
Chapter 5

Elements of Probability Theory

The purpose of this chapter is to summarize some important concepts and results in

probability theory. Of particular interest to us are the limit theorems which are powerful

tools to analyze the convergence behaviors of econometric estimators and test statistics.

These properties are the core of the asymptotic analysis in subsequent chapters. For a

more complete and thorough treatment of probability theory see Davidson (1994) and

other probability textbooks, such as Ash (1972) and Billingsley (1979). Bierens (1994),

Gallant (1997) and White (2001) also provide concise coverages of the topics in this

chapter. Many results here are taken freely from the references cited above; we will not

refer to them again in the text unless it is necessary.

5.1 Probability Space and Random Variables

5.1.1 Probability Space

The probability space associated with a random experiment is determined by three

components: the outcome space Ω whose element ω is an outcome of the experiment,

a collection of events F whose elements are subsets of Ω, and a probability measure IP

assigned to the elements in F .

Given the subset A of Ω, its complement is defined as Ac = {ω ∈ Ω: ω �∈ A}. In the

probability space (Ω,F , IP), F is a σ-algebra (σ-field) in the sense that it satisfies the

following requirements.

1. Ω ∈ F .

2. If A ∈ F , then Ac ∈ F .

3. If A1, A2, . . . are in F , then ∪∞
n=1An ∈ F .
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112 CHAPTER 5. ELEMENTS OF PROBABILITY THEORY

The first and second properties together imply that Ωc = ∅ is also in F . Combining the

second and third properties we have from de Morgan’s law that( ∞⋃
n=1

An

)c

=
∞⋂

n=1

Ac
n ∈ F .

A σ-algebra is thus closed under complementation, countable union and countable in-

tersection.

The probability measure IP : F �→ [0, 1] is a real-valued set function satisfying the

following axioms.

1. IP(Ω) = 1.

2. IP(A) ≥ 0 for all A ∈ F .

3. if A1, A2, . . . ∈ F are disjoint, then IP(∪∞
n=1An) =

∑∞
n=1 IP(An).

From these axioms we easily deduce that IP(∅) = 0, IP(Ac) = 1− IP(A), IP(A) ≤ IP(B)

if A ⊆ B, and

IP(A ∪ B) = IP(A) + IP(B) − IP(A ∩ B).

Moreover, if {An} is an increasing (decreasing) sequence in F with the limiting set A,

then limn IP(An) = IP(A).

Let C be a collection of subsets of Ω. The intersection of all the σ-algebras that

contain C is the smallest σ-algebra containing C; see Exercise 5.1. This σ-algebra is

referred to as the σ-algebra generated by C, denoted as σ(C). When Ω = R, the Borel

field is the σ-algebra generated by all open intervals (a, b) in R, usually denoted as

Bd. Note that open intervals, closed intervals [a, b], half-open intervals (a, b] or half

lines (−∞, b] can be obtained from each other by taking complement, union and/or

intersection. For example,

(a, b] =
∞⋂

n=1

(
a, b +

1
n

)
, (a, b) =

∞⋃
n=1

(
a, b − 1

n

]
.

Thus, the collection of all closed intervals (half-open intervals, half lines) generates the

same Borel field. This is why open intervals, closed intervals, half-open intervals and

half lines are also known as Borel sets. The Borel field on R
d, denoted as Bd, is generated

by all open hypercubes:

(a1, b1) × (a2, b2) × · · · × (ad, bd).
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5.1. PROBABILITY SPACE AND RANDOM VARIABLES 113

Equivalently, Bd can be generated by all closed hypercubes:

[a1, b1] × [a2, b2] × · · · × [ad, bd],

or by

(−∞, b1] × (−∞, b2] × · · · × (−∞, bd].

The sets that generate the Borel field Bd are all Borel sets.

5.1.2 Random Variables

A random variable z defined on (Ω,F , IP) is a function z : Ω �→ R such that for every B

in the Borel field B, its inverse image of B is in F , i.e.,

z−1(B) = {ω : z(ω) ∈ B} ∈ F .

We also say that z is a F/B-measurable (or simply F-measurable) function. Non-

measurable functions are very exceptional in practice and hence are not of general

interest. Given the random outcome ω, the resulting value z(ω) is known as a realization

of z. The realization of z varies with ω and hence is governed by the random mechanism

of the underlying experiment.

A R
d-valued random variable (random vector) z defined on (Ω,F , IP) is a function

z : Ω �→ R
d such that for every B ∈ Bd,

z−1(B) = {ω : z(ω) ∈ B} ∈ F ;

that is, z is a F/Bd-measurable function. Given the random vector z, its inverse images

z−1(B) form a σ-algebra, denoted as σ(z). This σ-algebra must be in F , and it is the

smallest σ-algebra contained in F such that z is measurable. This is known as the

σ-algebra generated by z or, more intuitively, the information set associated with z.

A function g : R �→ R is said to be B-measurable or Borel measurable if

{ζ ∈ R : g(ζ) ≤ b} ∈ B.

If z is a random variable defined on (Ω,F , IP), then g(z) is also a random variable

defined on the same probability space provided that g is Borel measurable. Note that

the functions we usually encounter (e.g., continuous functions and integrable functions)

are Borel measurable. Similarly, for the d-dimensional random vector z, g(z) is a

random variable provided that g is Bd-measurable.
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114 CHAPTER 5. ELEMENTS OF PROBABILITY THEORY

Recall from Section 2.1 that the joint distribution function of z is the non-decreasing,

right-continuous function Fz such that for ζ = (ζ1 . . . ζd)
′ ∈ R

d,

Fz(ζ) = IP{ω ∈ Ω: z1(ω) ≤ ζ1, . . . , zd(ω) ≤ ζd},

with

lim
ζ1→−∞, ..., ζd→−∞

Fz(ζ) = 0, lim
ζ1→∞, ..., ζd→∞

Fz(ζ) = 1.

The marginal distribution function of the i th component of z is such that

Fzi
(ζi) = IP{ω ∈ Ω: zi(ω) ≤ ζi} = Fz(∞, . . . ,∞, ζi,∞, . . . ,∞).

Note that while IP is a set function defined on F , the distribution function of z is a

point function defined on R
d.

Two random variables y and z are said to be (pairwise) independent if, and only if,

for any Borel sets B1 and B2,

IP(y ∈ B1 and z ∈ B2) = IP(y ∈ B1) IP(z ∈ B2).

This immediately leads to the standard definition of independence: y and z are indepen-

dent if, and only if, their joint distribution is the product of their marginal distributions,

as in Section 2.1. A sequence of random variables {zi} is said to be totally independent

if

IP

(⋂
all i

{zi ∈ Bi}
)

=
∏
all i

IP(zi ∈ Bi),

for any Borel sets Bi. In what follows, a totally independent sequence will be referred

to an independent sequence or a sequence of independent variables for convenience. For

an independent sequence, we have the following generalization of Lemma 2.1.

Lemma 5.1 Let {zi} be a sequence of independent random variables and hi, i =

1, 2, . . ., be Borel-measurable functions. Then {hi(zi)} is also a sequence of indepen-

dent random variables.

5.1.3 Moments and Norms

The expectation of the i th element of z is

IE(zi) =
∫

Ω
zi(ω) d IP(ω),

c© Chung-Ming Kuan, 2004



5.1. PROBABILITY SPACE AND RANDOM VARIABLES 115

where the right-hand side is a Lebesgue integral. In view of the distribution function

defined above, a change of ω causes the realization of z to change so that

IE(zi) =
∫

Rd

ζi dFz(ζ) =
∫

R

ζi dFzi
(ζi),

where Fzi
is the marginal distribution function of the i th component of z, as defined in

Section 2.2. For the Borel measurable function g of z,

IE[g(z)] =
∫

Ω
g(z(ω)) d IP(ω) =

∫
Rd

g(ζ) dFz(ζ).

Other moments, such as variance and covariance, can also be defined as Lebesgue inte-

grals with respect to the probability measure; see Section 2.2.

A function g is said to be convex on a set S if for any a ∈ [0, 1] and any x, y in S,

g
(
ax + (1 − a)y

)
≤ ag(x) + (1 − a)g(y);

g is concave on S if the inequality above is reversed. For example, g(x) = x2 is convex,

and g(x) = log x for x > 0 is concave. The result below is concerned with convex

(concave) transformations of random variables.

Lemma 5.2 (Jensen) For the Borel measurable function g that is convex on the sup-

port of the integrable random variable z, suppose that g(z) is also integrable. Then,

g(IE(z)) ≤ IE[g(z)];

the inequality reverses if g is concave.

For the random variable z with finite p th moment, let ‖z‖p = [IE(zp)]1/p denote its

Lp-norm. Also define the inner product of two square integrable random variables zi

and zj as their cross moment:

〈zi, zj〉 = IE(zizj).

Then, L2-norm can be obtained from the inner product as ‖zi‖2 = 〈zi, zi〉1/2. It is easily

seen that for any c > 0 and p > 0,

cp IP(|z| ≥ c) = cp

∫
1{ζ:|ζ|≥c} dFz(ζ) ≤

∫
{ζ:|ζ|≥c}

|ζ|p dFz(ζ) ≤ IE |z|p,

where 1{ζ:|ζ|≥c} is the indicator function which equals one if |ζ| ≥ c and equals zero

otherwise. This establishes the following result.
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116 CHAPTER 5. ELEMENTS OF PROBABILITY THEORY

Lemma 5.3 (Markov) Let z be a random variable with finite p th moment. Then,

IP(|z| ≥ c) ≤ IE |z|p
cp

,

where c is a positive real number.

For p = 2, Lemma 5.3 is also known as the Chebyshev inequality. If c is small such that

IE |z|p/cp > 1, Markov’s inequality is trivial. When c becomes large, the probability

that z assumes very extreme values will be vanishing at the rate c−p.

