i=1 βihi). The functions h and g are known as “activation functions,” the

parameters in these functions are “connection weights.” That is, the input values simul-

taneously activate q hidden units, and these hidden-unit activations in turn determine

the output value. The output value is supposed to capture the behavior of the “target”

(dependent) variable y. In the context of nonlinear regression, we can write

y = g

⎛
⎝α0 +

q∑
i=1

αi h
(
γi0 +

p∑
j=1

γijxj

)⎞
⎠ + e,

For a multivariate target y, networks with multiple outputs can be constructed similarly

with g being a vector-valued function.

In practice, it is typical to choose h as a “sigmoid” (S-shaped) function bounded

within a certain range. For example, two leading choices of h are the logistic function
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8.2. THE METHOD OF NONLINEAR LEAST SQUARES 217

h(x) = 1/(1 + e−x) which is bounded between 0 and 1 and the hyperbolic tangent

function

h(x) =
ex − e−x

ex + e−x
,

which is bounded between −1 and 1. The function g may be the identity function or the

same as h. Although the class of neural networks is highly nonlinear in parameters, it

possesses two appealing properties. First, a neural network is capable of approximating

any Borel-measurable function to any degree of accuracy, provided that the number of

hidden units q is sufficiently large. Second, to achieve a given degree of approximation

accuracy, neural networks are relatively more parsimonious than, e.g., the polynomial

and trignometric expansions. For more details of artificial neural networks and their

relationships to econometrics we refer to Kuan and White (1994).

8.2 The Method of Nonlinear Least Squares

Formally, we consider the nonlinear specification (8.1):

y = f(x;β) + e(β),

where f : R
� × Θ1 �→ R, Θ1 dentoes the parameter space, a subspace of R

k, and e(β) is

the specification error. Given T observations of y and x, let

y =

⎡
⎢⎢⎢⎢⎢⎣

y1

y2
...

yT

⎤
⎥⎥⎥⎥⎥⎦ , f(x1, . . . ,xT ;β) =

⎡
⎢⎢⎢⎢⎢⎣

f(x1;β)

f(x2;β)
...

f(xT ;β)

⎤
⎥⎥⎥⎥⎥⎦ .

The nonlinear specification (8.1) now can be expressed as

y = f(x1, . . . ,xT ;β) + e(β),

where e(β) is the vector of errors.

8.2.1 Nonlinear Least Squares Estimator

Our objective is to find a k-dimensional surface that “best” fits the data (yt,xt), t =

1, . . . , T . Analogous to the OLS method, the method of nonlinear least squares (NLS)
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218 CHAPTER 8. NONLINEAR LEAST SQUARES THEORY

suggests to minimize the following NLS criterion function with respect to β:

QT (β) =
1
T

[y − f(x1, . . . ,xT ;β)]′[y − f(x1, . . . ,xT ;β)]

=
1
T

T∑
t=1

[yt − f(xt;β)]2.
(8.2)

Note that QT is also a function of the data yt and xt; we omit the arguments yt and xt

just for convenience.

The first order condition of the NLS minimization problem is a system of k nonlinear

equations with k unknowns:

∇βQT (β) = − 2
T
∇βf(x1, . . . ,xT ;β) [y − f(x1, . . . ,xT ;β)] set= 0,

where

∇βf(x1, . . . ,xT ;β) =
[
∇βf(x1;β) ∇βf(x2;β) . . . ∇βf(xT ;β)

]
,

is a k×T matrix. A solution to this minimization problem is some β̄ ∈ Θ1 that solves the

first order condition: ∇βQT (β̄) = 0, and satisfies the second order condition: ∇2
βQT (β̄)

is positive definite. We thus impose the following identification requirement; cf. [ID-1]

for linear specifications.

[ID-2] f(x; ·) is twice continuously differentiable in the second argument on Θ1, such

that for given data (yt,xt), t = 1, . . . , T , ∇2
βQT (β) is positive definite at some interior

point of Θ1.

