
Chapter 7

Asymptotic Least Squares

Theory: Part II

In the preceding chapter the asymptotic properties of the OLS estimator were derived

under “standard” regularity conditions that require data to obey suitable LLN and

CLT. Some important consequences of these conditions include root-T consistency and

asymptotic normality of the OLS estimator. There are, however, various data that do

not obey an LLN nor a CLT. For instance, the simple average of the random variables

that follow a random walk diverges, as shown in Example 5.31. Moreover, the data that

behave similarly to random walks are also not governed by LLN or CLT. Such data are

said to be integrated of order one, denoted as I(1); a precise definition of I(1) series will

be given in Section 7.1. I(1) data are practically relevant because, since the seminal

work of Nelson and Plosser (1982), it has been well documented in the literature that

many economic and financial time series are better characterized as I(1) variables.

This chapter is mainly concerned with estimation and hypothesis testing in linear

regressions that involve I(1) variables. When data are I(1), the results of Section 6.2 are

not applicable, and the asymptotic properties of the OLS estimator must be analyzed

differently. As will be shown in subsequent sections, the OLS estimator remains consis-

tent but with a faster convergence rate. Moreover, the normalized OLS estimator has

a non-standard distribution in the limit which may be quite different from the normal

distribution. This suggests that one should be careful in drawing statistical inferences

from regressions with I(1) variables. As far as economic interpretation is concerned,

regressions with I(1) variables are closely related economic equilibrium relations and

hence play an important role in empirical studies. A more detailed analysis of I(1)

variables can be found in, e.g., Hamilton (1994).
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188 CHAPTER 7. ASYMPTOTIC LEAST SQUARES THEORY: PART II

7.1 I(1) Variables

A time series {yt} is said to be I(1) if it can be expressed as yt = yt−1 + εt with εt

satisfying the following condition.

[C1] {εt} is a weakly stationary process with mean zero and variance σ2
ε and obeys an

FCLT:

1
σ∗

√
T

[Tr]∑
t=1

εt =
1

σ∗
√

T
y[Tr] ⇒ w(r), 0 ≤ r ≤ 1,

where w is the standard Wiener process, and

σ2
∗ = lim

T→∞
var

(
1√
T

T∑
t=1

εt

)
,

which is known as the long-run variance of εt.

This definition is not the most general but is convenient for subsequent analysis. In

view of (6.5), we can write

var

(
1√
T

T∑
t=1

εt

)
= var(εt) + 2

T−1∑
j=1

cov(εt, εt−j).

The existence of σ2∗ implies that the variance of
∑T

t=1 εt is O(T ). Moreover, cov(εt, εt−j)

must be summable so that cov(εt, εt−j) vanishes when j tends to infinity. For simplicity,

a weakly stationary process will also be referred to as an I(0) series. Under our defini-

tion, partial sums of an I(0) series (e.g.,
∑t

i=1 εi) form an I(1) series, while taking first

difference of an I(1) series (e.g., yt − yt−1) yields an I(0) series. Note that A random

walk is I(1) with i.i.d. εt and σ2∗ = σ2
ε . When {εt} is a stationary ARMA(p, q) process,

{yt} is also known as an ARIMA(p, 1, q) process. For example, many empirical evidences

showing that stock prices and GDP are I(1), and so are their log transformations. Yet,

stock returns and GDP growth rates are found to be I(0).

Analogous to a random walk, an I(1) series yt has mean zero and variance increasing

linearly with t, and its autocovariances cov(yt, ys) do not decrease when |t−s| increases,

cf. Example 5.31. In contrast, an I(0) series εt has a bounded variance, and cov(εt, εs)

decays to zero when |t − s| becomes large. Thus, an I(1) series has increasingly large

variations and smooth sample paths, yet an I(0) series is not as smooth as I(1) series

and has smaller variations. To illustrate, we plot in Figure 7.1 two sample paths of an

ARIMA process: yt = yt−1 + εt, where εt = 0.3εt−1 + ut − 0.4ut−1 with ut i.i.d. N (0, 1).
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Figure 7.1: Sample paths of ARIMA and ARMA series.

For comparison, we also include the sample paths of εt in the figure. It can be seen that

ARIMA paths (thick lines) wander away from the mean level and exhibit large swings

over time, whereas the ARMA paths (thin lines) are jagged and fluctuate around the

mean level.

During a given time period, an I(1) series may look like a series that follows a

deterministic time trend: yt = ao + bot + εt, where εt are I(0). Such a series, also

known as a trend stationary series, has finite variance and becomes stationary when

the trend function is removed. It should be noted that an I(1) series is fundamentally

different from a trend stationary series, in that the former has unbounded variance and

its behavior can not be captured by a deterministic trend function. Figure 7.2 illustrates

the difference between the sample paths of a random walk yt = yt−1 + εt and a trend

stationary series yt = 1+0.1t+εt, where εt are i.i.d. N (0, 1). It is clear that the variation

of random walk paths is much larger than that of trend stationary paths.

7.2 Autoregression of an I(1) Variable

Given the specification yt = x′
tβ+et such that [B2] holds: yt = x′

tβo+εt with IE(xtεt) =

0, the OLS estimator of β can be expressed as

β̂T = βo +

(
T∑

t=1

xtx
′
t

)−1 (
T∑

t=1

xtεt

)
.
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Figure 7.2: Sample paths of random walk and trend stationary series.

A generic approach to establishing OLS consistency is to show that, under suitable

conditions, the second term on the right-hand side converges to zero in some probabilistic

sense. Theorem 6.1 ensures this by imposing [B1] on data. With [B1] and [B2], we have∑T
t=1 xtx

′
t = OIP(T ) and

∑T
t=1 xtεt = oIP(T ), so that

β̂T = βo + oIP(1),

showing weak consistency of β̂T . When [B3] also holds, the CLT effect yields a more

precise order of
∑T

t=1 xtεt, namely, OIP(T 1/2). It follows that

β̂T = βo + OIP(T−1/2),

which establishes root-T consistency of β̂T . On the other hand, the asymptotic prop-

erties of the OLS estimator must be derived without resorting to LLN and CLT when

yt and xt are I(1).