Another useful result in probability theory is stated below without proof.

Lemma 5.4 (Hölder) Let y be a random variable with finite p th moment (p > 1) and

z a random variable with finite q th moment (q = p/(p − 1)). Then,

IE |yz| ≤ ‖y‖p ‖z‖q.

For p = 2, we have IE |yz| ≤ ‖y‖2 ‖z‖2. By noting that | IE(yz)| < IE |yz|, we immedi-

ately have the next result; cf. Lemma 2.3.

Lemma 5.5 (Cauchy-Schwartz) Let y and z be two square integrable random vari-

ables. Then,

| IE(yz)| ≤ ‖y‖2 ‖z‖2.

Let y = 1 and x = zp. Then for q > p and r = q/p, Hölder’s inequality also ensures

that

IE |zp| ≤ ‖x‖r ‖y‖r/(r−1) = [IE(zpr)]1/r = [IE(zq)]p/q.

This shows that when a random variable has finite q th moment, it must also have finite

p th moment for any p < q, as stated below.

Lemma 5.6 (Liapunov) Let z be a random variable with finite q th moment. Then

for p < q, ‖z‖p ≤ ‖z‖q.

The inequality below states that the Lp-norm of a finite sum is less than the sum of

individual Lp-norms.
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5.2. CONDITIONAL DISTRIBUTIONS AND MOMENTS 117

Lemma 5.7 (Minkowski) Let zi, i = 1, . . . , n, be random variables with finite p th

moment (p ≥ 1). Then,∥∥∥∥∥
n∑

i=1

zi

∥∥∥∥∥
p

≤
n∑

i=1

‖zi‖p.

When there are only two random variables in the sum, this is just the triangle inequality

for Lp-norms; see also Exercise 5.3.

5.2 Conditional Distributions and Moments

Given two events A and B in F , if it is known that B has occurred, the outcome space

is restricted to B, so that the outcomes of A must be in A ∩ B. The likelihood of A is

thus characterized by the conditional probability

IP(A | B) = IP(A ∩ B)/ IP(B),

for IP(B) �= 0. It can be shown that IP(·|B) satisfies the axioms for probability mea-

sures; see Exerise 5.4. This concept is readily extended to construct conditional density

function and conditional distribution function.

5.2.1 Conditional Distributions

Let y and z denote two integrable random vectors such that z has the density function

fz. For fy(η) �= 0, define the conditional density function of z given y = η as

fz|y(ζ | y = η) =
fz,y(ζ,η)

fy(η)
,

which is clearly non-negative whenever it is defined. This function also integrates to

one on R
d because∫

Rd

fz|y(ζ | y = η) dζ =
1

fy(η)

∫
Rd

fz,y(ζ,η) dζ =
1

fy(η)
fy(η) = 1.

Thus, fz|y is a legitimate density function. For example, the bivariate density function

of two random variables z and y forms a surface on the zy-plane. By fixing y = η,

we obtain a cross section (slice) under this surface. Dividing the joint density by the

marginal density fy(η) amounts to adjusting the height of this slice so that the resulting

area integrates to one.
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118 CHAPTER 5. ELEMENTS OF PROBABILITY THEORY

Given the conditional density function fz|y, we have for A ∈ Bd,

IP(z ∈ A | y = η) =
∫

A
fz|y(ζ | y = η) dζ.

Note that this conditional probability is defined even when IP(y = η) may be zero. In

particular, when

A = (−∞, ζ1] × · · · × (−∞, ζd],

we obtain the conditional distribution function:

Fz|y(ζ | y = η) = IP(z1 ≤ ζ1, . . . , zd ≤ ζd | y = η).

When z and y are independent, the conditional density (distribution) simply reduces

to the unconditional density (distribution).

5.2.2 Conditional Moments

Analogous to unconditional expectation, the conditional expectation of the integrable

random variable zi given the information y = η is

IE(zi | y = η) =
∫

R

ζi dFz|y(ζi | y = η);

the conditional expectation of the random vector z is IE(z | y = η) which is defined

elementwise. By allowing y to vary across all possible values η, we obtain the conditional

expectation function IE(z | y) whose value depends on η, the realization of y. Thus,

IE(z | y) is a function of y and hence also a random vector.

More generally, the conditional expectation can be defined by taking a suitable

σ-algebra as the conditioning set. Let G be a sub-σ-algebra of F . The conditional

expectation IE(z | G) is the integrable and G-measurable random variable satisfying∫
G

IE(z | G) d IP =
∫

G
z d IP, ∀G ∈ G.

This definition basically says that the conditional expectation with respect to G is such

that its weighted sum is the same as that of z over any G in G. Suppose that G is the

trivial σ-algebra {Ω, ∅}, i.e., the smallest σ-algebra that contains no extra information

from any random vectors. For the conditional expectation with respect to the trivial

σ-algebra, it is readily seen that it must be a constant c with probability one so as to

be measurable with respect to {Ω, ∅}. Then,

IE(z) =
∫

Ω
z d IP =

∫
Ω

c d IP = c.
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5.2. CONDITIONAL DISTRIBUTIONS AND MOMENTS 119

That is, the conditional expectation with respect to the trivial σ-algebra is the uncon-

ditional expectation IE(z). Consider now G = σ(y), the σ-algebra generated by y. We

also write

IE(z | y) = IE[z | σ(y)],

which is interpreted as the prediction of z given all the information associated with y.

Similar to unconditional expectations, conditional expectations are monotonic: if

z ≥ x with probability one, then IE(z | G) ≥ IE(x | G) with probability one; in particular,

if z is non-negative with probability one, then IE(z | G) ≥ 0 with probability one.

Moreover, If z is independent of y, then IE(z | y) = IE(z). For example, when z is

a constant vector c which is independent of any random variable, IE(z | y) = c. The

linearity result below is analogous to Lemma 2.2 for unconditional expectations.

Lemma 5.8 Let z (d × 1) and y (c × 1) be integrable random vectors and A (n × d)

and B (n × c) be non-stochastic matrices. Then with probability one,

IE(Az + By | G) = A IE(z | G) + B IE(y | G).

If b (n× 1) is a non-stochastic vector, IE(Az + b | G) = A IE(z | G) + b with probability

one.

From the definition of conditional expectation, we immediately have

IE[IE(z | G)] =
∫

Ω
IE(z | G) d IP =

∫
Ω

z d IP = IE(z);

this is known as the law of iterated expectations. This result also suggests that if

conditional expectations are taken sequentially with respect to a collection of nested

σ-algebras, only the smallest σ-algebra matters. For example, for k random vectors

y1, . . . ,yk,

IE[IE(z | y1, . . . ,yk) | y1, . . . ,yk−1] = IE(z | y1, . . . ,yk−1).

A formal result is stated below; see Exercise 5.5.

Lemma 5.9 (Law of Iterated Expectations) Let G and H be two sub-σ-algebras of

F such that G ⊆ H. Then for the integrable random vector z,

IE[IE(z | H) | G] = IE[IE(z | G) | H] = IE(z | G);

in particular, IE[IE(z | G)] = IE(z).
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120 CHAPTER 5. ELEMENTS OF PROBABILITY THEORY

If z is G-measurable, all the information resulted from z is already contained in G
so that z can be treated as “known” in IE(z | G) and taken out from the conditional

expectation. That is, IE(z | G) = z with probability one. Hence,

IE(zx′ | G) = z IE(x′ | G).

In particular, z can be taken out from the conditional expectation when z itself is a

conditioning variable. This result is generalized as follows.

Lemma 5.10 Let z be a G-measurable random vector. Then for any Borel-measurable

function g,

IE[g(z)x | G] = g(z) IE(x | G),

with probability one.

Two square integrable random variables z and y are said to be orthogonal if their

inner product IE(zy) = 0. This definition allows us to discuss orthogonal projection in

the space of square integrable random vectors. Let z be a square integrable random

variable and z̃ be a G-measurable random variable. Then, by Lemma 5.9 (law of iterated

expectations) and Lemma 5.10,

IE
[(

z − IE(z | G)
)
z̃
]

= IE
[
IE
[(

z − IE(z | G)
)
z̃ | G

]]
= IE

[
IE(z | G)z̃ − IE(z | G)z̃

]
= 0.

That is, the difference between z and its conditional expectation IE(z | G) must be

orthogonal to any G-measurable random variable. It can then be seen that for any

square integrable, G-measurable random variable z̃,

IE(z − z̃)2 = IE[z − IE(z | G) + IE(z | G) − z̃]2

= IE[z − IE(z | G)]2 + IE[IE(z | G) − z̃]2

≥ IE[z − IE(z | G)]2,

where in the second equality the cross-product term vanishes because both IE(z | G)

and z̃ are G-measurable and hence orthogonal to z − IE(z | G). That is, among all

G-measurable random variables that are also square integrable, IE(z | G) is the closest

to z in terms of the L2-norm. This shows that IE(z | G) is the orthogonal projection of

z onto the space of all G-measurable, square integrable random variables.
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5.2. CONDITIONAL DISTRIBUTIONS AND MOMENTS 121

Lemma 5.11 Let z be a square integrable random variable. Then

IE[z − IE(z | G)]2 ≤ IE(z − z̃)2,

for any G-measurable random variable z̃.

In particular, let G = σ(y), where y is a square integrable random vector. Lemma 5.11

implies that

IE
[
z − IE

(
z | σ(y)

)]2 ≤ IE
(
z − h(y)

)2
,

for any Borel-measurable function h such that h(y) is also square integrable. Thus,

IE[z | σ(y)] minimizes the L2-norm ‖z − h(y)‖2, and its difference from z is orthogonal

to any function of y that is also square integrable. We may then say that, given all the

information generated from y, IE[z | σ(y)] is the “best approximation” of z in terms of

the L2-norm (or simply the best L2 predictor).

