
Chapter 3

Classical Least Squares Theory

In the field of economics, numerous hypotheses and theories have been proposed in or-

der to describe the behavior of economic agents and the relationships between economic

variables. Although these propositions may be theoretically appealing and logically cor-

rect, they may not be practically relevant unless they are supported by real world data.

A theory with supporting empirical evidence is of course more convincing. Therefore,

empirical analysis has become an indispensable ingredient of contemporary economic

research. By econometrics we mean the collection of statistical and mathematical meth-

ods that utilize data to analyze the relationships between economic variables.

A leading approach in econometrics is the regression analysis. For this analysis one

must first specify a regression model that characterizes the relationship of economic

variables; the simplest and most commonly used specification is the linear model. The

linear regression analysis then involves estimating unknown parameters of this specifi-

cation, testing various economic and econometric hypotheses, and drawing inferences

from the testing results. This chapter is concerned with one of the most important

estimation methods in linear regression, namely, the method of ordinary least squares

(OLS). We will analyze the OLS estimators of parameters and their properties. Testing

methods based on the OLS estimation results will also be presented. We will not discuss

asymptotic properties of the OLS estimators until Chapter 6. Readers can find related

topics in other econometrics textbooks, e.g., Davidson and MacKinnon (1993), Gold-

berger (1991), Greene (2000), Harvey (1990), Intriligator et al. (1996), Johnston (1984),

Judge et al. (1988), Maddala (1992), Ruud (2000), and Theil (1971), among many oth-

ers.
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40 CHAPTER 3. CLASSICAL LEAST SQUARES THEORY

3.1 The Method of Ordinary Least Squares

Suppose that there is a variable, y, whose behavior over time (or across individual units)

is of interest to us. A theory may suggest that the behavior of y can be well characterized

by some function f of the variables x1, . . . , xk. Then, f(x1, . . . , xk) may be viewed as a

“systematic” component of y provided that no other variables can further account for

the behavior of the residual y − f(x1, . . . , xk). In the context of linear regression, the

function f is specified as a linear function. The unknown linear weights (parameters)

of the linear specification can then be determined using the OLS method.

3.1.1 Simple Linear Regression

In simple linear regression, only one variable x is designated to describe the behavior of

the variable y. The linear specification is

α + βx,

where α and β are unknown parameters. We can then write

y = α + βx + e(α, β),

where e(α, β) = y − α− βx denotes the error resulted from this specification. Different

parameter values result in different errors. In what follows, y will be referred to as

the dependent variable (regressand) and x an explanatory variable (regressor). Note

that both the regressand and regressor may be a function of some other variables. For

example, when x = z2,

y = α + βz2 + e(α, β).

This specification is not linear in the variable z but is linear in x (hence linear in

parameters). When y = log w and x = log z, we have

log w = α + β(log z) + e(α, β),

which is still linear in parameters. Such specifications can all be analyzed in the context

of linear regression.

Suppose that we have T observations of the variables y and x. Given the linear

specification above, our objective is to find suitable α and β such that the resulting

linear function “best” fits the data (yt, xt), t = 1, . . . , T . Here, the generic subscript t

is used for both cross-section and time-series data. The OLS method suggests to find
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3.1. THE METHOD OF ORDINARY LEAST SQUARES 41

a straight line whose sum of squared errors is as small as possible. This amounts to

finding α and β that minimize the following OLS criterion function:

Q(α, β) :=
1
T

T∑
t=1

et(α, β)2 =
1
T

T∑
t=1

(yt − α − βxt)
2.

The solutions can be easily obtained by solving the first order conditions of this mini-

mization problem.

The first order conditions are:

∂Q(α, β)
∂α

= − 2
T

T∑
t=1

(yt − α − βxt) = 0,

∂Q(α, β)
∂β

= − 2
T

T∑
t=1

(yt − α − βxt)xt = 0.

Solving for α and β we have the following solutions:

β̂T =
∑T

t=1(yt − ȳ)(xt − x̄)∑T
t=1(xt − x̄)2

,

α̂T = ȳ − β̂T x̄,

where ȳ =
∑T

t=1 yt/T and x̄ =
∑T

t=1 xt/T . As α̂T and β̂T are obtained by minimizing the

OLS criterion function, they are known as the OLS estimators of α and β, respectively.

The subscript T of α̂T and β̂T signifies that these solutions are obtained from a sample

of T observations. Note that if xt is a constant c for every t, then x̄ = c, and hence β̂T

cannot be computed.

The function ŷ = α̂T + β̂T x is the estimated regression line with the intercept α̂T

and slope β̂T . We also say that this line is obtained by regressing y on (the constant one

and) the regressor x. The regression line so computed gives the “best” fit of data, in

the sense that any other linear function of x would yield a larger sum of squared errors.