While [ID-2] ensures that a minimum of QT (β) can be found, it does not guarantee

the uniqueness of this solution. For a a given data set, there may exist multiple solutions

to the NLS minimization problem such that each solution is a local minimum of QT (β).

This result is stated below; cf. Theorem 3.1.

Theorem 8.1 Given the specification (8.1), suppose that [ID-2] holds. Then, there

exists a solution that minimizes the NLS criterion function (8.2).

Writing f(x1, . . . ,xT ;β) as f(β), we have

∇2
βQT (β) = − 2

T
∇2

βf(β) [y − f(β)] +
2
T

[∇βf(β)][∇βf(β)]′.

For linear regressions, f(β) = Xβ so that ∇βf(β) = X ′ and ∇2
βf(β) = 0. It follows

that ∇2
βQT (β) = 2(X ′X)/T , which is positive definite if, and only if, X has full
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8.2. THE METHOD OF NONLINEAR LEAST SQUARES 219

column rank. This shows that [ID-2] is, in effect, analogous to [ID-1] for the OLS

method. Comparing to the OLS method, the NLS minimization problem may not have

a closed-form solution because the first order condition is a system of nonlinear functions

in general; see also Exercise 8.1.

The minimizer of QT (β) is known as the NLS estimator and will be denoted as β̂T . Let

ŷ denote the vector of NLS fitted values with the t th element ŷt = f(xt, β̂T ), and ê

denote the vector of NLS residuals y − ŷ with the t th element êt = yt − ŷt. Denote the

transpose of ∇βf(β) as Ξ(β). Then by the first order condition,

Ξ(β̂T )′ê = [∇θf(β̂T )]ê = 0.

That is, the residual vector is orthogonal to every column vector of Ξ(β̂T ). Geometri-

cally, f(β) defines a surface on Θ1, and for any β in Θ1, Ξ(β) is a k-dimensional linear

subspace tangent at the point f(β). Thus, y is orthogonally projected onto this surface

at f(β̂T ) so that the residual vector is orthogonal to the tangent space at that point. In

contrast with linear regressions, there may be more than one orthogonal projections and

hence multiple solutions to the NLS minimization problem. There is also no guarantee

that the sum of NLS residuals is zero; see Exercise 8.2.

Remark: The marginal response to the change of the i th regressor is ∂f(xt;β)/∂xti.

Thus, one should be careful in interpreting the estimation results because a parameter

in a nonlinear specification is not necessarily the marginal response to the change of a

regressor.

8.2.2 Nonlinear Optimization Algorithms

When a solution to the first order condition of the NLS minimization problem cannot be

obtained analytically, the NLS estimates must be computed using numerical methods.

To optimizing a nonlinear function, an iterative algorithm starts from some initial value

of the argument in that function and then repeatedly calculates next available value

according to a particular rule until an optimum is reached approximately. It should be

noted that when there are multiple optima, an iterative algorithm may not be able to

locate the global optimum. In fact, it is more common that an algorithm gets stuck at

a local optimum, except in some special cases, e.g., when optimizing a globally concave

(convex) function. In the literature, several new methods, such as the simulated anneal-

ing algorithm, have been proposed to find the global solution. These methods have not

yet been standard because they are typically difficult to implement and computation-

ally very intensive. We will therefore confine ourselves to those commonly used “local”
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220 CHAPTER 8. NONLINEAR LEAST SQUARES THEORY

methods.

To minimize QT (β), a generic algorithm can be expressed as

β(i+1) = β(i) + s(i)d(i),

so that the (i + 1) th iterated value β(i+1) is obtained from β(i), the value from the pre-

vious iteration, by adjusting the amount s(i)d(i), where d(i) characterizes the direction

of change in the parameter space and s(i) controls the amount of change. Different al-

gorithms are resulted from different choices of s and d. As maximizing QT is equivalent

to minimizing −QT , the methods discussed here are readily modified to the algorithms

for maximization problems.

Consider the first-order Taylor expansion of Q(β) about β†:

QT (β) ≈ QT (β†) + [∇βQT (β†)]′(β − β†).