7.2.1 Asymptotic Properties of the OLS Estimator

To illustrate, we first consider the simplest AR(1) specification:

yt = αyt−1 + et. (7.1)

Suppose that {yt} is a random walk such that yt = αoyt−1 + εt with αo = 1 and εt

i.i.d. random variables with mean zero and variance σ2
ε . From Examples 5.31 we know
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7.2. AUTOREGRESSION OF AN I(1) VARIABLE 191

that {yt} does not obey a LLN. Moreover,
∑T

t=2 yt−1εt = OIP(T ) by Example 5.32, and∑T
t=2 y2

t−1 = OIP(T 2) by Example 5.43. The OLS estimator of α is thus

α̂T = 1 +
∑T

t=2 yt−1εt∑T
t=2 y2

t−1

= 1 + OIP(T−1). (7.2)

This shows that α̂T converges to αo = 1 at the rate T−1, which is in sharp contrast with

the convergence rate of the OLS estimator discussed in Chapter 6. Thus, the estimator

α̂T is a T -consistent estimator and also known as a super consistent estimator.

When yt is an I(1) series, it is straightforward to derive the following asymptotic

results; all proofs are deferred to the Appendix.

Lemma 7.1 Let yt = yt−1 + εt be an I(1) series with εt satisfying [C1]. Then,

(i) T−3/2
∑T

t=1 yt−1 ⇒ σ∗

∫ 1

0
w(r) dr;

(ii) T−2
∑T

t=1 y2
t−1 ⇒ σ2

∗

∫ 1

0
w(r)2 dr;

(iii) T−1
∑T

t=1 yt−1εt ⇒
1
2
[σ2

∗w(1)2 − σ2
ε ] = σ2

∗

∫ 1

0
w(r) dw(r) +

1
2
(σ2

∗ − σ2
ε ).

As Lemma 7.1 holds for general I(1) processes, the assertions (i) and (ii) are gen-

eralizations of the results in Example 5.43. The assertion (iii) is also a more general

result than Example 5.32 and gives a precise limit of
∑T

t=2 yt−1εt/T . The weak limit of

the normalized OLS estimator of α,

T (α̂T − 1) =
∑T

t=2 yt−1εt/T∑T
t=2 y2

t−1/T
2

,

now can be derived from Lemma 7.1.

Theorem 7.2 Let yt = yt−1 + εt be an I(1) series with εt satisfying [C1]. Given the

specification yt = αyt−1 + et, the normalized OLS estimator of α is such that

T (α̂T − 1) ⇒
1
2

[
w(1)2 − σ2

ε /σ
2∗
]

∫ 1
0 w(r)2 dr

.

where w is the standard Wiener process. In particular, when yt is a random walk,

T (α̂T − 1) ⇒
1
2

[
w(1)2 − 1

]
∫ 1
0 w(r)2 dr

,

which does not depend on σ2
ε and σ2∗.
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192 CHAPTER 7. ASYMPTOTIC LEAST SQUARES THEORY: PART II

Theorem 7.2 shows that for an autoregression of I(1) variables, the OLS estimator is

T -consistent and has a non-standard distribution in the limit. It is worth mentioning

that T (α̂T − 1) has a weak limit depending on the (nuisance) parameters σ2
ε and σ2∗ in

general and hence is not asymptotically pivotal, unless εt are i.i.d. It is also interesting

to observe from Theorem 7.2 that OLS consistency is not affected even when yt−1 and

correlated εt are both present, in contrast with Example 6.5. This is the case because∑T
t=2 y2

t−1 grows much too fast (at the rate T 2) and hence is able to wipe out the effect

of
∑T

t=2 yt−1εt (which grows at the rate T ) when T becomes large.

Consider now the specification with a constant term:

yt = c + αyt−1 + et, (7.3)

and the OLS estimators ĉT and α̂T . Define ȳ−1 =
∑T−1

t=1 yt/(T − 1). The lemma below

is analogous to Lemma 7.1.

Lemma 7.3 Let yt = yt−1 + εt be an I(1) series with εt satisfying [C1]. Then,

(i) T−2
∑T

t=1(yt−1 − ȳ−1)2 ⇒ σ2
∗

∫ 1

0
w∗(r)2 dr;

(ii) T−1
∑T

t=1(yt−1 − ȳ−1)εt ⇒ σ2
∗

∫ 1

0
w∗(r) dw(r) +

1
2
(σ2

∗ − σ2
ε ),

where w is the standard Wiener process and w∗(t) = w(t) − ∫ 1
0 w(r) dr.

Lemma 7.3 is concerned with “de-meaned” yt, i.e., yt − ȳ. In analogy with this term,

the process w∗ is also known as the “de-meaned” Wiener process. It can be seen that

the sum of squares of de-meaned yt also grows at the rate T 2 and that the sum of the

products of de-meaned yt and εt grows at the rate T . These rates are the same as those

based on yt, as shown in Lemma 7.1. The consistency of the OLS estimator now can

be easily established, as in Theorem 7.2.

Theorem 7.4 Let yt = yt−1 + εt be an I(1) series with εt satisfying [C1]. Given the

specification yt = c + αyt−1 + et, the normalized OLS estimators of α and c are such

that

T (α̂T − 1) ⇒
∫ 1
0 w∗(r) dw(r) + 1

2 (1 − σ2
ε /σ

2∗)∫ 1
0 w∗(r)2 dr

=: A,

√
T ĉT ⇒ A

(
σ∗

∫ 1

0
w(r) dr

)
+ σ∗w(1).
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7.2. AUTOREGRESSION OF AN I(1) VARIABLE 193

where w is the standard Wiener process and w∗(t) = w(t) − ∫ 1
0 w(r) dr. In particular,

when yt is a random walk,

T (α̂T − 1) ⇒
∫ 1
0 w∗(r) dw(r)∫ 1

0 w∗(r)2 dr
.