For a given xt, the OLS fitted value is a point on the regression line:

ŷt = α̂T + β̂T xt.

The difference between yt and ŷt is the t th OLS residual:

êt := yt − ŷt,

which corresponds to the error of the specification as

êt = et(α̂T , β̂T ).
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42 CHAPTER 3. CLASSICAL LEAST SQUARES THEORY

Note that regressing y on x and regressing x on y lead to different regression lines in

general, except when all (yt, xt) lie on the same line; see Exercise 3.9.

Remark: Different criterion functions would result in other estimators. For exam-

ple, the so-called least absolute deviation estimator can be obtained by minimizing the

average of the sum of absolute errors:

1
T

T∑
t=1

|yt − α − βxt|,

which in turn determines a different regression line. We refer to Manski (1991) for a

comprehensive discussion of this topic.

3.1.2 Multiple Linear Regression

More generally, we may specify a linear function with k explanatory variables to describe

the behavior of y:

β1x1 + β2x2 + · · · + βkxk,

so that

y = β1x1 + β2x2 + · · · + βkxk + e(β1, . . . , βk),

where e(β1, . . . , βk) again denotes the error of this specification. Given a sample of T

observations, this specification can also be expressed as

y = Xβ + e(β), (3.1)

where β = (β1 β2 · · · βk)′ is the vector of unknown parameters, y and X contain all

the observations of the dependent and explanatory variables, i.e.,

y =

⎡⎢⎢⎢⎢⎢⎣
y1

y2
...

yT

⎤⎥⎥⎥⎥⎥⎦ , X =

⎡⎢⎢⎢⎢⎢⎣
x11 x12 · · · x1k

x21 x22 · · · x2k
...

...
. . .

...

xT1 xT2 · · · xTk

⎤⎥⎥⎥⎥⎥⎦ ,

where each column of X contains T observations of an explanatory variable, and e(β)

is the vector of errors. It is typical to set the first explanatory variable as the constant

one so that the first column of X is the T × 1 vector of ones, �. For convenience, we

also write e(β) as e and its element et(β) as et.
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3.1. THE METHOD OF ORDINARY LEAST SQUARES 43

Our objective now is to find a k-dimensional regression hyperplane that “best” fits

the data (y,X). In the light of Section 3.1.1, we would like to minimize, with respect

to β, the average of the sum of squared errors:

Q(β) :=
1
T

e(β)′e(β) =
1
T

(y − Xβ)′(y − Xβ). (3.2)

This is a well-defined problem provided that the basic identification requirement below

holds for the specification (3.1).

[ID-1] The T × k data matrix X is of full column rank k.

Under [ID-1], the number of regressors, k, must be no greater than the number of

observations, T . This is so because if k > T , the rank of X must be less than or equal to

T , and hence X cannot have full column rank. Moreover, [ID-1] requires that any linear

specification does not contain any “redundant” regressor; that is, any column vector of

X cannot be written as a linear combination of other column vectors. For example, X

contains a column of ones and a column of xt in simple linear regression. These two

columns would be linearly dependent if xt = c for every t. Thus, [ID-1] requires that xt

in simple linear regression is not a constant.

The first order condition of the OLS minimization problem is

∇β Q(β) = ∇β (y′y − 2y′Xβ + β′X ′Xβ)/T = 0.

By the matrix differentiation results in Section 1.2, we have

∇β Q(β) = −2X ′(y − Xβ)/T = 0.

Equivalently, we can write

X ′Xβ = X ′y. (3.3)

These k equations, also known as the normal equations, contain exactly k unknowns.

Given [ID-1], X is of full column rank so that X ′X is positive definite and hence

invertible by Lemma 1.13. It follows that the unique solution to the first order condition

is

β̂T = (X ′X)−1X ′y. (3.4)

Moreover, the second order condition is also satisfied because

∇2
β Q(β) = 2(X ′X)/T

is a positive definite matrix under [ID-1]. Thus, β̂T is the unique minimizer of the OLS

criterion function and hence known as the OLS estimator of β. This result is formally

stated below.
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44 CHAPTER 3. CLASSICAL LEAST SQUARES THEORY

Theorem 3.1 Given the specification (3.1), suppose that [ID-1] holds. Then, the OLS

estimator β̂T given by (3.4) uniquely minimizes the OLS criterion function (3.2).

If X is not of full column rank, its column vectors are linearly dependent and there-

fore satisfy an exact linear relationship. This is the problem of exact multicollinearity.