Replacing β with β(i+1) and β† with β(i) we have

QT

(
β(i+1)

) ≈ QT

(
β(i)

)
+

[∇βQT

(
β(i)

)]′
s(i)d(i).

Note that this approximation is valid when β(i+1) is in the neighborhood of β(i). Let

g(β) denote the gradient vector of QT : ∇βQT (β), and g(i) denote g(β) evaluated at

β(i). If d(i) = −g(i),

QT

(
β(i+1)

) ≈ QT

(
β(i)

) − s(i)
[
g(i)′g(i)

]
.

As g(i)′)g(i) is non-negative, we can find a positive and small enough s such that QT

is decreasing. Clearly, when β(i) is already a minimum of QT , g(i) is zero so that no

further adjustment is possible. This suggests the following algorithm:

β(i+1) = β(i) − s(i)g(i).

Choosing d(i) = g(i) leads to:

β(i+1) = β(i) + s(i)g(i),

which can be used to search for a maximum of QT .

Given the search direction, one may want to choose s(i) such that the next value

of the objective function QT

(
β(i+1)

)
is a minimum. This suggests that the first order

condition below should hold:

∂QT

(
β(i+1)

)
∂s(i)

= ∇βQT

(
β(i+1)

) ∂β(i+1)

∂s(i)
= −g(i+1)′g(i) = 0.
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8.2. THE METHOD OF NONLINEAR LEAST SQUARES 221

Let H(i) denote the Hessian matrix of QT evaluated at β(i):

H(i) = ∇2
βQT (β)|β=β(i) = ∇β g(β)|β=β(i) .

Then by Taylor’s expansion of g, we have

g(i+1) ≈ g(i) + H(i)
(
β(i+1) − β(i)

)
= g(i) − H(i)s(i)g(i).

It follows that

0 = g(i+1)′g(i) ≈ g(i)′g(i) − s(i)g(i)′H(i)g(i),

or equivalently,

s(i) =
g(i)′g(i)

g(i)′H(i)g(i)
.

The step length s(i) is non-negative whenever H(i) is positive definite. The algorithm

derived above now reads

β(i+1) = β(i) − g(i)′g(i)

g(i)′H(i)g(i)
g(i),

which is known as the steepest descent algorithm. If H(i) is not positive definite, s(i)

may be non-negative so that this algorithm may point to a wrong direction.

As the steepest descent algorithm adjusts parameters along the opposite of the

gradient direction, it may run into difficulty when, e.g., the nonlinear function being

optimized is flat around the optimum. The algorithm may iterate back and forth without

much progress in approaching an optimum. An alternative is to consider the second-

order Taylor expansion of Q(β) around some β†:

QT (β) ≈ QT (β†) + g†′(β − β†) +
1
2
(β − β†)′H†(β − β†),

where g† and H† are g and H evaluated at β†, respectively. From this expansion, the

first order condition of QT (β) may be expressed as

g† + H†(β − β†) ≈ 0,

so that β ≈ β† − (H†)−1g†. This suggests the following algorithm:

β(i+1) = β(i) − (
H(i)

)−1
g(i),
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222 CHAPTER 8. NONLINEAR LEAST SQUARES THEORY

where the step length is 1, and the direction vector is −(
H(i)

)−1
g(i). This is also

known as the Newton-Raphson algorithm. This algorithm is more difficult to implement

because it involves matrix inversion at each iteration step.

From Taylor’s expansion we can also see that

QT

(
β(i+1)

) − QT

(
β(i)

) ≈ −1
2

g(i)′(H(i)
)−1

g(i),

where the right-hand side is negative provided that H(i) is positive definite. When this

approximation is good, the Newton-Raphson algorithm usually (but not always) results

in a decrease in the value of QT . This algorithm may point to a wrong direction if

H(i) is not positive definite; this happens when, e.g., Q is concave at βi. When QT is

(locally) quadratic with the local minimum β∗, the second-order expansion about β∗ is

exact, and hence

β = β∗ − H(β∗)−1g(β∗).

In this case, the Newton-Raphson algorithm can reach the minimum in a single step.