Theorem 7.4 shows again that, for the autoregression of an I(1) variable that con-

tains a constant term, the normalized OLS estimators are not asymptotically pivotal

unless εt are i.i.d. It should be emphasized that the OLS estimators of the intercept

and slope coefficients have different rates of convergence. The estimator of the latter is

T -consistent, whereas the estimator of the former remains root-T consistent but does

not have a limiting normal distribution.

Remarks:

1. While the asymptotic normality of the OLS estimator obtained under standard

conditions is invariant with respect to model specifications, Theorems 7.4 and 7.2

indicate that the limiting results for autoregressions with an I(1) variable are not.

This is a great disadvantage because the asymptotic analysis need to be carried

out for different specifications when the data are I(1) series.

2. All the results in this sub-section are based on the data yt = yt−1 + εt which does

not involve an intercept. These results would break down if yt = co + yt−1 + εt

with a non-zero co; such series are said to be I(1) with drift. It is easily seen that,

when a drift is present,

yt = co t +
t∑

i=1

εi,

which contains a deterministic trend and an I(1) series without drift. Such series

exhibits large swings around the trend function and has much larger variation

than I(1) series without drift. See Exercise 7.2 for some properties of this series.

7.2.2 Tests of Unit Root

What we have learnt from the preceding subsections are: (1) The behavior of an I(1)

series is quite different from that of an I(0) series, and (2) the presence of an I(1)

variable in a regression renders standard asymptotic results invalid. It is thus practically

important to determine whether the data are in fact I(1). Given the specifications (7.1)
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194 CHAPTER 7. ASYMPTOTIC LEAST SQUARES THEORY: PART II

and (7.3), the hypothesis of interest is αo = 1; tests of this hypothesis are usually

referred to as tests of unit root.

A leading unit-root test is the t statistic of αo = 1 in the specification (7.1) or (7.3).

For the former, the t statistic is

τ0 =

(∑T
t=2 y2

t−1

)1/2(α̂T − 1)
σ̂T

,

where σ̂2
T =

∑T
t=2(yt − α̂T yt−1)2/(T − 2) is the standard OLS variance estimator; for

the latter, the t statistic is

τc =

[∑T
t=2(yt−1 − ȳ−1)

2
]1/2(α̂T − 1)

σ̂T

,

where σ̂2
T =

∑T
t=2(yt− ĉT − α̂T yt−1)

2/(T −3). In view of Theorem 7.2 and Theorem 7.4,

it is easy to derive the weak limits of these statistics under the null hypothesis of αo = 1.

Theorem 7.5 Let yt be a random walk. Given the specifications (7.1) and (7.3), we

have, respectively,

τ0 ⇒
1
2 [w(1)2 − 1][∫ 1
0 w(r)2 dr

]1/2
,

τc ⇒
∫ 1
0 w∗(r) dw(r)[∫ 1
0 w∗(r)2 dr

]1/2
,

(7.4)

where w is the standard Wiener process and w∗(t) = w(t) − ∫ 1
0 w(r) dr.

These statistics were first analyzed by Dickey and Fuller (1979) and their weak limits

were derived in Phillips (1987). In addition to the specifications (7.1) and (7.3), Dickey

and Fuller (1979) also considered the specification with the intercept and a time trend:

yt = c + αyt−1 + β
(
t − T

2

)
+ et; (7.5)

the t-statistic of αo = 1 is denoted as τt. The weak limit of τt is different from those

in Theorem 7.5 but can be derived similarly; we omit the detail. The t-statistics τ0, τc,

and τt and the F tests considered in Dickey and Fuller (1981) are now known as the

Dickey-Fuller tests.

The limiting distributions of the Dickey-Fuller tests are all non-standard but can be

easily simulated; see e.g., Fuller (1996, p. 642) and Davidson and MacKinnon (1993,

c© Chung-Ming Kuan, 2007
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Table 7.1: Some percentiles of the Dickey-Fuller distributions.

Test 1% 2.5% 5% 10% 50% 90% 95% 97.5% 99%

τ0 −2.58 −2.23 −1.95 −1.62 −0.51 0.89 1.28 1.62 2.01

τc −3.42 −3.12 −2.86 −2.57 −1.57 −0.44 −0.08 0.23 0.60

τt −3.96 −3.67 −3.41 −3.13 −2.18 −1.25 −0.94 −0.66 −0.32

p. 708). These distributions will be referred to as the Dickey-Fuller distributions; some

of their percentiles reported in Fuller (1996) are summarized in Table 7.1. We can see

that these distributions are not symmetric about zero and are all skewed to the left.

In particular, τc assumes negatives values about 95% of times, and τt is virtually a

non-positive random variable.

To implement the Dickey-Fuller tests, we may, corresponding to the specifications

(7.1), (7.3) and (7.5), estimate one of the following specifications:

Δyt = θyt−1 + et,

Δyt = c + θyt−1 + et,

Δyt = c + θyt−1 + β
(
t − T

2

)
+ et,

(7.6)

where Δyt = yt − yt−1. Clearly, the hypothesis θo = 0 for these specifications is equiv-

alent to αo = 0 for (7.1), (7.3) and (7.5). It is also easy to verify that the weak limits

of the normalized estimators in (7.6), T θ̂T , are the same as the respective limits of

T (α̂T − 1) under the null hypothesis. Consequently, the t-ratios of θo = 0 also have the

Dickey-Fuller distributions with the critical values given in Table 7.1. Using the t-ratios

of (7.6) as unit-root tests is convenient in practice because they are routinely reported

by econometrics packages.