In this case, X ′X is not invertible so that there exist infinitely many solutions to the

normal equations X ′Xβ = X ′y. As such, the OLS estimator β̂T cannot be uniquely

determined. See Exercise 3.4 for a geometric interpretation of this result. Exact mul-

ticollinearity usually arises from inappropriate model specifications. For example, in-

cluding both total income, total wage income, and total non-wage income as regressors

results in exact multicollinearity because total income is, by definition, the sum of wage

and non-wage income; see also Section 3.5.2 for another example. In what follows, the

identification requirement for the linear specification (3.1) is always assumed.

Remarks:

1. Theorem 3.1 does not depend on the “true” relationship between y and X. Thus,

whether (3.1) agrees with true relationship between y and X is irrelevant to the

existence and uniqueness of the OLS estimator.

2. It is easy to verify that the magnitudes of the coefficient estimates β̂i, i = 1, . . . , k,

are affected by the measurement units of dependent and explanatory variables; see

Exercise 3.7. As such, a larger coefficient estimate does not necessarily imply that

the associated regressor is more important in explaining the behavior of y. In fact,

the coefficient estimates are not directly comparable in general; cf. Exercise 3.5.

Once the OLS estimator β̂T is obtained, we can plug it into the original linear

specification and obtain the vector of OLS fitted values:

ŷ = Xβ̂T .

The vector of OLS residuals is then

ê = y − ŷ = e(β̂T ).

From the normal equations (3.3) we can deduce the following algebraic results. First,

the OLS residual vector must satisfy the normal equations:

X ′(y − Xβ̂T ) = X ′e = 0,
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3.1. THE METHOD OF ORDINARY LEAST SQUARES 45

so that X ′ê = 0. When X contains a column of constants (i.e., a column of X is

proportional to �, the vector of ones), X ′ê = 0 implies

�′ê =
T∑

t=1

êt = 0.

That is, the sum of OLS residuals must be zero. Second,

ŷ′ê = β̂
′
T X ′ê = 0.

These results are summarized below.

Theorem 3.2 Given the specification (3.1), suppose that [ID-1] holds. Then, the vector

of OLS fitted values ŷ and the vector of OLS residuals ê have the following properties.

(a) X ′ê = 0; in particular, if X contains a column of constants,
∑T

t=1 êt = 0.

(b) ŷ′ê = 0.

Note that when �′ê = �′(y − ŷ) = 0, we have

1
T

T∑
t=1

yt =
1
T

T∑
t=1

ŷt.

That is, the sample average of the data yt is the same as the sample average of the fitted

values ŷt when X contains a column of constants.

3.1.3 Geometric Interpretations

The OLS estimation result has nice geometric interpretations. These interpretations

have nothing to do with the stochastic properties to be discussed in Section 3.2, and

they are valid as long as the OLS estimator exists.

In what follows, we write P = X(X ′X)−1X ′ which is an orthogonal projection

matrix that projects vectors onto span(X) by Lemma 1.14. The vector of OLS fitted

values can be written as

ŷ = X(X ′X)−1X ′y = Py.

Hence, ŷ is the orthogonal projection of y onto span(X). The OLS residual vector is

ê = y − ŷ = (IT − P )y,
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46 CHAPTER 3. CLASSICAL LEAST SQUARES THEORY

y

ê = (I − P )y

x1

x2

x1β̂1

x2β̂2
Py = x1β̂1 + x2β̂2

Figure 3.1: The orthogonal projection of y onto span(x1,x2)

which is the orthogonal projection of y onto span(X)⊥ and hence is orthogonal to ŷ

and X; cf. Theorem 3.2. Consequently, ŷ is the “best approximation” of y, given the

information contained in X, as shown in Lemma 1.10. Figure 3.1 illustrates a simple

case where there are only two explanatory variables in the specification.

The following results are useful in many applications.

Theorem 3.3 (Frisch-Waugh-Lovell) Given the specification

y = X1β1 + X2β2 + e,

where X1 is of full column rank k1 and X2 is of full column rank k2, let β̂T =

(β̂
′
1,T β̂

′
2,T )′ denote the corresponding OLS estimators. Then,

β̂1,T = [X ′
1(I − P 2)X1]

−1X ′
1(I − P 2)y,

β̂2,T = [X ′
2(I − P 1)X2]

−1X ′
2(I − P 1)y,

where P 1 = X1(X
′
1X1)−1X ′

1 and P 2 = X2(X
′
2X2)−1X ′

2.

Proof: These results can be directly verified from (3.4) using the matrix inversion

formula in Section 1.4. Alternatively, write

y = X1β̂1,T + X2β̂2,T + (I − P )y,

c© Chung-Ming Kuan, 2004



3.1. THE METHOD OF ORDINARY LEAST SQUARES 47

where P = X(X ′X)−1X ′ with X = [X1 X2]. Pre-multiplying both sides by X ′
1(I −

P 2), we have

X ′
1(I − P 2)y

= X ′
1(I − P 2)X1β̂1,T + X ′

1(I − P 2)X2β̂2,T + X ′
1(I − P 2)(I − P )y.