The conditional variance-covariance matrix of z given y is

var(z | y) = IE
(
[z − IE(z | y)][z − IE(z | y)]′ | y

)
= IE(zz′ | y) − IE(z | y) IE(z | y)′.

Similar to unconditional variance-covariance matrix, we have for non-stochastic matrices

A and b,

var(Az + b | y) = A var(z | y)A′,

which is nonsingular provided that A has full row rank and var(z | y) is positive definite.

It can also be shown that

var(z) = IE[var(z | y)] + var
(
IE(z | y)

)
;

see Exercise 5.6. That is, the variance of z can be expressed as the sum of two com-

ponents: the mean of its conditional variance and the variance of its conditional mean.

This is also known as the decomposition of analysis of variance.

Example 5.12 Suppose that (y′ x′)′ is distributed as a multivariate normal random

vector:[
y

x

]
∼ N

([
μy

μx

]
,

[
Σy Σ′

xy

Σxy Σx

])
.
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122 CHAPTER 5. ELEMENTS OF PROBABILITY THEORY

It is easy to see that the conditional density function of y given x, obtained from

dividing the multivariate normal density function of y and x by the normal density of

x, is also normal with the conditional mean

IE(y | x) = μy − Σ′
xyΣ

−1
x (x − μx),

and the conditional variance-covariance matrix

var(y | x) = var(y) − var
(
IE(y | x)

)
= Σy − Σ′

xyΣ
−1
x Σxy.

Note that IE(y | x) is a linear function of x and that var(y | x) does not vary with x.

5.3 Modes of Convergence

Consider now a sequence of random variables {zn(ω)}n=1,2,... defined on the probability

space (Ω,F , IP). For a given ω, {zn} is a realization (a sequence of sample values) of

the random element ω with the index n, and that for a given n, zn is a random variable

which assumes different values depending on ω. In this section we will discuss various

modes of convergence for sequences of random variables.

5.3.1 Almost Sure Convergence

We first introduce the concept of almost sure convergence (convergence with probability

one). Suppose that {zn} is a sequence of random variables and z is a random variable,

all defined on the probability space (Ω,F , IP). The sequence {zn} is said to converge to

z almost surely if, and only if,

IP(ω : zn(ω) → z(ω) as n → ∞) = 1,

denoted as zn
a.s.−→ z or zn → z a.s. Note that for a given ω, the realization zn(ω) may

or may not converge to z(ω). Almost sure convergence requires that zn(ω) → z(ω) for

almost all ω ∈ Ω, except for those ω in a set with probability zero. That is, almost

all the realizations zn(ω) will be eventually close to z(ω) for all n sufficiently large; the

event that zn will not approach z is improbable. When zn and z are both R
d-valued,

almost sure convergence is defined elementwise. That is, zn → z a.s. if every element

of zn converges almost surely to the corresponding element of z.

The following result shows that continuous transformation preserves almost sure

convergence.

Lemma 5.13 Let g : R �→ R be a function continuous on Sg ⊆ R.
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5.3. MODES OF CONVERGENCE 123

[a] If zn
a.s.−→ z, where z is a random variable such that IP(z ∈ Sg) = 1, then g(zn) a.s.−→

g(z).

[b] If zn
a.s.−→ c, where c is a real number at which g is continuous, then g(zn) a.s.−→ g(c).

Proof: Let Ω0 = {ω : zn(ω) → z(ω)} and Ω1 = {ω : z(ω) ∈ Sg}. Thus, for ω ∈ (Ω0∩Ω1),

continuity of g ensures that g(zn(ω)) → g(z(ω)). Note that

(Ω0 ∩ Ω1)
c = Ωc

0 ∪ Ωc
1,

which has probability zero because IP(Ωc
0) = IP(Ωc

1) = 0. It follows that Ω0 ∩ Ω1 has

probability one. This proves that g(zn) → g(z) with probability one. The second

assertion is just a special case of the first result. �

Lemma 5.13 is easily generalized to R
d-valued random variables. For example,

zn
a.s.−→ z implies

z1,n + z2,n
a.s.−→ z1 + z2,

z1,nz2,n
a.s.−→ z1z2,

z2
1,n + z2

2,n
a.s.−→ z2

1 + z2
2 ,

where z1,n, z2,n are two elements of zn and z1, z2 are the corresponding elements of z.

Also, provided that z2 �= 0 with probability one, z1,n/z2,n → z1/z2 a.s.

5.3.2 Convergence in Probability

A convergence concept that is weaker than almost sure convergence is convergence in

probability. A sequence of random variables {zn} is said to converge to z in probability

if for every ε > 0,

lim
n→∞

IP(ω : |zn(ω) − z(ω)| > ε) = 0,

or equivalently,

lim
n→∞

IP(ω : |zn(ω) − z(ω)| ≤ ε) = 1,

denoted as zn
IP−→ z or zn → z in probability. We also say that z is the probability

limit of zn, denoted as plim zn = z. In particular, if the probability limit of zn is a

constant c, all the probability mass of zn will concentrate around c when n becomes
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124 CHAPTER 5. ELEMENTS OF PROBABILITY THEORY

large. For R
d-valued random variables zn and z, convergence in probability is also

defined elementwise.

In the definition of convergence in probability, the events Ωn(ε) = {ω : |zn(ω) −
z(ω)| ≤ ε} vary with n, and convergence is referred to the probabilities of such events:

pn = IP(Ωn(ε)), rather than the random variables zn. By contrast, almost sure con-

vergence is related directly to the behaviors of random variables. For convergence in

probability, the event Ωn that zn will be close to z becomes highly likely when n tends

to infinity, or its complement (zn will deviate from z by a certain distance) becomes

highly unlikely when n tends to infinity. Whether zn will converge to z is not of any

concern in convergence in probability.

More specifically, let Ω0 denote the set of ω such that zn(ω) converges to z(ω). For

ω ∈ Ω0, there is some m such that ω is in Ωn(ε) for all n > m. That is,

Ω0 ⊆
∞⋃

m=1

∞⋂
n=m

Ωn(ε) ∈ F .

As ∩∞
n=mΩn(ε) is also in F and non-decreasing in m, it follows that

IP(Ω0) ≤ IP

( ∞⋃
m=1

∞⋂
n=m

Ωn(ε)

)
= lim

m→∞
IP

( ∞⋂
n=m

Ωn(ε)

)
≤ lim

m→∞
IP
(
Ωm(ε)

)
.

This inequality proves that almost sure convergence implies convergence in probability,

but the converse is not true in general. We state this result below.

Lemma 5.14 If zn
a.s.−→ z, then zn

IP−→ z.

The following well-known example shows that when there is convergence in proba-

bility, the random variables themselves may not even converge for any ω.

Example 5.15 Let Ω = [0, 1] and IP be the Lebesgue measure (i.e., IP{(a, b]} = b − a

for (a, b] ⊆ [0, 1]). Consider the sequence {In} of intervals [0, 1], [0, 1/2), [1/2, 1], [0, 1/3),

[1/3, 2/3), [2/3, 1], . . . , and let zn = 1In
be the indicator function of In: zn(ω) = 1 if

ω ∈ In and zn = 0 otherwise. When n tends to infinity, In shrinks toward a singleton

which has the Lebesgue measure zero. For 0 < ε < 1, we then have

IP(|zn| > ε) = IP(In) → 0,

which shows zn
IP−→ 0. On the other hand, it is easy to see that each ω ∈ [0, 1] must

be covered by infinitely many intervals. Thus, given any ω ∈ [0, 1], zn(ω) = 1 for
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infinitely many n, and hence zn(ω) does not converge to zero. Note that convergence in

probability permits zn to deviate from the probability limit infinitely often, but almost

sure convergence does not, except for those ω in the set of probability zero. �

Intuitively, when zn has finite variance such that var(zn) vanishes asymptotically,

the distribution of zn would shrink toward its mean IE(zn). If, in addition, IE(zn)

tends to a constant c (or IE(zn) = c), then zn ought to be degenerate at c in the

limit. These observations suggest the following sufficient conditions for convergence in

probability; see Exercises 5.7 and 5.8. In many cases, it is easier to establish convergence

in probability by verifying these conditions.

Lemma 5.16 Let {zn} be a sequence of square integrable random variables. If IE(zn) →
c and var(zn) → 0, then zn

IP−→ c.

Analogous to Lemma 5.13, continuous functions also preserve convergence in prob-

ability.

Lemma 5.17 Let g : R �→ R be a function continuous on Sg ⊆ R.

[a] If zn
IP−→ z, where z is a random variable such that IP(z ∈ Sg) = 1, then g(zn) IP−→

g(z).

[b] (Slutsky) If zn
IP−→ c, where c is a real number at which g is continuous, then

g(zn) IP−→ g(c).

Proof: By the continuity of g, for each ε > 0, we can find a δ > 0 such that

{ω : |zn(ω) − z(ω)| ≤ δ} ∩ {ω : z(ω) ∈ Sg}

⊆ {ω : |g(zn(ω)) − g(z(ω))| ≤ ε}.

Taking complementation of both sides and noting that the complement of {ω : z(ω) ∈
Sg} has probability zero, we have

IP(|g(zn) − g(z)| > ε) ≤ IP(|zn − z| > δ).

As zn converges to z in probability, the right-hand side converges to zero and so does

the left-hand side. �
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Lemma 5.17 is readily generalized to R
d-valued random variables. For instance,

zn
IP−→ z implies

z1,n + z2,n
IP−→ z1 + z2,

z1,nz2,n
IP−→ z1z2,

z2
1,n + z2

2,n
IP−→ z2

1 + z2
2 ,

where z1,n, z2,n are two elements of zn and z1, z2 are the corresponding elements of z.

Also, provided that z2 �= 0 with probability one, z1,n/z2,n
IP−→ z1/z2.