A major drawback of the Dickey-Fuller tests is that they can only check if the data

series is a random walk. When {yt} is a general I(1) process, the dependence of εt

renders the limits of Theorem 7.5 invalid, as shown in the result below.
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Theorem 7.6 Let yt = yt−1 + εt be an I(1) series with εt satisfying [C1]. Then,

τ0 ⇒ σ∗
σε

(
1
2 [w(1)2 − σ2

ε /σ
2∗ ][∫ 1

0 w(r)2 dr
]1/2

)
,

τc ⇒
σ∗
σε

(∫ 1
0 w∗(r) dw(r) + 1

2(1 − σ2
ε /σ

2∗)[∫ 1
0 w∗(r)2 dr

]1/2

)
,

(7.7)

where w is the standard Wiener process and w∗(t) = w(t) − ∫ 1
0 w(r) dr.

Theorem 7.6 includes Theorem 7.5 as a special case because the limits in (7.7) would

reduce to those in (7.4) when εt are i.i.d. (so that σ2∗ = σ2
ε ). These results also suggest

that the nuisance parameters σ2
ε and σ2∗ may be eliminated by proper corrections of the

statistics τ0 and τc.

Let êt denote the OLS residuals of the specification (7.1) or (7.3) and s2
Tn denote a

Newey-West type estimator of σ2∗ based on êt:

s2
Tn =

1
T − 1

T∑
t=2

ê2
t +

2
T − 1

T−2∑
s=1

κ
( s

n

) T∑
t=s+2

êtêt−s,

with κ a kernel function and n = n(T ) its bandwidth; see Section 6.3.2. Phillips (1987)

proposed the following modified τ0 and τc statistics:

Z(τ0) =
σ̂T

sTn

τ0 −
1
2(s2

Tn − σ̂2
T )

sTn

(∑T
t=2 y2

t−1/T
2
)1/2

,

Z(τc) =
σ̂T

sTn

τc −
1
2(s2

T − σ̂2
T )

sTn

[∑T
t=2(yt−1 − ȳ−1)2

]1/2
;

see also Phillips and Perron (1988) for the modifications of other unit-root tests. The

Z-type tests are now known as the Phillips-Perron tests. It is quite easy to verify that

the limits of Z(τ0) and Z(τc) are those in (7.4) and do not depend on the nuisance

parameters. Thus, the Phillips-Perron tests are asymptotically pivotal and capable of

testing whether {yt} is a general I(1) series.

Corollary 7.7 Let yt = yt−1 + εt be an I(1) series with εt satisfying [C1]. Then,

Z(τ0) ⇒
1
2

[
w(1)2 − 1

]
[∫ 1

0 w(r)2 dr
]1/2

,

Z(τc) ⇒
∫ 1
0 w∗(r) dw(r)[∫ 1
0 w∗(r)2 dr

]1/2
.

where w is the standard Wiener process and w∗(t) = w(t) − ∫ 1
0 w(r) dr.
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Said and Dickey (1984) introduced a different approach to circumventing the nui-

sance parameters in the limit. Note that the correlations in a weakly stationary process

may be “filtered out” by a linear AR model with a proper order, say, k. For example,

when {εt} is a weakly stationary ARMA process,

εt − γ1εt−1 − · · · − γkεt−k = ut

are serially uncorrelated for some k and some parameters γ1, . . . , γk. Basing on this idea

Said and Dickey (1984) suggested the following “augmented” specifications:

Δyt = θyt−1 +
k∑

j=1

γjΔyt−j + et,

Δyt = c + θyt−1 +
k∑

j=1

γjΔyt−j + et,

Δyt = c + θyt−1 + β
(
t − T

2

)
+

k∑
j=1

γjΔyt−j + et,

(7.8)

where γj are unknown parameters. Compared with the specifications in (7.6), the

augmented regressions in (7.8) contain k lagged differences Δyt−j, j = 1, . . . , k, which

are εt−j under the null hypothesis. These differences are included to capture possible

correlations among εt. After controlling these correlations, the resulting t-ratios of

θo = 0 turn out to have the Dickey-Fuller distributions, as the t-ratios for (7.6), and

are known as the augmented Dickey-Fuller tests. Compared with the Phillips-Perron

tests, these tests are capable of testing whether {yt} is a general I(1) series without

non-parametric kernel estimation for σ2∗ . Yet, one must choose a proper lag order k for

the augmented specifications in (7.8).

7.3 Tests of Stationarity against I(1)

Instead of testing I(1) series directly, Kwiatkowski, Phillips, Schmidt, and Shin (1992)

proposed testing the property of stationarity against I(1) seires. Their tests, obtained

along the line in Nabeya and Tanaka (1988), are now known as the KPSS test.

Recall that the process {yt} is said to be trend stationary if

yt = ao + bo t + εt,

where εt satisfy [C1]. That is, yt fluctuates around a deterministic trend function. When

bo = 0, the resulting process is a level stationary process, in the sense that it moves
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around the mean level ao. A trend stationary process achieves stationarity by removing

the deterministic trend, whereas a level stationary process is itself stationary and hence

an I(0) series. The KPSS test is of the following form:

ηT =
1

T 2 s2
Tn

T∑
t=1

(
t∑

i=1

êi

)2

,

where s2
Tn is, again, a Newey-West estimator of σ2∗ , computed using the model residuals

êt. To test the null of trend stationarity, êt = yt− âT − b̂T t are the residuals of regressing

yt on the constant one and the time trend t. For the null of level stationarity, êt = yt− ȳ

are the residuals of regressing yt on the constant one.

To see the null limit of ηT , consider first the level stationary process yt = ao + εt.

The partial sums of êt = yt − ȳ are such that

[Tr]∑
t=1

êt =
[Tr]∑
t=1

(εt − ε̄) =
[Tr]∑
t=1

εt −
[Tr]
T

T∑
t=1

εt, r ∈ (0, 1].

Then by a suitable FCLT,

1
σ∗

√
T

[Tr]∑
t=1

êt =
1

σ∗
√

T

[Tr]∑
t=1

εt −
[Tr]
T

(
1

σ∗
√

T

T∑
t=1

εt

)

⇒ w(r) − rw(1), r ∈ (0, 1].