The second term on the right-hand side vanishes because (I − P 2)X2 = 0. For the

third term, we know span(X2) ⊆ span(X), so that span(X)⊥ ⊆ span(X2)
⊥. As each

column vector of I − P is in span(X)⊥, I − P is not affected if it is projected onto

span(X2)⊥. That is,

(I − P 2)(I − P ) = I − P .

Similarly, X1 is in span(X), and hence (I − P )X1 = 0. It follows that

X ′
1(I − P 2)y = X ′

1(I − P 2)X1β̂1,T ,

from which we obtain the expression for β̂1,T . The proof for β̂2,T is similar. �

Theorem 3.3 shows that β̂1,T can be computed from regressing (I − P 2)y on (I −
P 2)X1, where (I − P 2)y and (I − P 2)X1 are the residual vectors of the “purging”

regressions of y on X2 and X1 on X2, respectively. Similarly, β̂2,T can be obtained by

regressing (I −P 1)y on (I −P 1)X2, where (I −P 1)y and (I −P 1)X2 are the residual

vectors of the regressions of y on X1 and X2 on X1, respectively.

From Theorem 3.3 we can deduce the following results. Consider the regression of

(I − P 1)y on (I − P 1)X2. By Theorem 3.3 we have

(I − P 1)y = (I − P 1)X2β̂2,T + residual vector, (3.5)

where the residual vector is

(I − P 1)(I − P )y = (I − P )y.

Thus, the residual vector of (3.5) is identical to the residual vector of regressing y on

X = [X1 X2]. Note that (I − P 1)(I − P ) = I − P implies P 1 = P 1P . That is, the

orthogonal projection of y directly on span(X1) is equivalent to performing iterated

projections of y on span(X) and then on span(X1). The orthogonal projection part of

(3.5) now can be expressed as

(I − P 1)X2β̂2,T = (I − P 1)P y = (P − P 1)y.
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48 CHAPTER 3. CLASSICAL LEAST SQUARES THEORY

y

ê = (I − P )y

x1

x2

P y

P 1y

(P − P 1)y

(I − P 1)y

Figure 3.2: An illustration of the Frisch-Waugh-Lovell Theorem

These relationships are illustrated in Figure 3.2. Similarly, we have

(I − P 2)y = (I − P 2)X1β̂1,T + residual vector,

where the residual vector is also (I − P )y, and the orthogonal projection part of this

regression is (P − P 2)y. See also Davidson and MacKinnon (1993) for more details.

Intuitively, Theorem 3.3 suggests that β̂1,T in effect describes how X1 characterizes

y, after the effect of X2 is excluded. Thus, β̂1,T is different from the OLS estimator of

regressing y on X1 because the effect of X2 is not controlled in the latter. These two

estimators would be the same if P 2X1 = 0, i.e., X1 is orthogonal to X2. Also, β̂2,T

describes how X2 characterizes y, after the effect of X1 is excluded, and it is different

from the OLS estimator from regressing y on X2, unless X1 and X2 are orthogonal to

each other.

As an application, consider the specification with X = [X1 X2], where X1 con-

tains the constant term and a time trend variable t, and X2 includes the other k − 2

explanatory variables. This specification is useful when the variables of interest exhibit

a trending behavior. Then, the OLS estimators of the coefficients of X2 are the same

as those obtained from regressing (detrended) y on detrended X2, where detrended y

and X2 are the residuals of regressing y and X2 on X1, respectively. See Section 3.5.2

and Exercise 3.11 for other applications.
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3.1. THE METHOD OF ORDINARY LEAST SQUARES 49

3.1.4 Measures of Goodness of Fit

We have learned that from previous sections that, when the explanatory variables in a

linear specification are given, the OLS method yields the best fit of data. In practice,

one may consdier a linear specfication with different sets of regressors and try to choose

a particular one from them. It is therefore of interest to compare the performance across

different specifications. In this section we discuss how to measure the goodness of fit of

a specification. A natural goodness-of-fit measure is of course the sum of squared errors

ê′ê. Unfortunately, this measure is not invariant with respect to measurement units of

the dependent variable and hence is not appropriate for model comparison. Instead, we

consider the following “relative” measures of goodness of fit.

Recall from Theorem 3.2(b) that ŷ′ê = 0. Then,

y′y = ŷ′ŷ + ê′ê + 2ŷ′ê = ŷ′ŷ + ê′ê.