5.3.3 Convergence in Distribution

Another convergence mode, known as convergence in distribution or convergence in law,

concerns the behavior of the distribution functions of random variables. Let Fzn
and Fz

be the distribution functions of zn and z, respectively. A sequence of random variables

{zn} is said to converge to z in distribution, denoted as zn
D−→ z, if

lim
n→∞

Fzn
(ζ) = Fz(ζ),

for every continuity point ζ of Fz . That is, regardless the distributions of zn, convergence

in distribution ensures that Fzn
will be arbitrarily close to Fz for all n sufficiently large.

The distribution Fz is thus known as the limiting distribution of zn. We also say that

zn is asymptotically distributed as Fz, denoted as zn
A∼ Fz .

For random vectors {zn} and z, zn
D−→ z if the joint distributions Fzn

converge

to Fz for every continuity point ζ of Fz. It is, however, more cumbersome to show

convergence in distribution for a sequence of random vectors. The so-called Cramér-

Wold device allows us to transform this multivariate convergence problem to a univariate

one. This result is stated below without proof.

Lemma 5.18 (Cramér-Wold Device) Let {zn} be a sequence of random vectors in

R
d. Then zn

D−→ z if and only if α′zn
D−→ α′z for every α ∈ R

d such that α′α = 1.

There is also a uni-directional relationship between convergence in probability and

convergence in distribution. To see this, note that for some arbitrary ε > 0 and a

continuity point ζ of Fz , we have

IP(zn ≤ ζ) = IP({zn ≤ ζ} ∩ {|zn − z| ≤ ε}) + IP({zn ≤ ζ} ∩ {|zn − z| > ε})

≤ IP(z ≤ ζ + ε) + IP(|zn − z| > ε).
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Similarly,

IP(z ≤ ζ − ε) ≤ IP(zn ≤ ζ) + IP(|zn − z| > ε).

If zn
IP−→ z, then by passing to the limit and noting that ε is arbitrary, the inequalities

above imply

lim
n→∞

IP(zn ≤ ζ) = IP(z ≤ ζ).

That is, Fzn
(ζ) → Fz(ζ). The converse is not true in general, however.

When zn converges in distribution to a real number c, it is not difficult to show

that zn also converges to c in probability. In this case, these two convergence modes

are equivalent. To be sure, note that a real number c can be viewed as a degenerate

random variable with the distribution function:

F (ζ) =

{
0, ζ < c,

1, ζ ≥ c,

which is a step function with a jump point at c. When zn
D−→ c, all the probability mass

of zn will concentrate at c as n becomes large; this is precisely what zn
IP−→ c means.

More formally, for any ε > 0,

IP(|zn − c| > ε) = 1 − [Fzn
(c + ε) − Fzn

((c − ε)−)],

where (c− ε)− denotes the point adjacent to and less than c− ε. Now, zn
D−→ c implies

that Fzn
(c + ε) − Fzn

((c − ε)−) converges to one, so that IP(|zn − c| > ε) converges to

zero. We summarizes these results below.

Lemma 5.19 If zn
IP−→ z, thenzn

D−→ z. For a constant c, zn
IP−→ c is equivalent to

zn
D−→ c.

The continuous mapping theorem below asserts that continuous functions preserve

convergence in distribution; cf. Lemmas 5.13 and 5.17.

Lemma 5.20 (Continuous Mapping Theorem) Let g : R �→ R be a function con-

tinuous almost everywhere on R, except for at most countably many points. If zn
D−→ z,

then g(zn) D−→ g(z).

For example, if zn converges in distribution to the standard normal random variable, the

limiting distribution of z2
n is χ2(1). Generalizing this result to R

d-valued random vari-

ables, we can see that when zn converges in distribution to the d-dimensional standard

normal random variable, the limiting distribution of z′
nzn is χ2(d).
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Two sequences of random variables {yn} and {zn} are said to be asymptotically

equivalent if their differences yn − zn converge to zero in probability. Intuitively, the

limiting distributions of two asymptotically equivalent sequences, if exist, ought to be

the same. This is stated in the next result without proof.

Lemma 5.21 Let {yn} and {zn} be two sequences of random vectors such that yn −
zn

IP−→ 0. If zn
D−→ z, then yn

D−→ z.

The next result is concerned with two sequences of random variables such that one

converges in distribution and the other converges in probability.

Lemma 5.22 If yn converges in probability to a constant c and zn converges in dis-

tribution to z, then yn + zn
D−→ c + z, ynzn

D−→ cz, and zn/yn
D−→ z/c if c �= 0.

5.4 Stochastic Order Notations

It is typical to use order notations to describe the behavior of a sequence of numbers,

whether it converges or not. Let {cn} denote a sequence of positive real numbers.

1. Given a sequence {bn}, we say that bn is (at most) of order cn, denoted as bn =

O(cn), if there exists a Δ < ∞ such that |bn|/cn ≤ Δ for all sufficiently large n.

When cn diverges, bn cannot diverge faster than cn; when cn converges to zero, the

rate of convergence of bn is no slower than that of cn. For example, the polynomial

a + bn is O(n), and the partial sum of a bounded sequence
∑n

i=1 bi is O(n). Note

that an O(1) sequence is a bounded sequence.

2. Given a sequence {bn}, we say that bn is of smaller order than cn, denoted as

bn = o(cn), if bn/cn → 0. When cn diverges, bn must diverge slower than cn; when

cn converges to zero, the rate of convergence of bn should be faster than that of cn.

For example, the polynomial a + bn is o(n1+δ) for any δ > 0, and the partial sum∑n
i=1 αi, |α| < 1, is o(n). Note that an o(1) sequence is a sequence that converges

to zero.

If bn is a vector (matrix), bn is said to be O(cn) (o(cn)) if every element of bn is O(cn)

(o(cn)). It is also easy to verify the following results; see Exercise 5.10.

Lemma 5.23 Let {an} and {bn} be two non-stochastic sequences.

c© Chung-Ming Kuan, 2004



5.5. LAW OF LARGE NUMBERS 129

(a) If an = O(nr) and bn = O(ns), then anbn = O(nr+s) and an + bn = O(nmax(r,s)).

(b) If an = o(nr) and bn = o(ns), then anbn = o(nr+s) and an + bn = o(nmax(r,s)).

(c) If an = O(nr) and bn = o(ns), then anbn = o(nr+s) and an + bn = O(nmax(r,s)).

The order notations can be easily extended to describe the behavior of sequences of

random variables. A sequence of random variables {zn} is said to be Oa.s.(cn) (or O(cn)

almost surely) if zn/cn is O(1) a.s., and it is said to be OIP(cn) (or O(cn) in probability)

if for every ε > 0, there is some Δ such that

IP(|zn|/cn ≥ Δ) ≤ ε,

for all n sufficiently large. Similarly, {zn} is oa.s.(cn) (or o(cn) almost surely) if zn/cn
a.s.−→

0, and it is oIP(cn) (or o(cn) in probability) if zn/cn
IP−→ 0.

If {zn} is Oa.s.(1) (oa.s(1)), we say that zn is bounded (vanishing) almost surely; if

{zn} is OIP(1) (oIP(1)), zn is bounded (vanishing) in probability. Note that Lemma 5.23

also holds for stochastic order notations. In particular, if a sequence of random variables

is bounded almost surely (in probability) and another sequence of random variables is

vanishing almost surely (in probability), the products of their corresponding elements

are vanishing almost surely (in probability). That is, yn = Oa.s.(1) and zn = oa.s(1),

then ynzn is oa.s(1).

When zn
D−→ z, we know that zn does not converge in probability to z in general,

but more can be said about the behavior of zn. Let ζ be a continuity point of Fz . Then

for any ε > 0, we can choose a sufficiently large ζ such that IP(|z| > ζ) < ε/2. As

zn
D−→ z, we can also choose n large enough such that

IP(|zn| > ζ) − IP(|z| > ζ) < ε/2,

which implies IP(|zn| > ζ) < ε. This leads to the following conclusion.

Lemma 5.24 Let {zn} be a sequence of random vectors such that zn
D−→ z. Then

zn = OIP(1).

5.5 Law of Large Numbers

We first discuss the law of large numbers which is concerned with the averaging be-

havior of random variables. Intuitively, a sequence of random variables obeys a law of
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large numbers when its sample average essentially follows its mean behavior; random

irregularities (deviations from the mean) are “wiped out” in the limit by averaging.

When a law of large numbers holds almost surely, it is a strong law of large numbers

(SLLN); when a law of large numbers holds in probability, it is a weak law of large

numbers (WLLN). For a sequence of random vectors (matrices), a SLLN (WLLN) is

defined elementwise.

There are different versions of the SLLN (WLLN) for various types of random vari-

ables. Below is a well known SLLN for i.i.d. random variables.

Lemma 5.25 (Kolmogorov) Let {zt} be a sequence of i.i.d. random variables with

mean μo. Then,

1
T

T∑
t=1

zt
a.s.−→ μo.

This result asserts that, when zt have a finite, common mean μo, the sample average of

zt is essentially close to μo, a non-stochastic number. Note, however, that i.i.d. random

variables need not obey Kolmogorov’s SLLN if they do not have a finite mean; for

instance, Lemma 5.25 does not apply to i.i.d. Cauchy random variables. As almost

sure convergence implies convergence in probability, the same condition in Lemma 5.25

ensures that {zt} also obeys a WLLN.

When {zt} is a sequence of independent random variables with possibly heteroge-

neous distributions, it may still obey a SLLN (WLLN) under a stronger condition.

Lemma 5.26 (Markov) Let {zt} be a sequence of independent random variables with

non-degenerate distributions such that for some δ > 0, IE |zt|1+δ is bounded for all t.