That is, properly normalized partial sums of the residuals behave like a Brownian bridge

with w0(r) = w(r)−rw(1). Similarly, given the trend stationary process yt = a0 +b0 t+

εt, let êt = yt − âT − b̂T t denote the OLS residuals. Then, it can be shown that

1
σ∗

√
T

[Tr]∑
t=1

êt ⇒ w(r) + (2r − 3r2)w(1) − (6r − 6r2)
∫ 1

0
w(s) ds, r ∈ (0, 1];

see Exercise 7.4. Note that the limit on the right is a functional of the standard Wiener

process which, similar to a Brownian bridge, is a “tide-down” process in the sense that

it is zero with probability one at r = 1.

The limits of ηT under the null hypothesis are summarized in the following theorem;

some percentiles of their distributions are collected in Table 7.2.

Theorem 7.8 let yt = ao+εt be a level stationary process with εt satisfying [C1]. Then,

ηT computed from êt = yt − ȳ is such that

ηT ⇒
∫ 1

0
w0(r)2 dr,
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Table 7.2: Some percentiles of the distributions of the KPSS test.

Test 1% 2.5% 5% 10%

level stationarity 0.739 0.574 0.463 0.347

trend stationarity 0.216 0.176 0.146 0.119

where w0 is the Brownian bridge. let yt = ao +bo t+εt be a trend stationary process with

εt satisfying [C1]. Then, ηT computed from from the OLS residuals êt = yt − âT − b̂T t

is such that

ηT ⇒
∫ 1

0
f(r)2 dr,

where f(r) = w(r)+(2r−3r2)w(1)−(6r−6r2)
∫ 1
0 w(s) ds and w is the standard Wiener

process.

These tests have power against I(1) series because ηT would diverge under I(1)

alternatives. This is the case because T 2 in ηT is not be a proper normalizing factor

when the data are I(1). It is worth mentioning that the KPSS tests also have power

against other alternatives, such as stationarity with mean changes and trend stationarity

with trend breaks. Thus, rejecting the null of stationarity does not imply that the series

being tested must be I(1).

7.4 Regressions of I(1) Variables

From the preceding section we have seen that the asymptotic behavior of the OLS

estimator in an auotregression changes dramatically when {yt} is an I(1) series. It is

then reasonable to expect that the OLS asymptotics would also be quite different from

that in Chapter 6 if the dependent variable and regressors of a regression model are

both I(1) series.

7.4.1 Spurious Regressions

In a classical simulation study, Granger and Newbold (1974) found that, while two inde-

pendent random walks should have no relationship whatsoever, regressing one random

walk on the other typically yields a significant t-ratio. Thus, one would falsely reject

the null hypothesis of no relationship between two independent random walks. This is
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known as the problem of spurious regression. Phillips (1986) provided analytic results

showing why such a spurious inference may arise.

To illustrate, we consider a simple linear specification:

yt = α + βxt + et.

Let α̂T and β̂T denote the OLS estimators for α and β, respectively. Also denote their

t-ratios as tα = α̂T /sα and tβ = β̂T /sβ, where sα and sβ are the OLS standard errors for

α̂T and β̂T . We are interested in the case that {yt} and {xt} are I(1) series: yt = yt−1+ut

and xt = xt−1 + vt, where {ut} and {vt} are mutually independent processes satisfying

the following condition.

[C2] {ut} and {vt} are two weakly stationary processes have mean zero and respective

variances σ2
u and σ2

v and both obey an FCLT with respective long-run variances:

σ2
y = lim

T→∞
1
T

IE

(
T∑

t=1

ut

)2

, σ2
x = lim

T→∞
1
T

IE

(
T∑

t=1

vt

)2

.

In the light of Lemma 7.1, the limits below are immediate:

1
T 3/2

T∑
t=1

yt ⇒ σy

∫ 1

0
wy(r) dr,

1
T 2

T∑
t=1

y2
t ⇒ σ2

y

∫ 1

0
wy(r)

2 dr,

where wy is a standard Wiener processes. Similarly,

1
T 3/2

T∑
t=1

xt ⇒ σx

∫ 1

0
wx(r) dr,

1
T 2

T∑
t=1

x2
t ⇒ σ2

x

∫ 1

0
wx(r)2 dr,

where wx is also a standard Wiener process which, due to mutual independence between

{ut} and {vt}, is independent of wy. As in Lemma 7.3, we also have

1
T 2

T∑
t=1

(yt − ȳ)2 ⇒ σ2
y

∫ 1

0
wy(r)

2 dr − σ2
y

(∫ 1

0
wy(r) dr

)2

=: σ2
ymy,

1
T 2

T∑
t=1

(xt − x̄)2 ⇒ σ2
x

∫ 1

0
wx(r)2 dr − σ2

x

(∫ 1

0
wx(r) dr

)2

=: σ2
xmx,
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where w∗
y(t) = wy(t) −

∫ 1
0 wy(r) dr and w∗

x(t) = wx(t) − ∫ 1
0 wx(r) dr are two mutually

independent, “de-meaned” Wiener processes. Analogous to the limits above, it is also

easy to show that

1
T 2

T∑
t=1

(yt − ȳ)(xt − x̄t)

⇒ σyσx

(∫ 1

0
wy(r)wx(r) dr −

∫ 1

0
wy(r) dr

∫ 1

0
wx(r) dr

)

=: σyσxmyx.

The following results on α̂T , β̂T and their t-ratios now can be easily derived from

the limits above.