This equation can be written in terms of sum of squares:

T∑
t=1

y2
t︸ ︷︷ ︸

TSS

=
T∑

t=1

ŷ2
t︸ ︷︷ ︸

RSS

+
T∑

t=1

ê2
t︸ ︷︷ ︸

ESS

,

where TSS stands for total sum of squares and is a measure of total squared variations of

yt, RSS stands for regression sum of squares and is a measures of squared variations of

fitted values, and ESS stands for error sum of squares and is a measure of squared vari-

ation of residuals. The non-centered coefficient of determination (or non-centered R2)

is defined as the proportion of TSS that can be explained by the regression hyperplane:

R2 =
RSS
TSS

= 1 − ESS
TSS

. (3.6)

Clearly, 0 ≤ R2 ≤ 1, and the larger the R2, the better the model fits the data. In

particular, a model has a perfect fit if R2 = 1, and it does not account for any variation

of y if R2 = 0. It is also easy to verify that this measure does not depend on the

measurement units of the dependent and explanatory variables; see Exercise 3.7.

As ŷ′ŷ = ŷ′y, we can also write

R2 =
ŷ′ŷ
y′y

=
(ŷ′y)2

(y′y)(ŷ′ŷ)
.

It follows from the discussion of inner product and Euclidean norm in Section 1.2 that

the right-hand side is just cos2 θ, where θ is the angle between y and ŷ. Thus, R2 can be
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50 CHAPTER 3. CLASSICAL LEAST SQUARES THEORY

interpreted as a measure of the linear association between these two vectors. A perfect

fit is equivalent to the fact that y and ŷ are collinear, so that y must be in span(X).

When R2 = 0, y is orthogonal to ŷ so that y is in span(X)⊥.

It can be verified that when a constant is added to all observations of the depen-

dent variable, the resulting coefficient of determination also changes. This is clearly a

drawback because a sensible measure of fit should not be affected by the location of the

dependent variable. Another drawback of the coefficient of determination is that it is

non-decreasing in the number of variables in the specification. That is, adding more

variables to a linear specification will not reduce its R2. To see this, consider a specifi-

cation with k1 regressors and a more complex one containing the same k1 regressors and

additional k2 regressors. In this case, the former specification is “nested” in the latter,

in the sense that the former can be obtained from the latter by setting the coefficients

of those additional regressors to zero. Since the OLS method searches for the best fit of

data without any constraint, the more complex model cannot have a worse fit than the

specifications nested in it. See also Exercise 3.8.

A measure that is invariant with respect to constant addition is the centered co-

efficient of determination (or centered R2). When a specification contains a constant

term,

T∑
t=1

(yt − ȳ)2︸ ︷︷ ︸
Centered TSS

=
T∑

t=1

(ŷt − ¯̂y)2︸ ︷︷ ︸
Centered RSS

+
T∑

t=1

ê2
t︸ ︷︷ ︸

ESS

,

where ¯̂y = ȳ =
∑T

t=1 yt/T . Analogous to (3.6), the centered R2 is defined as

Centered R2 =
Centered RSS
Centered TSS

= 1 − ESS
Centered TSS

. (3.7)

Centered R2 also takes on values between 0 and 1 and is non-decreasing in the number

of variables in the specification. In contrast with non-centered R2, this measure excludes

the effect of the constant term and hence is invariant with respect to constant addition.

When a specfication contains a constant term, we have

T∑
t=1

(yt − ȳ)(ŷt − ȳ) =
T∑

t=1

(ŷt − ȳ + êt)(ŷt − ȳ) =
T∑

t=1

(ŷt − ȳ)2,

because
∑T

t=1 ŷtêt =
∑t

t=1 êt = 0 by Theorem 3.2. It follows that

R2 =
∑T

t=1(ŷt − ȳ)2∑T
t=1(yt − ȳ)2

=
[
∑T

t=1(yt − ȳ)(ŷt − ȳ)]2

[
∑T

t=1(yt − ȳ)2][
∑T

t=1(ŷt − ȳ)2]
.
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3.2. STATISTICAL PROPERTIES OF THE OLS ESTIMATORS 51

That is, the centered R2 is also the squared sample correlation coefficient of yt and ŷt,

also known as the squared multiple correlation coefficient. If a specification does not

contain a constant term, the centered R2 may be negative; see Exercise 3.10.

Both centered and non-centered R2 are still non-decreasing in the number of regres-

sors. This property implies that a more complex model would be preferred if R2 is the

only criterion for choosing a specification. A modified measure is the adjusted R2, R̄2,

which is the centered R2 adjusted for the degrees of freedom:

R̄2 = 1 − ê′ê/(T − k)
(y′y − T ȳ2)/(T − 1)

.

This measure can also be expressed in different forms:

R̄2 = 1 − T − 1
T − k

(1 − R2) = R2 − k − 1
T − k

(1 − R2).