Alternatively, we may also add a step length to the Newton-Raphson algorithm:

β(i+1) = β(i) − s(i)
(
H(i)

)−1
g(i),

where s(i) may be found by minimizing Q
(
β(i+1)

)
. In practice, it is more typical to

choose s(i) such that Q
(
β(i)

)
is decreasing at each iteration.

A algorithm that avoids computing the second-order derivatives is the so-called

Gauss-Newton algorithm. When QT (β) is the NLS criterion function,

H(β) = − 2
T
∇2

βf(β)[y − f(β)] +
2
T

Ξ(β)′Ξ(β),

where Ξ(β) = ∇βf(β). It is therefore convenient to ignore the first term on the right-

hand side and approximate H(β) by 2Ξ(β)′Ξ(β)/T . There are some advantages of this

approximation. First, only the first-order derivatives need to be computed. Second,

this approximation is guaranteed to be positive definite under [ID-2]. The resulting

algorithm is

β(i+1) = β(i) +
[
Ξ

(
β(i)

)′Ξ(
β(i)

)]−1Ξ
(
β(i)

)[
y − f

(
β(i)

)]
.

Observe that the adjustment term can be obtained as the OLS estimator of regressing

y − f
(
β(i)

)
on Ξ

(
β(i)

)
; this regression is thus known as the Gauss-Newton regression.

The iterated β values can be easily computed by performing the Gauss-Newton regres-

sion repeatedly. The performance of this algorithm may be quite different from the
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Newton-Raphson algorithm because it utilizes only an approximation to the Hessian

matrix.

To maintain a correct search direction of the steepest descent and Newton-Raphson

algorithms, it is important to ensure that H(i) is positive definite at each iteration. A

simple approach is to correct H(i), if necessary, by adding an appropriate matrix to it.

A popular correction is

H(i)
c = H(i) + c(i)I,

where c(i) is a positive number chosen to “force” H
(i)
c to be a positive definite matrix.

Let H̃ = H−1. One may also compute

H̃
(i)
c = H̃

(i)
+ cI,

because it is the inverse of H(i) that matters in the algorithm. Such a correction is used

in, for example, the so-called Marquardt-Levenberg algorithm.

The quasi-Newton method, on the other hand, corrects H̃
(i)

iteratively by adding a

symmetric, correction matrix C(i):

H̃
(i+1)

= H̃
(i)

+ C(i),

with the initial value H̃
(0)

= I. This method includes the Davidon-Fletcher-Powell

(DFP) algorithm and the Broydon-Fletcher-Goldfarb-Shanno (BFGS) algorithm, where

the latter is the algorithm used in the GAUSS program. In the DFP algorithm,

C(i) =
δ(i)δ(i)′

δ(i)′γ(i)
+

H̃
(i)

γ(i)γ(i)′H̃
(i)

γ(i)′H̃
(i)

γ(i)
,

where δ(i) = β(i+1) − β(i) and γ(i) = g(i+1) − g(i). The BFGS algorithm contains an

additional term in the correction matrix.

To implement an iterative algorithm, one must choose a vector of initial values to

start the algorithm and a stopping rule to terminate the iteration procedure. Initial

values are usually specified by the researcher or by random number generation; prior in-

formation, if available, should also be taken into account. For example, if the parameter

is a probability, the algorithm may be initialized by, say, 0.5 or by a number randomly

generated from the uniform distribution on [0, 1]. Without prior information, it is also

typical to generate initial values from a normal distribution. In practice, one would

generate many sets of initial values and then choose the one that leads to a better result
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(for example, a better fit of data). Of course, this search process is computationally

demanding.

When an algorithm results in no further improvement, a stopping rule must be

invoked to terminate the iterations. Typically, an algorithm stops when one of the

following convergence criteria is met: for a pre-determined, small positive number c,

1.
∥∥β(i+1) − β(i)

∥∥ < c, where ‖ · ‖ denotes the Euclidean norm,

2.
∥∥g

(
β(i)

)∥∥ < c, or

3.
∣∣QT

(
β(i+1)

) − QT

(
β(i)

)∣∣ < c.