Theorem 7.9 Let yt = yt−1 + ut and xt = xt−1 + vt, where {ut} and {vt} are two

mutually independent processes satisfying [C2]. Then for the specification yt = α +

βxt + et, we have:

(i) β̂T ⇒ σy myx

σx mx

,

(ii) T−1/2α̂T ⇒ σy

(∫ 1

0
wy(r) dr − myx

mx

∫ 1

0
wx(r) dr

)
,

(iii) T−1/2 tβ ⇒ myx

(mymx − m2
yx)1/2

,

(iv) T−1/2 tα ⇒ mx

∫ 1
0 wy(r) dr − myx

∫ 1
0 wx(r) dr[

(mymx − m2
yx)

∫ 1
0 wx(r)2 dr

]1/2
,

where wx and wy are two mutually independent, standard Wiener processes.

When yt and xt are mutually independent, the true parameters of this regression should

be αo = βo = 0. The first two assertions of Theorem 7.9 show, however, that the OLS

estimators do not converge in probability to zero. Instead, β̂T has a non-degenerate

limiting distribution, whereas α̂T diverges at the rate T 1/2. Theorem 7.9(iii) and (iv)

further indicate that tα and tβ both diverge at the rate T 1/2. Thus, one would easily

infer that these coefficients are significantly different from zero if the critical values of

the t-ratio were taken from the standard normal distribution. These results together

suggest that, when the variables are I(1) series, one should be extremely careful in

drawing statistical inferences from the t tests, for the t tests do not have the standard

normal distribution in the limit.
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Nelson and Kang (1984) also showed that, given the time trend specification:

yt = a + b t + et,

it is likely to falsely infer that the time trend is significant in explaining the behavior of

yt when {yt} is a random walk. This is known as the problem of spurious trend. Phillips

and Durlauf (1986) analyzed this problem as in Theorem 7.9 and demonstrated that

the F test of bo = 0 diverges at the rate T . The divergence of the F test (and hence

the t-ratio) explains why an incorrect inference would result.

7.4.2 Cointegration

The results in the preceding sub-section indicate that the relation between I(1) variables

found using standard asymptotics may be a spurious one. They do not mean that there

can be no relation between I(1) variables. In this section, we formally characterize the

relations between I(1) variables.

Consider two variables y and x that obey an equilibrium relationship ay − bx = 0.

With real data (yt, xt), zt := ayt − bxt are understood as equilibrium errors because

they need not be zero all the time. When yt and xt are both I(1), a linear combination

of them is, in general, also an I(1) series. Thus, {zt} would be an I(1) series that

wanders away from zero and has growing variances over time. If that is the case, {zt}
rarely crosses zero (the horizontal axis), so that the equilibrium condition entails little

empirical restriction on zt.

On the other hand, when yt and xt are both I(1) but involve the same random walk

qt such that yt = qt + ut and xt = cqt + vt, where {ut} and {vt} are two I(0) series. It

is then easily seen that

zt = cyt − xt = cut − vt,

which is a linear combination of I(0) series and hence is also I(0). This example shows

that when two I(1) series share the same trending (random walk) component, it is

possible to find a linear combination of these series that annihilates the common trend

and becomes an I(0) series. In this case, the equilibrium condition is empirically relevant

because zt is I(0) and hence must cross zero often.

Formally, two I(1) series are said to be cointegrated if a linear combination of them

is I(0). The concept of cointegration was originally proposed by Granger (1981) and

Granger and Weiss (1983) and subsequently formalized in Engle and Granger (1987).

c© Chung-Ming Kuan, 2007



7.4. REGRESSIONS OF I(1) VARIABLES 203

This concept is readily generalized to characterize the relationships among d I(1) time

series. Let yt be a d-dimensional vector I(1) series such that each element is an I(1)

series. These elements are said to be cointegrated if there exists a d × 1 vector, α,

such that zt = α′yt is I(0). We say that the elements of yt are CI(1,1) for simplicity,

indicating that a linear combination of the elements of yt is capable of reducing the

integrated order by one. The vector α is referred to as a cointegrating vector.

When d > 2, there may be more than one cointegrating vector. Clearly, if α1

and α2 are two cointegrating vectors, so are their linear combinations. Hence, we are

primarily interested in the cointegrating vectors that are not linearly dependent. The

space spanned by linearly independent cointegating vectors is the cointegrating space;

the number of linearly independent cointegrating vectors is known as the cointegrating

rank which is the dimension of the cointegrating space. If the cointegrating rank is r,

we can put these r linearly independent cointegrating vectors together and form the

d×r matrix A such that zt = A′y is a vector I(0) series. Note that for a d-dimensional

vector I(1) series yt, the cointegrating rank is at most d − 1. For if the cointegrating

rank is d, A would be a d× d nonsingular matrix, so that A−1zt = yt must be a vector

I(0) series as well. This contradicts the assumption that yt is a vector of I(1) series.

A simple way to find a cointegration relationship among the elements of yt is to

regress one element, say, y1,t on all other elements, y2,t, as suggested by Engle and

Granger (1987). A cointegrating regression is

y1,t = α′y2,t + zt,

where the vector (1 α′)′ is the cointegrating vector with the first element normalized

to one, and zt are the regression errors and also the equilibrium errors. The estimated

cointegrating regression is

y1,t = α̂′
T y2,t + ẑt,

where α̂T is the OLS estimate, and ẑt are the OLS residuals which approximate the

equilibrium errors. It should not be surprising to find that the estimator α̂T is T -

consistent, as in the case of autoregression with a unit root.

When the elements of yt are cointegrated, they must be determined jointly. The

equilibrium errors zt are thus also correlated with y2,t. As far as the consistency of

the OLS estimator is concerned, the correlations between zt and y2,t do not matter

asymptotically, but they would result in finite-sample bias and efficiency loss. To cor-

rect these correlations and obtain more efficient estimates, Saikkonen (1991) proposed
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estimating a modified co-integrating regression that includes additional k leads and lags

of Δy2,t = y2,t − y2,t−1:

y1,t = α′y2,t +
k∑

j=−k

Δy′
2,t−jbj + et.

It has been shown that the OLS estimator of α is asymptotically efficient in the sense

of Saikkonen (1991, Definition 2.2); we omit the details. Phillips and Hansen (1990)

proposed a different way to compute efficient estimates.