Then,

1
T

T∑
t=1

[zt − IE(zt)]
a.s.−→ 0,

Comparing to Kolmogorov’s SLLN, Lemma 5.26 requires a stronger moment condition:

bounded (1+δ) th moment, yet zt need not have a common mean. This SLLN indicates

that the sample average of zt eventually behaves like the average of IE(zt). Note that

the average of IE(zt) may or may not converge; if it does converge to, say, μ∗,

1
T

T∑
t=1

zt
a.s.−→ lim

T→∞
1
T

T∑
t=1

IE(zt) =: μ∗.
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Finally, as non-stochastic numbers can be viewed as independent random variables with

degenerate distributions, it is understood that a non-stochastic sequence obeys a SLLN

if its sample average converges.

The following example shows that a sequence of correlated random variables may

also obey a WLLN.

Example 5.27 Suppose that yt is generated as a weakly stationary AR(1) process:

yt = αoyt−1 + ut, |αo| < 1,

where ut are i.i.d. random variables with mean zero and variance σ2
u. In view of Sec-

tion 4.3, we have IE(yt) = 0, var(yt) = σ2
u/(1 − α2

o), and

cov(yt, yt−j) = αj
o

σ2
u

1 − α2
o

.

These results imply that IE(T−1
∑T

t=1 yt) = 0 and

var

(
T∑

t=1

yt

)
=

T∑
t=1

var(yt) + 2
T−1∑
τ=1

(T − τ) cov(yt, yt−τ )

≤
T∑

t=1

var(yt) + 2T
T−1∑
τ=1

| cov(yt, yt−τ )|

= O(T ).

The latter result shows that var
(
T−1

∑T
t=1 yt

)
= O(T−1) which converges to zero as T

approaches infinity. It follows from Lemma 5.16 that

1
T

T∑
t=1

yt
IP−→ 0;

that is, {yt} obeys a WLLN. It can be seen that a key condition in the proof above is

that the variance of
∑T

t=1 yt does not grow too rapidly (it is O(T )). The facts that yt

has a constant variance and that cov(yt, yt−j) goes to zero exponentially fast as j tends

to infinity are sufficient for this condition. This WLLN result is readily generalized to

weakly stationary AR(p) processes. �

The example above shows that it may be quite cumbersome to establish a WLLN

for weakly stationary processes. The lemma below gives a strong law for correlated

random variables and is convenient in practice; see Davidson (1994, p. 326) for a more

general result.
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Lemma 5.28 Let yt =
∑∞

i=0 πiut−i, where ut are i.i.d. random variables with mean

zero and variance σ2
u. If πi are absolutely summable, i.e.,

∑∞
i=−∞ |πi| < ∞, then

T−1
∑T

t=1 yt
a.s.−→ 0.

In Example 5.27, yt =
∑∞

i=0 αi
out−i with |αo| < 1, so that

∑∞
i=0 |αi

o| < ∞. Hence,

Lemma 5.28 ensures that the average of yt also converges to its mean (zero) almost

surely. If yt = zt − μo, then the average of zt converges to IE(zt) = μo almost surely.

Comparing to Example 5.27, Lemma 5.28 is quite general and applicable to any process

that can be expressed as an MA process with absolutely summable weights.

From Lemmas 5.25, 5.26 and 5.28 we can see that a SLLN (WLLN) does not always

hold. The random variables in a sequence must be “well behaved” (i.e., satisfying certain

regularity conditions) to ensure a SLLN (WLLN). In particular, the sufficient conditions

for a SLLN (WLLN) usually regulate the moments and dependence structure of random

variables. Intuitively, random variables without certain bounded moment may exhibit

aberrant behavior so that their random irregularities cannot be completely averaged

out. For random variables with strong correlations over time, the variation of their

partial sums may grow too rapidly and cannot be eliminated by simple averaging. More

generally, it is also possible for a sequence of weakly dependent and heterogeneously dis-

tributed random variables to obey a SLLN (WLLN). This usually requires even stronger

conditions on their moments and dependence structure. To avoid technicality, we will

not give a SLLN (WLLN) for such general sequences but refer to White (2001) and

Davidson (1994) for details. The following examples illustrate why a SLLN (WLLN)

may fail to hold.

Example 5.29 Consider the sequences {t} and {t2}, t = 1, 2, . . .. It is well known that

T∑
t=1

t = T (T + 1)/2,

T∑
t=1

t2 = T (T + 1)(2T + 1)/6.

Hence, T−1
∑T

t=1 t and T−1
∑T

t=1 t2 both diverge. Thus, these sequences do not obey a

SLLN. �

Example 5.30 Suppose that ut are i.i.d. random variables with mean zero and variance

σ2
u. Thus, T−1

∑T
t=1 ut

a.s.−→ 0 by Kolmogorv’s SLLN (Lemma 5.25). Consider now {tut}.
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This sequence does not have bounded (1 + δ) th moment because IE |tut|1+δ grows with

t and therefore does not obey Markov’s SLLN (Lemma 5.26). Moreover, note that

var

(
T∑

t=1

tut

)
=

T∑
t=1

t2 var(ut) = σ2
u

T (T + 1)(2T + 1)
6

.

By Exercise 5.11,
∑T

t=1 tut = OIP(T 3/2). It follows that T−1
∑T

t=1 tut = OIP(T 1/2)

which diverges in probability. This shows that the sequence {tut} does not obey a

WLLN either. �

Example 5.31 Suppose that yt is generated as a random walk:

yt = yt−1 + ut, t = 1, 2, . . . ,

with y0 = 0, where ut are i.i.d. random variables with mean zero and variance σ2
u.

Clearly,

yt =
t∑

i=1

ui,

which has mean zero and unbounded variance tσ2
u. For s < t, write

yt = ys +
t∑

i=s+1

ui = ys + vt−s,

where vt−s =
∑t

i=s+1 ui is independent of ys. We then have

cov(yt, ys) = IE(y2
s) = sσ2

u,

for t > s. Consequently,

var

(
T∑

t=1

yt

)
=

T∑
t=1

var(yt) + 2
T−1∑
τ=1

T∑
t=τ+1

cov(yt, yt−τ ).

It can be verified that the first term on the right-hand side is

T∑
t=1

var(yt) =
T∑

t=1

tσ2
u = O(T 2),

and that the second term is

2
T−1∑
τ=1

T∑
t=τ+1

cov(yt, yt−τ ) = 2
T−1∑
τ=1

T∑
t=τ+1

(t − τ)σ2
u = O(T 3).
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Thus, var(
∑T

t=1 yt) = O(T 3), so that
∑T

t=1 yt = OIP(T 3/2) by Exercise 5.11. This shows

that

1
T

T∑
t=1

yt = OIP(T 1/2),

which diverges in probability. This shows that when {yt} is a random walk, it does

not obey a WLLN. In this case, yt have unbounded variances and strong correlations

over time. Due to these correlations, the variation of the partial sum of yt grows much

too fast. (Recall that the variance of
∑T

t=1 yt is only O(T ) in Example 5.27.) The

conclusions above will not be altered when {ut} is a white noise or a weakly stationary

process. �

Example 5.32 Suppose that yt is generated as a random walk:

yt = yt−1 + ut, t = 1, 2, . . . ,

with y0 = 0, as in Example 5.31. Then, the sequence {yt−1ut} has mean zero and

var(yt−1ut) = IE(y2
t−1) IE(u2

t ) = (t − 1)σ4
u.

More interestingly, it can be seen that for s < t,

cov(yt−1ut, ys−1us) = IE(yt−1ys−1us) IE(ut) = 0.

We then have

var

(
T∑

t=1

yt−1ut

)
=

T∑
t=1

var(yt−1ut) =
T∑

t=1

(t − 1)σ4
u = O(T 2),

and
∑T

t=1 yt−1ut = OIP(T ). Note, however, that var(T−1
∑T

t=1 yt−1ut) converges to

σ4
u/2, rather than 0. Thus, T−1

∑T
t=1 yt−1ut cannot behave like a non-stochastic number

in the limit. This shows that {yt−1ut} does not obey a WLLN, even though its partial

sums are OIP(T ). �

In the asymptotic analysis of ecnometric estimators and test statistics, we usually

encounter functions of several random variables, e.g., the product of two random vari-

ables. In some cases, it is easy to find sufficient conditions ensuring a SLLN (WLLN)

for these functions. For example, suppose that zt = xtyt, where {xt} and {yt} are two

mutually independent sequences of independent random variables, each with bounded

(2 + δ) th moment. Then, zt are also independent random variables and have bounded
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(1 + δ) th moment by the Cauchy-Schwartz inequality. Lemma 5.26 then provides the

SLLN for {zt}. When {xt} and {yt} are two sequences of correlated (or weakly depen-

dent) random variables, it is more cumbersome to find suitable conditions on xt and yt

that ensure a SLLN (WLLN).

In what follows, a sequence of integrable random variables zt is said to obey a SLLN

if

1
T

T∑
t=1

[zt − IE(zt)]
a.s.−→ 0; (5.1)

it is said to obey a WLLN if the almost sure convergence above is replaced by conver-

gence in probability. When IE(zt) is a constant μo, (5.1) simplifies to

1
T

T∑
t=1

zt
a.s.−→ μo.

In our analysis, we may only invoke this generic SLLN (WLLN).

5.6 Uniform Law of Large Numbers

It is also common to deal with functions of random variables and model parameters. For

example, q(zt(ω); θ) is a random variable for a given parameter θ, and it is a function

of θ for a given ω. When θ is fixed, we may impose conditions on q and zt such that

{q(zt(ω); θ)} obeys a SLLN (WLLN), as discussed in Section 5.5. When θ assumes

values in the parameter space Θ, a SLLN (WLLN) that does not depend on θ is then

needed.