For the Gauss-Newton algorithm, one may stop the algorithm when TR2 is “close” to

zero, where R2 is the coefficient of determination of the Gauss-Newton regression. As the

residual vector must be orthogonal to the tangent space at the optimum, this stopping

rule amounts to checking whether the first order condition is satisfied approximately.

In some cases, an algorithm may never meet its pre-set convergence criterion and hence

keeps on iterating. To circumvent this difficulty, an optimization program usually sets

a maximum number for iterations so that the program terminates automatically once

the number of iterations reaches this upper bound.

8.3 Asymptotic Properties of the NLS Estimators

8.3.1 Consistency

As the NLS estimator does not have an analytic form in general, a different approach is

thus needed to establish NLS consistency. Intuitively, when the NLS objective function

QT (β) is close to IE[QT (β)] for all β, it is reasonable to expect that the minimizer of

QT (β), i.e., the NLS estimator β̂T , is also close to a minimum of IE[QT (β)]. Given that

QT is nonlinear in β, a ULLN must be invoked to justify the closeness between QT (β)

and IE[QT (β)], as discussed in Section 5.6.

To illustrate how consistency can be obtained, we consider a special case. Suppose

that IE[QT (β)] is a continuous function on the compact parameter space Θ1 such that

βo is its unique, global minimum. The NLS estimator β̂T is such that

QT (β̂T ) = inf
Θ1

QT (β).
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Suppose also that QT has a SULLN effect, i.e., there is a set Ω0 ⊆ Ω such that IP(Ω0) = 1

and

sup
β∈Θ1

∣∣QT (β) − IE[QT (β)]
∣∣ → 0,

for all ω ∈ Ω0. Set

ε = inf
β∈Bc∩Θ1

(
IE[QT (β)] − IE[QT (βo)]

)
,

where B is an open neighborhood of βo. Then for ω ∈ Ω0, we can choose T sufficiently

large such that

IE[QT (β̂T )] − QT (β̂T ) <
ε

2
,

and that

QT (β̂T ) − E[QT (βo)] ≤ QT (βo) − E[QT (βo)] <
ε

2
,

because the NLS estimator β̂T minimizes QT (β). It follows that for ω ∈ Ω0,

IE[QT (β̂T )] − IE[QT (βo)]

≤ IE[QT (β̂T )] − QT (β̂T ) + QT (β̂T ) − E[QT (βo)]

< ε,

for all T sufficiently large. This shows that, comparing to all β outside the neighborhood

B of βo, β̂T will eventually render IE[QT (β)] closer to IE[QT (βo)] with probability one.

Thus, β̂T must be in B for large T . As B is arbitrary, β̂T must converge to βo almost

surely. Convergence in probability of β̂T to βo can be established using a similar

argument; see e.g., Amemiya (1985) and Exercise 8.4.

The preceding discussion shows what matters for consistency is the effect of a SULLN

(WULLN). Recall from Theorem 5.34 that, to ensure a SULLN (WULLN), QT should

obey a SLLN (WLLN) for each β ∈ Θ1 and also satisfy a Lipschitz-type continuity

condition:

|QT (β) − QT (β†)| ≤ CT ‖β − β†‖ a.s.,

with CT bounded almost surely (in probability). If the parameter space Θ1 is compact

and convex, we have from the mean-value theorem and the Cauchy-Schwartz inequality

that

|QT (β) − QT (β†)| ≤ ‖∇βQT (β∗)‖ ‖β − β†‖ a.s.,
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where β and β† are in Θ1 and β∗ is the mean value of β and β†, in the sense that

|β∗ − βo| < |β† − βo|. Hence, the Lipschitz-type condition would hold by setting

CT = sup
β∈Θ1

∇βQT (β).

Observe that in the NLS context,

QT (β) =
1
T

T∑
t=1

(
y2

t − 2ytf(xt;β) + f(xt;β)2
)
,

and

∇βQT (β) = − 2
T

T∑
t=1

∇βf(xt;β)[yt − f(xt;β)].