When cointegration exists, the true equilibrium errors zt should be an I(0) series;

otherwise, they should be I(1). One can then verify the cointegration relationship by

applying unit-root tests, such as the augmented Dickey-Fuller test and the Phillips-

Perron test, to ẑt. The null hypothesis that a unit root is present is equivalent to the

hypothesis of no cointegration. Failing to reject the null hypothesis of no cointegration

suggests that the regression is in fact a spurious one, in the sense of Granger and

Newbold (1974).

To implement a unit-root test on cointegration residuals ẑT , a difficulty is that ẑT

is not a raw series but a result of OLS fitting. Thus, even when zt may be I(1), the

residuals ẑt may not have much variation and hence behave like a stationary series.

Consequently, the null hypothesis would be rejected too often if the original Dickey-

Fuller critical values were used. Engle and Granger (1987), Engle and Yoo (1987),

and Davidson and MacKinnon (1993) simulated proper critical values for the unit-root

tests on cointegrating residuals. Similar to the unit-root tests discussed earlier, these

critical values are all “model dependent.” In particular, the critical values vary with

d, the number of variables (dependent variables and regressors) in the cointegrating

regression. Let τc denote the t-ratio of an auxiliary autoregression on ẑt with a constant

term. Table 7.3 summarizes some critical values of the τc test of no cointegration based

on Davidson and MacKinnon (1993).

The cointegrating regression approach has some drawbacks in practice. First, the es-

timation result is somewhat arbitrary because it is determined by the dependent variable

in the regression. As far as cointegration is conerned, any variable in the vector series

could serve as a dependent variable. Although the choice of the dependent variable does

not matter asymptotically, it does affect the estimated cointegration relationships in fi-

nite samples. Second, this approach is more suitable for finding only one cointegrating

relationship, despite that Engle and Granger (1987) proposed estimating multiple coin-

tegration relationships by a vector regression. It is now typical to adopt the maximum

likelihood approach of Johansen (1988) to estimate the cointegrating space directly.
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Table 7.3: Some percentiles of the distributions of the cointegration τc test.

d 1% 2.5% 5% 10%

2 −3.90 −3.59 −3.34 −3.04

3 −4.29 −4.00 −3.74 −3.45

4 −4.64 −4.35 −4.10 −3.81

Cointegration has an important implication. When the elements of yt are cointe-

grated such that A′yt = zt, then there must exist an error correction model (ECM) in

the sense that

Δyt = Bzt−1 + C1Δyt−1 + · · · + CkΔyt−k + νt,

where B is d×r matrix of coefficients associated with the vector of equilibrium errors and

Cj , j = 1, . . . , k, are the coefficient matrices associated with lagged differences. It must

be emphasized that cointegration characterizes the long-run equilibrium relationship

among the variables because it deals with the levels of I(1) variables. On the other

hand, the corresponding ECM describes short-run dynamics of these variables, in the

sense that it is a dynamic vector regression on the differences of these variables. Thus,

the long-run equilibrium relationships are useful in explaining the short-run adjustment

when cointegration exists.

The result here also indicates that, when cointegration exists, a vector AR model

of Δyt is misspecified because it omits the important variable zt−1, the lagged equi-

librium errors. Omitting this variable would render the estimates in the AR model of

Δyt inconsistent. Therefore, it is important to identify the cointegrating relationship

before estimating an ECM. On the other hand, the Johansen approach mentioned above

permits joint estimation of the cointegrating space and ECM. In practice, an ECM can

be estimated by replacing zt−1 with the residuals of a cointegrating regression ẑt−1 and

then regressing Δyt on ẑt−1 and lagged Δyt. Note that standard asymptotic theory

applies here because ECM involves only stationary variables when cointegration exists.
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Appendix

Proof of Lemma 7.1: By invoking a suitable FCLT, the proofs of the assertions (i)

and (ii) are the same as those in Example 5.43. To prove (iii), we apply the formula of

summation by parts. For two sequences {at} and {bt}, put An =
∑n

t=1 at for n ≥ 0 and

A−1 = 0. Summation by parts is such that, for 0 ≤ p ≤ q,
q∑

t=p

atbt =
q−1∑
t=p

At(bt − bt+1) + Aqbq − Ap−1bp.

Now, setting at = εt and bt = yt−1 we get At = yt and
T∑

t=1

yt−1εt = yT yT−1 −
T−1∑
t=1

ytεt = y2
T −

T∑
t=1

ε2
t −

T∑
t=1

yt−1εt.

Hence,

1
T

T∑
t=1

yt−1εt =
1
2

(
1
T

y2
T − 1

T

T∑
t=1

ε2
t

)
⇒ 1

2
[σ2

∗w(1)2 − σ2
ε ].

Note that the stochastic integral
∫ 1
0 w(r) dw(r) = [w(1)2−1]/2; see e.g., Davidson (1994,

p. 507). An alternative expression of the weak limit of
∑T

t=1 yt−1εt/T is thus

σ2
∗

∫ 1

0
w(r) dw(r) +

1
2
(σ2

∗ − σ2
ε ). �

Proof of Theorem 7.2: The first assertion follows directly from Lemma 7.1 and the

continuous mapping theorem. The second assertion follows from the first by noting that

σ2∗ = σ2
ε when εt are i.i.d. �

Proof of Lemma 7.3: By Lemma 7.1(i) and (ii), we have

1
T 2

T∑
t=1

(yt−1 − ȳ−1)
2

=
1
T 2

T∑
t=1

y2
t−1 −

(
1

T 3/2

T∑
t=1

yt−1

)2

⇒ σ2
∗

∫ 1

0
w(r)2 dr − σ2

∗

(∫ 1

0
w(r) dr

)2

.