That is, R̄2 is the centered R2 with a penalty term depending on model complexity

and explanatory ability. Observe that when k increases, (k − 1)/(T − k) increases but

1 − R2 decreases. Whether the penalty term is larger or smaller depends on the trade-

off between these two terms. Thus, R̄2 need not be increasing with the number of

explanatory variables. Clearly, R̄2 < R2 except for k = 1 or R2 = 1. It can also be

verified that R̄2 < 0 when R2 < (k − 1)/(T − 1).

Remark: As different dependent variables have different TSS, the associated speci-

fications are therefore not comparable in terms of their R2. For example, R2 of the

specifications with y and log y as dependent variables are not comparable.

3.2 Statistical Properties of the OLS Estimators

Readers should have noticed that the previous results, which are either algebraic or

geometric, hold regardless of the random nature of data. To derive the statistical

properties of the OLS estimator, some probabilistic conditions must be imposed.

3.2.1 Classical Conditions

The following conditions on data are usually known as the classical conditions.

[A1] X is non-stochastic.

[A2] y is a random vector such that

(i) IE(y) = Xβo for some βo;
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52 CHAPTER 3. CLASSICAL LEAST SQUARES THEORY

(ii) var(y) = σ2
oIT for some σ2

o > 0.

[A3] y is a random vector such that y ∼ N (Xβo, σ
2
oIT ) for some βo and σ2

o > 0.

Condition [A1] is not crucial, but, as we will see below, it is quite convenient for

subsequent analysis. Concerning [A2](i), we first note that IE(y) is the “averaging”

behavior of y and may be interpreted as a systematic component of y. [A2](i) is thus

a condition ensuring that the postulated linear function Xβ is a specification of this

systematic component, correct up to unknown parameters. Condition [A2](ii) regulates

that the variance-covariance matrix of y depends only on one parameter σ2
o ; such a

matrix is also known as a scalar covariance matrix. Under [A2](ii), yt, t = 1, . . . , T ,

have the constant variance σ2
o and are pairwise uncorrelated (but not necessarily inde-

pendent). Although conditions [A2] and [A3] impose the same structures on the mean

and variance of y, the latter is much stronger because it also specifies the distribution

of y. We have seen in Section 2.3 that uncorrelated normal random variables are also

independent. Therefore, yt, t = 1, . . . , T , are i.i.d. (independently and identically dis-

tributed) normal random variables under [A3]. The linear specification (3.1) with [A1]

and [A2] is known as the classical linear model, and (3.1) with [A1] and [A3] is also

known as the classical normal linear model. The limitations of these conditions will be

discussed in Section 3.6.

In addition to β̂T , the new unknown parameter var(yt) = σ2
o in [A2](ii) and [A3]

should be estimated as well. The OLS estimator for σ2
o is

σ̂2
T =

ê′ê
T − k

=
1

T − k

T∑
t=1

ê2
t , (3.8)

where k is the number of regressors. While β̂T is a linear estimator in the sense that

it is a linear transformation of y, σ̂2
T is not. In the sections below we will derive the

properties of the OLS estimators β̂T and σ̂2
T under these classical conditions.

3.2.2 Without the Normality Condition

Under the imposed classical conditions, the OLS estimators have the following statistical

properties.

Theorem 3.4 Consider the linear specification (3.1).

(a) Given [A1] and [A2](i), β̂T is unbiased for βo.
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(b) Given [A1] and [A2], σ̂2
T is unbiased for σ2

o.

(c) Given [A1] and [A2], var(β̂T ) = σ2
o(X

′X)−1.

Proof: Given [A1] and [A2](i), β̂T is unbiased because

IE(β̂T ) = (X ′X)−1X ′ IE(y) = (X ′X)−1X ′Xβo = βo.

To prove (b), recall that (IT −P )X = 0 so that the OLS residual vector can be written

as

ê = (IT − P )y = (IT − P )(y − Xβo).

Then, ê′ê = (y − Xβo)
′(IT − P )(y − Xβo) which is a scalar, and

IE(ê′ê) = IE
[
trace

(
(y − Xβo)

′(IT − P )(y − Xβo)
)]

= IE[trace
(
(y − Xβo)(y − Xβo)

′(IT − P )
)]

.

By interchanging the trace and expectation operators, we have from [A2](ii) that

IE(ê′ê) = trace
(
IE[(y − Xβo)(y − Xβo)

′(IT − P )]
)

= trace
(
IE[(y − Xβo)(y − Xβo)

′](IT − P )
)

= trace
(
σ2

oIT (IT − P )
)

= σ2
o trace(IT − P ).