Hence, ∇βQT (β) cannot be almost surely bounded in general. (It would be bounded

if, for example, yt are bounded random variables and both f and ∇βf are bounded

functions.) On the other hand, it is practically more plausible that ∇βQT (β) is bounded

in probability. It is the case when, for example, IE |∇βQT (β)| is bounded uniformly in

β. As such, we shall restrict our discussion below to WULLN and weak consistency of

β̂T .

To proceed we assume that the identification requirement [ID-2] holds with proba-

bility one. The discussion above motivates the additional conditions given below.

[C1] {(yt w′
t)′} is a sequence of random vectors, and xt is vector containing some

elements of Yt−1 and Wt.

(i) The sequences {y2
t }, {ytf(xt;β)} and {f(xt;β)2} all obey a WLLN for each

β in Θ1, where Θ1 is compact and convex.

(ii) yt, f(xt;β) and ∇βf(xt;β) all have bounded second moment uniformly in

β.

[C2] There exists a unique parameter vector βo such that IE(yt | Yt−1,Wt) = f(xt;βo).

Condition [C1] is analogous to [B1] so that stochastic regressors are allowed. [C1](i)

regulates that each components of QT (β) obey a standard WLLN. [C1](ii) implies

IE |∇βQT (β)| ≤ 2
T

T∑
t=1

(
‖∇βf(xt;β)‖2‖yt‖2 + ‖∇βf(xt;β)‖2‖f(xt;β)‖2

)
≤ Δ,
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for some Δ which does not depend on β. This in turn implies ∇βQT (β) is bounded

in probability (uniformly in β) by Markov’s inequality. Condition [C2] is analogous to

[B2] and requires f(xt;β) been a correct specification of the conditional mean function.

Thus, βo globally minimizes IE[QT (β)] because the conditional mean must minimizes

mean-squared errors.

Theorem 8.2 Given the nonlinear specification (8.1), suppose that [C1] and [C2] hold.

Then, β̂T
IP−→ βo.

Theorem 8.2 is not completely satisfactory because it is concerned with the conver-

gence to the global minimum. As noted in Section 8.2.2, an iterative algorithm is not

guaranteed to find a global minimum of the NLS objective function. Hence, it is more

reasonable to expect that the NLS estimator only converges to some local minimum

of IE[QT (β)]. A simple proof of such local consistency result is not yet available. We

therefore omit the details and assert only that the NLS estimator converges in proba-

bility to a local minimum β∗. Note that f(x;β∗) is, at most, an approximation to the

conditional mean function.

8.3.2 Asymptotic Normality

Given that the NLS estimator β̂T is weakly consistent for some β∗, we will sketch a

proof that, with more regularity conditions, the suitably normalized NLS estimator is

asymptotically distributed as a normal random vector.

First note that by the mean-value expansion of ∇βQT (β̂T ) about β∗,

∇βQT (β̂T ) = ∇βQT (β∗) + ∇2
βQT (β†

T )(β̂T − β∗),

where β†
T is a mean value of β̂T and β∗. Clearly, the left-hand side is zero because β̂T

is the NLS estimator and hence solves the first order condition. By [ID-2], the Hessian

matrix is invertible, so that
√

T (β̂T − β∗) = −[∇2
βQT (β†

T )]−1
√

T∇βQT (β∗).

The asymptotic distribution of
√

T (β̂T −β∗) is therefore the same as that of the right-

hand side.

Let HT (β) = IE[∇2
βQT (β)] and vec denote the operator such that for the matrix A,

vec(A) is the vector that stacks all the column vectors of A. By the triangle inequality,∥∥vec
[∇2

βQT (β†
T )

] − vec
[
HT (β∗)

]∥∥
≤ ∥∥vec

[∇2
βQT (β†

T )
] − vec

[
HT (β†

T )
]∥∥ +

∥∥vec
[
HT (β†

T )
] − vec

[
HT (β∗)

]∥∥.
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The first term on the right-hand side converges to zero in probability, provided that

∇2
βQT (β) also obeys a WULLN. As β†

T is a mean value of β̂T and β∗, weak consistency

of β̂T implies β†
T also converges in probability to β∗. This shows that, when HT (β) is

continuous in β, the second term also converges to zero in probability. Consequently,

∇2
βQT (β†

T ) is essentially close to HT (β∗).