More specifically, suppose that {q(zt; θ)} obeys a SLLN for each θ ∈ Θ:

QT (ω; θ) =
1
T

T∑
t=1

q(zt(ω); θ) a.s.−→ Q(θ),

where Q(θ) is a non-stochastic function of θ. As this convergent behavior may depend

on θ, Ωc
0(θ) = {ω : QT (ω; θ) �→ Q(θ)} varies with θ. When Θ is an interval of R,

∪θ∈ΘΩc
0(θ) is an uncountable union of non-convergence sets and hence may not have

probability zero, even though each Ωc
0(θ) does. Thus, the event that QT (ω; θ) → Q(θ)

for all θ, i.e., ∩θ∈ΘΩ0(θ), may occur with probability less than one. In fact, the union

of all Ωc
0(θ) may not even be in F (only countable unions of the elements in F are

guaranteed to be in F). If so, we cannot conclude anything regarding the convergence

of QT (ω; θ). Worse still is when θ also depends on T , as in the case where θ is replaced
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by an estimator θ̃T . There may not exist a finite T ∗ such that QT (ω; θ̃T ) are arbitrarily

close to Q(ω; θ̃T ) for all T > T ∗.

These observations suggest that we should study convergence that is uniform on the

parameter space Θ. In particular, QT (ω; θ) converges to Q(θ) uniformly in θ almost

surely (in probability) if the largest possible difference:

sup
θ∈Θ

|QT (θ) − Q(θ)| → 0, a.s. (in probability).

In what follows we always assume that this supremum is a random variables for all

T . The example below, similar to Example 2.14 of Davidson (1994), illustrates the

difference between uniform and pointwise convergence.

Example 5.33 Let zt be i.i.d. random variables with zero mean and

qT (zt(ω); θ) = zt(ω) +

⎧⎪⎪⎨
⎪⎪⎩

Tθ, 0 ≤ θ ≤ 1
2T ,

1 − Tθ, 1
2T < θ ≤ 1

T ,

0, 1
T < θ < ∞.

Observe that for θ ≥ 1/T and θ = 0,

QT (ω; θ) =
1
T

T∑
t=1

qT (zt; θ) =
1
T

T∑
t=1

zt,

which converges to zero almost surely by Kolmogorov’s SLLN. Thus, for a given θ, we

can always choose T large enough such that QT (ω; θ) a.s.−→ 0, where 0 is the pointwise

limit. On the other hand, it can be seen that Θ = [0,∞) and

sup
θ∈Θ

|QT (ω; θ)| = |z̄T + 1/2| a.s.−→ 1/2,

so that the uniform limit is different from the pointwise limit. �

Let zTt denote the t th random variable in a sample of T variables. These random

variables are indexed by both T and t and form a triangular array. In this array, there

is only one random variable z11 when T = 1, there are two random variables z21 and

z22 when T = 2, there are three random variables z31, z32 and z33 when T = 3, and so

on. If this array does not depend on T , it is simply a sequence of random variables.

We now consider a triangular array of functions qTt(zt;θ), t = 1, 2, . . . , T , where zt are

integrable random vectors and θ is the parameter vector taking values in the parameter
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space Θ ∈ R
m. For notation simplicity, we will not explicitly write ω in the functions.

We say that {qTt(zt;θ)} obeys a strong uniform law of large numbers (SULLN) if

sup
θ∈Θ

1
T

T∑
t=1

[qTt(zt;θ) − IE(qTt(zt;θ))] a.s.−→ 0, (5.2)

cf. (5.1). Similarly, {qTt(zt;θ)} is said to obey a weak uniform law of large numbers

(WULLN) if the convergence condition above holds in probability. If qTt is R
m-valued

functions, the SULLN (WULLN) is defined elementwise.

We have seen that pointwise convergence alone does not imply uniform convergence.

An interesting question one would ask is: What are the additional conditions required

to guarantee uniform convergence? Let

QT (θ) =
1
T

T∑
t=1

[qTt(zt;θ) − IE(qTt(zt;θ))].

Suppose that QT satisfies the following Lipschitz-type continuity requirement: for θ

and θ† in Θ,

|QT (θ) − QT (θ†)| ≤ CT ‖θ − θ†‖ a.s.,

where ‖ · ‖ denotes the Euclidean norm, and CT is a random variable bounded almost

surely and does not depend on θ. Under this condition, QT (θ†) can be made arbitrarily

close to QT (θ), provided that θ† is sufficiently close to θ. Using the triangle inequality

and taking supremum over θ we have

sup
θ∈Θ

|QT (θ)| ≤ sup
θ∈Θ

|QT (θ) − QT (θ†)| + |QT (θ†)|.

Let Δ denote an almost sure bound of CT . Then given any ε > 0, choosing θ† such that

‖θ − θ†‖ < ε/(2Δ) implies

sup
θ∈Θ

|QT (θ) − QT (θ†)| ≤ CT

ε

2Δ
≤ ε

2
,

uniformly in T . Moreover, because QT (θ) converges to 0 almost surely for each θ in Θ,

|QT (θ†)| is also less than ε/2 for sufficiently large T . Consequently,

sup
θ∈Θ

|QT (θ)| ≤ ε,

for all T sufficiently large. As these results hold almost surely, we have a SULLN for

QT (θ); the conditions ensuring a WULLN are analogous.
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Lemma 5.34 Suppose that for each θ ∈ Θ, {qTt(zt;θ)} obeys a SLLN (WLLN) and

that for θ,θ† ∈ Θ,

|QT (θ) − QT (θ†)| ≤ CT ‖θ − θ†‖ a.s.,

where CT is a random variable bounded almost surely (in probability) and does not

depend on θ. Then, {qTt(zt;θ)} obeys a SULLN (WULLN).

Lemma 5.34 is quite convenient for establishing a SULLN (WULLN) because it

requires only two conditions. First, the random functions must obey a standard SLLN

(WLLN) for each θ in the parameter space. Second, the function qTt must satisfy a

Lipschitz-type continuity condition which amounts to requiring qTt to be sufficiently

“smooth” in the second argument. Note, however, that CT being bounded almost

surely may imply that the random variables in qTt are also bounded almost surely.

This requirement is much too restrictive in applications. Hence, a SULLN may not be

readily obtained from Lemma 5.34. On the other hand, a WULLN is practically more

plausible because the requirement that CT is OIP(1) is much weaker. For example, the

boundedness of IE |CT | is sufficient for CT being OIP(1) by Markov’s inequality. For more

specific conditions ensuring these requirements we refer to Gallant and White (1988)

and Bierens (1994).

5.7 Central Limit Theorem

The central limit theorem (CLT) is another important result in probability theory. When

a CLT holds, the distributions of suitably normalized averages of random variables

are close to the standard normal distribution in the limit, regardless of the original

distributions of these random variables. This is a very powerful result in applications

because, as far as the approximation of normalized sample averages is concerned, only

the standard normal distribution matters.

There are also different versions of CLT for various types of random variables. The

following CLT applies to i.i.d. random variables.

Lemma 5.35 (Lindeberg-Lévy) Let {zt} be a sequence of i.i.d. random variables

with mean μo and variance σ2
o > 0. Then,

√
T (z̄T − μo)

σo

D−→ N (0, 1).
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A sequence of i.i.d. random variables need not obey this CLT if they do not have a finite

variance, e.g., random variables with t(2) distribution. Comparing to Lemma 5.25, one

can immediately see that the Lindeberg-Lévy CLT requires a stronger condition (i.e.,

finite variance) than does Kolmogorov’s SLLN.

Remark: In this example, z̄T converges to μo in probability, and its variance σ2
o/T

vanishes when T tends to infinity. To prevent a degenerate distribution in the limit,

it is natural to consider the normalized average T 1/2(z̄T − μo), which has a constant

variance σ2
o for all T . This explains why the normalizing factor T 1/2 is needed. For

a normalizing factor T a with a < 1/2, the normalized average still converges to zero

because its variance vanishes in the limit. For a normalizing factor T a with a > 1/2, the

normalized average diverges. In both cases, the resulting normalized averages cannot

have a well-behaved, non-degenerate distribution in the limit. Thus, when {zt} obeys a

CLT, z̄T is said to converge to μo at the rate T−1/2.

Independent random variables may also have the effect of a CLT. Below is a a version

of Liapunov’s CLT for independent (but not necessarily identically distributed) random

variables.

Lemma 5.36 Let {zTt} be a triangular array of independent random variables with

mean μTt and variance σ2
Tt > 0 such that

σ̄2
T =

1
T

T∑
t=1

σ2
Tt → σ2

o > 0.

If for some δ > 0, IE |zTt|2+δ are bounded for all t, then
√

T (z̄T − μ̄T )
σo

D−→ N (0, 1).

Note that this result requires a stronger condition (bounded (2 + δ) th moment) than

does Markov’s SLLN, Lemma 5.26. Comparing to Lindeberg-Lévy’s CLT, Lemma 5.36

allows mean and variance to vary with t at the expense of a stronger moment condition.

The sufficient conditions for a CLT are similar to but usually stronger than those for

a WLLN. In particular, the random variables that obey a CLT have bounded moment

up to some higher order and are asymptotically independent with dependence vanishing

sufficiently fast. Moreover, every random variable must also be asymptotically negli-

gible, in the sense that no random variable is influential in affecting the partial sums.
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Although we will not specify the regularity conditions explicitly, we note that weakly

stationary AR and MA processes obey a CLT in general. A sequence of weakly depen-

dent and heterogeneously distributed random variables may also obey a CLT, depending

on its moment and dependence structure. The following examples show that a CLT may

not always hold.

Example 5.37 Suppose that {ut} is a sequence of independent random variables with

mean zero, variance σ2
u, and bounded (2 + δ) th moment. From Example 5.29, we know

var(
∑T

t=1 tut) is O(T 3), which implies that variance of T−1/2
∑T

t=1 tut is diverging at

the rate O(T 2). On the other hand, observe that

var

(
1

T 1/2

T∑
t=1

t

T
ut

)
=

T (T + 1)(2T + 1)
6T 3

σ2
u → σ2

u

3
.