It is easy to show that the limit on the right-hand side is just σ2∗
∫ 1
0 w∗(r)2 dr, as asserted

in (i). To prove (ii), note that

1
T

ȳ−1

T∑
t=1

εt =

(
1

T 3/2

T∑
t=1

yt−1

) (
1√
T

yT

)
⇒ σ2

∗

(∫ 1

0
w(r) dr

)
w(1).
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It follows from Lemma 7.1(iii) that

1
T

T∑
t=1

(yt−1 − ȳ−1)εt

⇒ σ2
∗

∫ 1

0
w(r) dw(r) +

1
2
(σ2

∗ − σ2
ε ) − σ2

∗

(∫ 1

0
w(r) dr

)
w(1)

= σ2
∗

∫ 1

0
w∗(r) dw(r) +

1
2
(σ2

∗ − σ2
ε ),

where the last equality is due to the fact that
∫ 1
0 dw(r) = w(1). �

Proof of Theorem 7.4: The assertions on T (α̂T − 1) follow directly from Lemma 7.3.

For ĉT , we have

√
T ĉT = T (1 − α̂T )

1√
T

ȳ−1 +
√

T

T − 1

T∑
t=2

εt

⇒ A

(
σ∗

∫ 1

0
w(r) dr

)
+ σ∗w(1). �

Proof of Theorem 7.5: First note that

σ̂2
T =

1
T − 2

T∑
t=2

ε2
t −

α̂T − 1
T − 2

T∑
t=2

yt−1εt
a.s.−→ σ2

ε ,

by Kolmogorov’s SLLN. When εt are i.i.d., σ2
ε is also the long-run variance σ2∗ . The t

statistic τ0 is thus

τ0 =
(
∑T

t=2 y2
t−1)/T

2)1/2 T (α̂T − 1)
σ̂T

⇒
1
2

[
w(1)2 − 1

]
[∫ 1

0 w(r)2 dr
]1/2

,

by Lemma 7.1(ii) and the second assertion of Theorem 7.2. Similarly, the weak limit of

τc follows from Lemma 7.3(i) and the second assertion of Theorem 7.4. �

Proof of Theorem 7.6: When {yt} is a general I(1) process, it follows from Lemma 7.1(ii)

and the first assertion of Theorem 7.2 that

τ0 =
(
∑T

t=2 y2
t−1)/T

2)1/2 T (α̂T − 1)
σ̂T

⇒ σ∗
σε

(
1
2

[
w(1)2 − σ2

ε /σ
2∗
]

(
∫ 1
0 w(r)2 dr)1/2

)
.
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The second assertion can be derived similarly. �

Proof of Corollary 7.7: The limits follow straightforwardly from Theorem 7.6. �

Proof of Theorem 7.8: For êt = yt − ȳ, T−1/2
∑[Tr]

i=1 êi ⇒ σ∗w0(r), as shown in the

text. As sTn is consistent for σ∗, the first assertion follows from the continuous mapping

theorem. The proof for the second assertion is left to Exercise 7.4. �

Proof of Theorem 7.9: The assertion (i) follows easily from the expression

β̂T =
∑T

t=1(xt − x̄)(yt − ȳ)/T 2∑T
t=1(xt − x̄)2/T 2

.

To prove (ii), we note that

T−1/2α̂T =
1

T 3/2

T∑
t=1

yt −
1

T 3/2
β̂T

T∑
t=1

xt

⇒ σy

∫ 1

0
wy(r) dr −

(
σymyx

σxmx

)(
σx

∫ 1

0
wx(r) dr

)
.

In Exercise 7.5, it is shown that the OLS variance estimator σ̂2
T diverges such that

σ̂2
T /T ⇒ σ2

y

(
my −

m2
yx

mx

)
.

It follows that

1√
T

tβ =
β̂T

[∑T
t=1(xt − x̄)2/T 2

]1/2

σ̂T /
√

T
⇒ myx/m

1/2
x

(my − m2
yx/mx)1/2

.

This proves (iii). For the assertion (iv), we have

1√
T

tα =
α̂T

σ̂T

√
T

[
T

∑T
t=1(xt − x̄)2∑T

t=1 x2
t

]1/2

⇒ m
1/2
x

[∫ 1
0 wy(r) dr − (myx/mx)

∫ 1
0 wx(r) dr

]
[
(my − m2

yx/mx)
∫ 1
0 wx(r)2 dr

]1/2
. �
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Exercises

7.1 For the specification (7.3), derive the weak limit of the t-ratio for c = 0.

7.2 Suppose that yt = co + yt−1 + εt with co 	= 0. Find the orders of
∑T

t=1 yt and∑T
t=1 y2

t and compare these ordier with those in Lemma 7.1.

7.3 Given the specification yt = c + αyt−1 + et, suppose that yt = co + yt−1 + εt with

co 	= 0 and εt i.i.d. Find the weak limit of T (α̂T − 1) and compare with the result

in Theorem 7.4.

7.4 Given yt = a0 + b0 t + εt, let êt = yt − âT − b̂T t denote the OLS residuals. Show

that

1
σ∗

√
T

[Tr]∑
t=1

êt ⇒ w(r) + (2r − 3r2)w(1) − (6r − 6r2)
∫ 1

0
w(s) ds, r ∈ (0, 1].

7.5 As in Section 7.4.1, consider the specification yt = α + βxt + et, where yt and xt

are two independent random walks. Let σ̂2
T =

∑T
t=1(yt − α̂T − β̂T xt)2/(T − 2)

denote the standard OLS variance estimator. Show that

σ̂2
T /T ⇒ σ2

y

(
my −

m2
yx

mx

)
.

7.6 As in Section 7.4.1, consider the specification yt = α + βxt + et, where yt and xt

are two independent random walks. Let d denote the Durbin-Watson statistic.

Granger and Newbold (1974) also observed that it is typical to have a small value

of d. Prove that

T d ⇒ (σ2
u/σ2

y) + (myx/mx)2(σ2
v/σ

2
x)

my − m2
yx/mx

,

and explain how this result is related to Granger and Newbold’s observation.
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