By Lemmas 1.12 and 1.14, trace(IT − P ) = rank(IT − P ) = T − k. Consequently,

IE(ê′ê) = σ2
o(T − k),

so that

IE(σ̂2
T ) = IE(ê′ê)/(T − k) = σ2

o .

This proves the unbiasedness of σ̂2
T . Given that β̂T is a linear transformation of y, we

have from Lemma 2.4 that

var(β̂T ) = var
(
(X ′X)−1X ′y

)
= (X ′X)−1X ′(σ2

oIT )X(X ′X)−1

= σ2
o(X

′X)−1.

This establishes (c). �
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It can be seen that the unbiasedness of β̂T does not depend on [A2](ii), the variance

property of y. It is also clear that when σ̂2
T is unbiased, the estimator

v̂ar(β̂T ) = σ̂2
T (X ′X)−1

is also unbiased for var(β̂T ). The result below, known as the Gauss-Markov theorem,

indicates that when [A1] and [A2] hold, β̂T is not only unbiased but also the best (most

efficient) among all linear unbiased estimators for βo.

Theorem 3.5 (Gauss-Markov) Given the linear specification (3.1), suppose that [A1]

and [A2] hold. Then the OLS estimator β̂T is the best linear unbiased estimator (BLUE)

for βo.

Proof: Consider an arbitrary linear estimator β̌T = Ay, where A is non-stochastic.

Writing A = (X ′X)−1X ′ + C, β̌T = β̂T + Cy. Then,

var(β̌T ) = var(β̂T ) + var(Cy) + 2 cov(β̂T ,Cy).

By [A1] and [A2](i),

IE(β̌T ) = βo + CXβo.

Since βo is arbitrary, this estimator would be unbiased if, and only if, CX = 0. This

property further implies that

cov(β̂T ,Cy) = IE[(X ′X)−1X ′(y − Xβo)y
′C ′]

= (X ′X)−1X ′ IE[(y − Xβo)y
′]C ′

= (X ′X)−1X ′(σ2
oIT )C ′

= 0.

Thus,

var(β̌T ) = var(β̂T ) + var(Cy) = var(β̂T ) + σ2
oCC ′,

where σ2
oCC ′ is clearly a positive semi-definite matrix. This shows that for any linear

unbiased estimator β̌T , var(β̌T ) − var(β̂T ) is positive semi-definite, so that β̂T is more

efficient. �
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Example 3.6 Given the data [y X ], where X is a nonstochastic matrix and can be

partitioned as [X1 X2]. Suppose that IE(y) = X1b1 for some b1 and var(y) = σ2
oIT

for some σ2
o > 0. Consider first the specification that contains only X1 but not X2:

y = X1β1 + e.

Let b̂1,T denote the resulting OLS estimator. It is clear that b̂1,T is still a linear estimator

and unbiased for b1 by Theorem 3.4(a). Moreover, it is the BLUE for b1 by Theorem 3.5

with the variance-covariance matrix

var(b̂1,T ) = σ2
o(X

′
1X1)

−1,

by Theorem 3.4(c).

Consider now the linear specification that involves both X1 and irrelevant regressors

X2:

y = Xβ + e = X1β1 + X2β2 + e.

This specification would be a correct specification if some of the parameters (β2) are

restricted to zero. Let β̂T = (β̂
′
1,T β̂

′
2,T )′ be the OLS estimator of β. Using Theorem 3.3,

we find

IE(β̂1,T ) = IE
(
[X ′

1(IT − P 2)X1]
−1X ′

1(IT − P 2)y
)

= b1,

IE(β̂2,T ) = IE
(
[X ′

2(IT − P 1)X2]
−1X ′

2(IT − P 1)y
)

= 0,

where P 1 = X1(X
′
1X1)−1X ′

1 and P 2 = X2(X
′
2X2)−1X ′

2. This shows that β̂T is

unbiased for (b′1 0′)′. Also,

var(β̂1,T ) = var([X ′
1(IT − P 2)X1]

−1X ′
1(IT − P 2)y)

= σ2
o [X

′
1(IT − P 2)X1]

−1.

Given that P 2 is a positive semi-definite matrix,

X ′
1X1 − X ′

1(IT − P 2)X1 = X ′
1P 2X1,

must also be positive semi-definite. It follows from Lemma 1.9 that

[X ′
1(IT − P 2)X1]

−1 − (X ′
1X1)

−1

is a positive semi-definite matrix. This shows that b̂1,T is more efficient than β̂1,T , as it

ought to be. When X ′
1X2 = 0, i.e., the columns of X1 are orthogonal to the columns

of X2, we immediately have (IT − P 2)X1 = X1, so that β̂1,T = b̂1,T . In this case,

estimating a more complex specification does not result in efficiency loss. �
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Remark: This example shows that for the specification y = X1β1 + X2β2 + e, the

OLS estimator of β1 is not the most efficient when IE(y) = X1b1. The failure of the

Gauss-Markov theorem in this example is because [A2](i) does not hold in general;

instead, [A2](i) holds only for βo = (b′1 0′)′, where b1 is arbitrary but the remaining

elements are not. This result thus suggests that when the restrictions on paramters are

not taken into account, the resulting OLS estimator would suffer from efficiency loss.