It follows from Lemma 5.36 that
√

3
T 1/2σu

T∑
t=1

t

T
ut

D−→ N (0, 1).

These results show that {(t/T )ut} obeys a CLT, whereas {tut} does not. �

Example 5.38 Suppose that yt is generated as a random walk:

yt = yt−1 + ut, t = 1, 2, . . . ,

with y0 = 0, where ut are i.i.d. random variables with mean zero and variance σ2
u. From

Example 5.31 we have seen that yt have unbounded variances and strong correlations

over time. Hence, they do not obey a CLT. Example 5.32 also suggests that {yt−1ut}
does not obey a CLT. �

In many applications, we usually encounter an array of functions of random variables

and would like to know if it obeys a CLT. Let {zTt} denote a triangular array of

functions of random variables. Establishing a CLT may not be too difficult when {zTt}
is determined by sequences of independent random variables, but it is technically more

involved when {zTt} depends on sequences of correlated (or weakly dependent) random

variables. In what follows, the array of square integrable random variables zTt is said

to obey a CLT if

1
σo

√
T

T∑
t=1

[zTt − IE(zTt)] =
√

T (z̄T − μ̄T )
σo

D−→ N (0, 1), (5.3)
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where z̄T = T−1
∑T

t=1 zTt, μ̄T = IE(z̄T ), and

σ2
T = var

(
T−1/2

T∑
t=1

zTt

)
→ σ2

o > 0.

Note that this definition requires neither IE(zTt) nor var(zTt) to be a constant. If IE(zTt)

is the constant μo, (5.3) would read:
√

T (z̄T − μo)
σo

D−→ N (0, 1),

as we usually seen in other textbooks.

Consider an array of square integrable random vectors zTt in R
d. Let z̄T denote the

average of zTt, μ̄T = IE(z̄T ), and

ΣT = var

(
1√
T

T∑
t=1

zTt

)
→ Σo,

a positive definite matrix. Using the Cramér-Wold device (Lemma 5.18), {zTt} is said

to obey a multivariate CLT, in the sense that

Σ−1/2
o

1√
T

T∑
t=1

[zTt − IE(zTt)] = Σ−1/2
o

√
T (z̄T − μ̄T ) D−→ N (0, Id),

if {α′zTt} obeys a CLT, for any α ∈ R
d such that α′α = 1.

5.8 Functional Central Limit Theorem

In this section, we consider a generalization of the concept of random variables and

discuss the related limit theorem.

5.8.1 Stochastic Processes

Let T be a nonempty set of R and (Ω,F , IP) be the probability space on which the R
d-

valued random variables zt, t ∈ T , are defined. Also let (Rd)T denote the collection of

all R
d-valued functions on T , which is also a product space of copies of R

d. For example,

when d = 1 and T = {1, . . . , k}, a real function on T is just a k-tuple (z1, . . . , zk), i.e.,

(R){1,...,k} = R
k; when d = 1 and T is an interval, (R)T contains all real functions on

that interval. A d-dimensional stochastic process with the index set T is a measurable

mapping z : Ω �→ (Rd)T such that

z(ω) = {zt(ω), t ∈ T }.
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For each t ∈ T , zt(·) is a R
d-valued random variable; for each ω, z(ω) is a sample path

(realization) of z, which is a R
d-valued function on T . Therefore, a stochastic process

is understood as a collection of random variables or a random function on the index set.

The random sequence encountered in the preceding sections is just a stochastic process

whose index set is the set of integers.

In what follows, for the stochastic process z, we will write z(t, ·) or simply z(t) in

place of zt(·). Thus, z with a subscript (say, zn) denotes a process in a sequence of

stochastic processes. To signify the index set T , we may also write z as {z(t, ·), t ∈ T }.
The finite-dimensional distributions of {z(t, ·), t ∈ T } is

IP(zt1 ≤ a1, . . . ,ztn ≤ an) = Ft1,...,tn(a1, . . . ,an),

where {t1, . . . , tn} is any subset of T and ai ∈ R
d. A stochastic process is said to be

stationary if its finite-dimensional distributions are invariant under index displacement:

Ft1+s,...,tn+s(a1, . . . ,an) = Ft1,...,tn(a1, . . . ,an).

A stochastic process is said to be Gaussian if its finite-dimensional distributions are all

(multivariate) normal distributions.

The process {w(t), t ∈ [0,∞)} is the standard Wiener process (also known as the

standard Brownian motion) if it has continuous sample paths almost surely and satisfies

the following properties.

(i) IP
(
w(0) = 0

)
= 1.

(ii) For 0 ≤ t0 ≤ t1 ≤ · · · ≤ tk,

IP
(
w(ti) − w(ti−1) ∈ Bi, i ≤ k

)
=
∏

i≤k IP
(
w(ti) − w(ti−1) ∈ Bi

)
,

where Bi are Borel sets.

(iii) For 0 ≤ s < t, w(t) − w(s) is normally distributed with mean zero and variance

t − s.

By (i), this process must start from the origin with probability one. The second property

requires non-overlapping increments of w being independent. By the property (iii), every

increment of w is normally distributed with variance depending on the time difference;

in particular, w(t) is normally distributed with mean zero and variance t. This implies

that for r ≤ t,

cov
(
w(r), w(t)

)
= IE

[
w(r)

(
w(t) − w(r)

)]
+ IE

[
w(r)2

]
= r,
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where IE[w(r)(w(t) − w(r))] = 0 because of independent increments.

The d-dimensional, standard Wiener process w is the process consisting of d mutu-

ally independent, standard Wiener processes. Thus, w still starts from the origin with

probbability one, has independent increments, and

w(t) − w(s) ∼ N (0, (t − s) Id).

In view of the preceding paragraph, we have the following results for w.

Lemma 5.39 Let w be the d-dimensional, standard Wiener process.

(i) w(t) ∼ N (0, t Id).

(ii) cov(w(r), w(t)) = min(r, t) Id.

We also note that, although the sample paths of the Wiener process are a.s. con-

tinuous, they are highly irregular. To see this, define wc(t) = w(c2t)/c for c > 0. It

can be shown that wc is also a standard Wiener process (Exercise 5.13). Note that

wc(1/c) = w(c)/c, where w(c)/c is the slope of the chord between w(c) and w(0). If

we choose a c large enough such that w(c)/c > 1, then the slope of the chord between

wc(1/c) and wc(0) is

wc(1/c)
1/c

=
w(c)/c

1/c
= w(c) > c.

This shows that the sample path of wc has a large slope c and hence must experience

a large change on a very small interval (0, 1/c). In fact, it can be shown that almost

all the sample paths of w are nowhere differentiable; see e.g., Billingsley (1979, p. 450).

Intuitively, the difference quotient [w(t + h)−w(t)]/h is distributed as N (0, 1/|h|). As

its variance diverges to infinity when h tends to zero, the difference quotient can not

converge to a finite limit with a positive probability.

We may also construct different processes using the standard Wiener process. In

particular, the process w0 on [0, 1] with w0(t) = w(t)− tw(1) is known as the Brownian

bridge or the tied down Brownian motion. It is easily seen that w0(0) = w0(1) = 0 with

probability one so that the Brownian bridge starts from zero and must return to zero

at t = 1. Moreover, IE[w0(t)] = 0, and for r < t,

cov
(
w0(r), w0(t)

)
= cov

(
w(r) − rw(1), w(t) − tw(1)

)
= r(1 − t) Id;

in particular, var(w0(t)) = t(1 − t) Id which reaches the maximum at t = 1/2.

c© Chung-Ming Kuan, 2004



144 CHAPTER 5. ELEMENTS OF PROBABILITY THEORY

5.8.2 Weak Convergence

Let S be a metric space and S be the Borel σ-algebra generated by the open sets in S.

If for every bounded, continuous real function f on S we have∫
f(s) dIPn(s) →

∫
f(s) d IP(s),

where {IPn} and IP are probability measures on (S,S), we say that IPn converges weakly

to IP and write IPn ⇒ IP. For the random elements zn and z in S with the distributions

induced by IPn and IP, respectively, we say that {zn} converges in distribution to z, also

denoted as zn
D−→ z, if IPn ⇒ IP. Note that zn and z here may be random functions.

When zn and z are all R
d-valued random variables, IPn ⇒ IP reduces to the usual notion

of convergence in distribution, as in Section 5.3.3. When zn and z are d-dimensional

stochastic processes, zn
D−→ z implies that all the finite-dimensional distributions of zn

converge to the corresponding distributions of z. To distinguish between the convergence

in distribution of random variables and that of random functions, we shall, in what

follows, denote the latter as zn ⇒ z.

Let S and S′ be two metric spaces with respective Borel σ-algebras S and S ′. Also

let g : S �→ S′ be a measurable mapping. Then each probability measure IP on (S,S)

induces a unique probability measure IP∗ on (S′,S ′) via

IP∗(A′) = IP(g−1(A′)), A′ ∈ S ′.

If g is continuous almost everywhere on S, then for every bounded, continuous f on S′,

f ◦ g is also bounded and continuous on S. IPn ⇒ IP now implies that
∫

f ◦ g(s) dIPn(s) →
∫

f ◦ g(s) d IP(s),

which is equivalent to∫
f(a) dIP∗

n(a) →
∫

f(a) dIP∗(a).

This proves that IP∗
n ⇒ IP∗. This result is also known as the continuous mapping

theorem; cf. Lemma 5.20.

Lemma 5.40 (Continuous Mapping Theorem) Let g : R
d �→ R be a function con-

tinuous almost everywhere on R
d, except for at most countably many points. If zn ⇒ z,

then g(zn) ⇒ g(z).
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For example, when zn ⇒ z and h(z) = sup0≤t≤1 z(t),

sup
0≤t≤1

zn(t) ⇒ sup
0≤t≤1

z(t),

and when h(x) =
∫ 1
0 z(t) dt,

∫ 1

0
zn(t) dt ⇒

∫ 1

0
z(t) dt.