The result above shows that the normalized NLS estimator,
√

T (β̂T −β∗), is asymp-

totically equivalent to

−HT (β∗)−1
√

T∇βQT (β∗),

and hence they must have the same limiting distribution. Under suitable regularity

conditions,

√
T∇βQT (β∗) = − 2√

T

T∑
t=1

∇βf(xt;β
∗)[yt − f(xt;β

∗)]

obeys a CLT, i.e., (V ∗
T )−1/2

√
T∇βQT (β∗) D−→ N(0, Ik), where

V ∗
T = var

(
2√
T

T∑
t=1

∇βf(xt;β
∗)[yt − f(xt;β

∗)]

)
.

Then for D∗
T = HT (β∗)−1V ∗

T HT (β∗)−1, we immediately obtain the following asymp-

totic normality result:

(D∗
T )−1/2HT (β∗)−1

√
T∇βQT (β∗) D−→ N (0, Ik),

which in turn implies

(D∗
T )−1/2

√
T (β̂T − β∗) D−→ N (0, Ik),

As in linear regression, asymptotic normality of the normalized NLS estimator remains

valid when D∗
T is replaced by its consistent estimator D̂T :

D̂
−1/2
T

√
T (β̂T − β∗) D−→ N (0, Ik),

Thus, finding a consistent estimator for D∗
T is important in practice.

Consistent estimation of D∗
T is completely analogous to that for linear regression;

see Chapter 6.3. First observe that HT (β∗) is

HT (β∗) =
2
T

T∑
t=1

IE
([∇βf(xt;β

∗)
][∇βf(xt;β

∗)
]′)

− 2
T

T∑
t=1

IE
(∇2

βf(xt;β
∗)

[
yt − f(xt;β

∗)
])

,
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which can be consistently estimated by its sample counterpart:

ĤT =
2
T

T∑
t=1

[∇βf(xt; β̂T )
][∇βf(xt; β̂T )

]′ − 2
T

T∑
t=1

∇2
βf(xt; β̂T )êt

)
.

Let εt = yt − f(xt;β
∗). When εt are uncorrelated with ∇2

βf(xt;β
∗), HT (β∗) depends

only on the expectation of the outer product of ∇βf(xt;β
∗) so that ĤT simplifies to

ĤT =
2
T

T∑
t=1

[∇βf(xt; β̂T )
][∇βf(xt; β̂T )

]′
.

This estimator is analogous to
∑T

t=1 xtx
′
t/T for Mxx in linear regression.

If β∗ = βo so that f(xt;βo) is the conditional mean of yt, V ∗
T is

V o
T =

4
T

T∑
t=1

IE
(
ε2
t

[∇βf(xt;βo)
][∇βf(xt;βo)

]′)
.

When there is conditional homoskedasticity: IE(ε2
t |Yt−1,Wt) = σ2

o , V o
T simplifies to

V o
T = σ2

o

4
T

T∑
t=1

IE
([∇βf(xt;βo)

][∇βf(xt;βo)
]′)

,

which can be consistently estimated by

V̂ T = σ̂2
T

4
T

T∑
t=1

[∇βf(xt; β̂T )
][∇βf(xt; β̂T )

]′
,

where σ̂2
T =

∑T
t=1 ê2

t /T is a consistent estimator for σ2
o . In this case,

D̂T = σ̂2
T

(
1
T

T∑
t=1

[∇βf(xt; β̂T )
][∇βf(xt; β̂T )

]′)−1

.

This estimator is analogous to the standard OLS variance matrix estimator σ̂2
T (X ′X/T )−1

for linear regressions.