5.8.3 Functional Central Limit Theorem

A sequence of random variables {ζi} is said to obey a functional central limit theorem

(FCLT) if its normalized partial sums zn converge in distribution to the standard Wiener

process w, i.e., zn ⇒ w. The FCLT, also known as the invariance principle, ensures that

the limiting behavior of the normalized partial sums of ζi is governed by the standard

Wiener process, regardless of the original distributions of ζi.

To see how the FCLT works, we consider the i.i.d. sequence {ζi} with mean zero

and variance σ2. The partial sum of ζi is sn = ζ1 + · · · + ζn, and it can be normalized

as zn(i/n) = (σ
√

n)−1si. For t ∈ [(i − 1)/n, i/n), define the constant interpolations of

zn(i/n) as

zn(t) = zn((i − 1)/n) =
1

σ
√

n
s[nt],

where [nt] is the the largest integer less than or equal to nt, so that [nt] = i − 1. It

can be seen that the sample paths of zn are right continuous with left-hand limits,

i.e., zn(t+) = zn(t) and zn(t−) = limr↑t zn(r). Such sample paths are also known as

cadlag (an abreviation of the French “continue à droite, limite à gauche”) functions.

The interpolated process zn is thus a random element of D[0, 1], the space of all cadlag

functions. In view of the discussion of Section 5.8.2, we may study the weak convergence

property of {zn}.

We shall only discuss convergence of the finite-dimensional distributions of zn. First

note that, as n tends to infinity, we have from Lindeberg-Lévy’s CLT that

1
σ
√

n
s[nt] =

(
[nt]
n

)1/2 1
σ
√

[nt]
s[nt]

D−→
√

tN (0, 1),

which is just N (0, t), the distribution of w(t). That is, zn(t) D−→ w(t). For r < t, we

have

(zn(r), zn(t) − zn(r)) D−→
(
w(r), w(t) − w(r)

)
,
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from which we deduce that (zn(r), zn(t)) D−→ (w(r), w(t)). Proceeding along the same

line we can show that all the finite-dimensional distributions of zn converge to the

corresponding distributions of the standard Wiener process. Although merely proving

convergence of finite-dimensional distributions is not sufficient for zn ⇒ w, it should

help understanding the intuition of the FCLT. To arrive at zn ⇒ w, it is also required

the probability measures induced by zn being “well behaved;” we omit the details.

In view of the discussion above, we are now ready to state an FCLT for i.i.d. random

variables.

Lemma 5.41 (Donsker) Let ζt be i.i.d. random variables with mean μo and variance

σ2
o > 0 and zT be the stochastic process with

zT (r) =
1

σo

√
T

[Tr]∑
t=1

(ζt − μo), r ∈ [0, 1].

Then, zT ⇒ w as T → ∞.

We observe from Lemma 5.41 that, when r = 1,

zT (1) =

√
T
(
ζ̄T − μo

)
σo

D−→ N (0, 1),

where ζ̄T =
∑T

t=1 ζt/T . This is precisely the conclusion of Lemma 5.35 and shows that

Donsker’s FCLT can be viewed as a generalization of Lindeberg-Lévy’s CLT. The FCLT

below applies to independent random variables and is a generalization of Liapunov’s

CLT (Lemma 5.36); see White (2001).

Lemma 5.42 Let ζt be independent random variables with mean μt and variance σ2
t > 0

such that

σ̄2
T =

1
T

T∑
t=1

σ2
t → σ2

o > 0.

Also let zT be the stochastic process with

zT (r) =
1

σo

√
T

[Tr]∑
t=1

(
ζt − μt

)
, r ∈ [0, 1].

If for some δ > 0, IE |ζt|2+δ are bounded for all t, then zT ⇒ w as T → ∞.
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More generally, let ζt be (possibly dependent and heterogeneously distributed) ran-

dom variables with mean μt and variance σ2
t > 0. Define the long-run variance of ζt

as

σ2
∗ = lim

T→∞
var

(
1√
T

T∑
t=1

ζt

)
,

and assume σ2
∗ exists and is positive. We say that {ζt} obeys an FCLT if zT ⇒ w as

T → ∞, where zT is the stochastic process with

zT (r) =
1

σ∗
√

T

[Tr]∑
t=1

(
ζt − μt

)
, r ∈ [0, 1].

When ζt are independent random variables, cov(ζt, ζs) = 0 for all t �= s, so that σ2
∗ = σ2

o .

Then the generic FCLT above leads to the conclusion of Lemma 5.42.

Let ζt are d-dimensional random variables with mean μt and variance-covariance

matrices Σ2
t . Define the long-run variance-covariance matrix of ζt as

Σ∗ = lim
T→∞

1
T

IE

⎡
⎣
(

T∑
t=1

(ζt − μt)

)(
T∑

t=1

(ζt − μt)

)′⎤⎦ ,

and assume that Σ∗ exists and is positive definite. We say that {ζt} obeys a (multi-

variate) FCLT if zT ⇒ w as T → ∞, where zT is the d-dimensional stochastic process

with

zT (r) =
1√
T

Σ−1/2
∗

[Tr]∑
t=1

(
ζt − μt

)
, r ∈ [0, 1],

and w is the d-dimensional, standard Wiener process. Although no sufficient conditions

will be provided, we note that a FCLT may hold for weakly dependent and hetero-

geneously distributed data, provided that they satisfy some regularity conditions; see

Davidson (1994) and White (2001) for details.

Example 5.43 Suppose that yt is generated as a random walk:

yt = yt−1 + ut, t = 1, 2, . . . ,

with y0 = 0, where ut are i.i.d. random variables with mean zero and variance σ2
u. As

{ut} obeys Donsker’s FCLT and y[Tr] =
∑[Tr]

t=1 ut is a partial sum of ut, we have

1
T 3/2

T∑
t=1

yt = σu

T∑
t=1

∫ t/T

(t−1)/T

1√
Tσu

y[Tr] dr

⇒ σu

∫ 1

0
w(r) dr,
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where the right-hand side is a random variable. This result also verifies that
∑T

t=1 yt is

OIP(T 3/2), as stated in Example 5.31. Similarly,

1
T 2

T∑
t=1

y2
t ⇒ σ2

u

∫ 1

0
w(r)2 dr,

so that
∑T

t=1 y2
t is OIP(T 2). It is clear that these results remain valid, as long as ut obey

a FCLT (but need not be i.i.d. or independent). �

Exercises

5.1 Let C be a collection of subsets of Ω. Show that the intersection of all the σ-

algebras on Ω that contain C is the smallest σ-algebra containing C.

5.2 Let y and z be two independent, integrable random variables. Show that IE(yz) =

IE(y) IE(z).

5.3 Let x and y be two random variables with finite p th moment (p > 1). Prove the

following triangle inequality:

‖x + y‖p ≤ ‖x‖p + ‖y‖p.

Hint: Write IE |x + y|p = IE(|x + y||x + y|p−1) and apply Hölder’s inequality.

5.4 In the probability space (Ω,F , IP) suppose that we know the event B in F has

occurred. Show that the conditional probability IP(·|B) satisfies the axioms for

probability measures.

5.5 Prove the first assertion of Lemma 5.9.

5.6 Prove that for the square integrable random vectors z and y,

var(z) = IE[var(z | y)] + var(IE(z | y)).

5.7 A sequence of square integrable random variables {zn} is said to converge to a

random variable z in L2 (in quadratic mean) if

IE(zn − z)2 → 0.

Prove that L2 convergence implies convergence in probability.

Hint: Apply Chebychev’s inequality.
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5.8 Show that a sequence of square integrable random variables {zn} converges to a

constant c in L2 if and only if IE(zn) → c and var(zn) → 0.

5.9 Prove that zT
A∼ N (0, I) if, and only if, λ′zT

A∼ N (0, 1) for all λ′λ = 1.

5.10 Prove Lemma 5.23.

5.11 Suppose that IE(z2
n) = O(cn), where {cn} is a sequence of positive real numbers.

Show that zn = OIP(c1/2
n ).

5.12 Suppose that yt is generated as a Gaussian random walk:

yt = yt−1 + ut, t = 1, 2, . . . ,

with y0 = 0, where ut are i.i.d. normal random variables with mean zero and

variance σ2
u. Show that

∑T
t=1 y2

t is OIP(T 2).

5.13 Let w be a standard Wierner process and define wc as wc(t) = w(c2t)/c, where

c > 0. Show that wc is also a standard Wierner process.

5.14 Let w be a standard Wiener process and w0 a Brownian bridge. Suppose that

x(t) = w(t+r)−w(r) for a given r > 0 and y(t) = (1+ t)w0(t/(1+ t)), t ∈ [0,∞).

Show that both x and y are standard Wiener processes.

References

Ash, Robert B. (1972). Real Analysis and Probability, New York, NY: Academic Press.

Bierens, Herman J. (1994). Topics in Advanced Econometrics, New York, NY: Cam-

bridge University Press.

Billingsley, Patrick (1979). Probability and Measure, New York, NY: John Wiley and

Sons.

Davidson, James (1994). Stochastic Limit Theory, New York, NY: Oxford University

Press.

Gallant, A. Ronald (1997). An Introduction to Econometric Theory, Princeton, NJ:

Princeton University Press.

Gallant, A. Ronald and Halbert White (1988). A Unified Theory of Estimation and

Inference for Nonlinear Dynamic Models, Oxford, UK: Basil Blackwell.

c© Chung-Ming Kuan, 2004



150 CHAPTER 5. ELEMENTS OF PROBABILITY THEORY

White, Halbert (2001). Asymptotic Theory for Econometricians, revised edition, Or-

lando, FL: Academic Press.

c© Chung-Ming Kuan, 2004