When there is conditional heteroskedasticity such that IE(ε2
t |Yt−1,Wt) are functions

of the elements of Yt−1 and Wt, V o
T can be consistently estimated by

V̂ T =
4
T

T∑
t=1

ê2
t

[∇βf(xt; β̂T )
][∇βf(xt; β̂T )

]′
,
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so that

D̂T =

(
1
T

T∑
t=1

[∇βf(xt; β̂T )
][∇βf(xt; β̂T )

]′)−1

V̂ T

(
1
T

T∑
t=1

[∇βf(xt; β̂T )
][∇βf(xt; β̂T )

]′)−1

.

This is White’s heteroskedasticity-consistent covariance matrix estimator for nonlinear

regressions. If {εt} is not a martingale difference sequence with respect to Yt−1 and Wt,

V ∗
T can be consistently estimated using a Newey-West type estimator; see Exercise 8.7.

8.4 Hypothesis Testing

We again consider testing linear restrictions of parameters so that the null hypothesis

is Rβo = r, where R is a q× k matrix and r is a q× 1 vector of pre-specified constants.

More generally, one may want to test for nonlinear restrictions r(βo) = 0, where r is

now a R
q-valued nonlinear function. By linearizing r, the testing principles for linear

restrictions carry over to this case.

The Wald test now evaluates the difference between the NLS estimates and the hy-

pothetical values. When normalized NLS estimates, T 1/2(β̂T −βo), have an asymptotic

normal distribution with asymptotic covariance matrix DT , we have under the null

hypothesis

Γ̂−1/2
T

√
TR(β̂T − βo) = Γ̂−1/2

T

√
T (Rβ̂T − r) D−→ N(0, Iq).

where Γ̂T = RD̂T R′, and D̂T is a consistent estimator for DT . It follows that the

Wald statistic is

WT = T (Rβ̂T − r)Γ̂−1
T (Rβ̂T − r)′ D−→ χ2(q),

which is of the same form as the Wald statistic based on the OLS estimator.

Remark: A well known problem with the Wald test for nonlinear hypotheses is that

the statistic is not invariant with respect to the expressions of r(β) = 0. For example,

the Wald tests perform quite differently against two equivalent hypotheses: β1β2 = 1

and β1 = 1/β2. See e.g., Gregory & Veal (1985) and Phillips & Park (1988).
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Exercises

8.1 Suppose that QT (β) is quadratic in β:

QT (β) = a + b′β + β′Cβ,

where a is a scalar, b a vector and C a symmetric, positive definite matrix. Find

the first order condition of minimizing QT (β) and the resulting solution. Is the

OLS criterion function (3.2) quadratic in β?

8.2 Let ε̂t = yt − ŷt denote the t th NLS residuals. Is
∑T

t=1 ε̂t zero in general? Why or

why not?

8.3 Given the nonlinear specification of the CES production function

ln y = ln α − λ

γ
ln

[
δL−γ + (1 − δ)K−γ

]
+ e,

find the second order Taylor expansion of ln y around γ = 0. How would you

estimate this linearized function and how can you calculate the original parameters

α, γ, δ and λ?

8.4 Suppose that IE[QT (β)] is a continuous function on the compact parameter space

Θ1 such that βo is its unique, global minimum. Also suppose that the NLS

estimator β̂T is such that

IE[QT (β̂T )] = inf
Θ1

IE[QT (β)].

Prove that when QT has a WULLN effect, then β̂T converges in probability to

βo.

8.5 Apply Theorem 8.2 to discuss the consistency property of the OLS estimator for

the linear specification yt = x′
tβ + et.

8.6 Let εt = yt − f(xt;βo). If {εt} is a martingale difference sequence with respect to

Yt−1 and Wt such that IE(ε2
t | Yt−1,Wt) = σ2

o , state the conditions under which

σ̂2
T =

∑T
t=1 ê2

t /T is consistent for σ2
o .

8.7 Let εt = yt − f(xt;β
∗), where β∗ may not be the same as βo. If {εt} is not

a martingale difference sequence with respect to Yt−1 and Wt, give consistent

estimators for V ∗
T and D∗

T .
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