3.2.3 With the Normality Condition

We have learned that the normality condition [A3] is much stronger than [A2]. With

this stronger condition, more can be said about the OLS estimators.

Theorem 3.7 Given the linear specification (3.1), suppose that [A1] and [A3] hold.

(a) β̂T ∼ N (βo, σ
2
o(X

′X)−1
)
.

(b) (T − k)σ̂2
T /σ2

o ∼ χ2(T − k).

(c) σ̂2
T has mean σ2

o and variance 2σ4
o/(T − k).

Proof: As β̂T is a linear transformation of y, it is also normally distributed as

β̂T ∼ N (βo, σ
2
o(X

′X)−1
)
,

by Lemma 2.6, where its mean and variance-covariance matrix are as in Theorem 3.4(a)

and (c). To prove the assertion (b), we again write ê = (IT −P )(y−Xβo) and deduce

(T − k)σ̂2
T /σ2

o = ê′ê/σ2
o = y∗′(IT − P )y∗,

where y∗ = (y − Xβo)/σo. Let C be the orthogonal matrix that diagonalizes the

symmetric and idempotent matrix IT −P . Then, C′(IT −P )C = Λ. Since rank(IT −
P ) = T − k, Λ contains T − k eigenvalues equal to one and k eigenvalues equal to zero

by Lemma 1.11. Without loss of generality we can write

y∗′(IT − P )y∗ = y∗′C[C ′(IT − P )C]C ′y∗ = η′
[

IT−k 0

0 0

]
η,

where η = C ′y∗. Again by Lemma 2.6, y∗ ∼ N (0, IT ) under [A3]. Hence, η ∼
N (0, IT ), so that ηi are independent, standard normal random variables. Consequently,

y∗′(IT − P )y∗ =
T−k∑
i=1

η2
i ∼ χ2(T − k).
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This proves (b). Noting that the mean of χ2(T − k) is T − k and variance is 2(T − k),

the assertion (c) is just a direct consequence of (b). �

Suppose that we believe that [A3] is true and specify the log-likelihood function of

y as:

log L(β, σ2) = −T

2
log(2π) − T

2
log σ2 − 1

2σ2
(y − Xβ)′(y − Xβ).

The first order conditions of maximizing this log-likelihood are

∇β log L(β, σ2) =
1
σ2

X ′(y − Xβ) = 0,

∇σ2 log L(β, σ2) = − T

2σ2
+

1
2σ4

(y − Xβ)′(y − Xβ) = 0,

and their solutions are the MLEs β̃T and σ̃2
T . The first k equations above are equivalent

to the OLS normal equations (3.3). It follows that the OLS estimator β̂T is also the

MLE β̃T . Plugging β̂T into the first order conditions we can solve for σ2 and obtain

σ̃2
T =

(y − Xβ̂T )′(y − Xβ̂T )
T

=
ê′ê
T

, (3.9)

which is different from the OLS variance estimator (3.8).

The conclusion below is stronger than the Gauss-Markov theorem (Theorem 3.5).

Theorem 3.8 Given the linear specification (3.1), suppose that [A1] and [A3] hold.

Then the OLS estimators β̂T and σ̂2
T are the best unbiased estimators for βo and σ2

o,

respectively.

Proof: The score vector is

s(β, σ2) =

⎡⎣ 1
σ2 X ′(y − Xβ)

− T
2σ2 + 1

2σ4 (y − Xβ)′(y − Xβ)

⎤⎦ ,

and the Hessian matrix of the log-likelihood function is

H(β, σ2) =

⎡⎣ − 1
σ2 X ′X − 1

σ4 X ′(y − Xβ)

− 1
σ4 (y − Xβ)′X T

2σ4 − 1
σ6 (y − Xβ)′(y − Xβ)

⎤⎦ .

It is easily verified that when [A3] is true, IE[s(βo, σ
2
o)] = 0 and

IE[H(βo, σ
2
o)] =

⎡⎣ − 1
σ2

o
X ′X 0

0 − T
2σ4

o

⎤⎦ .
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The information matrix equality (Lemma 2.9) ensures that the negative of IE[H(βo, σ
2
o)]

equals the information matrix. The inverse of the information matrix is then⎡⎣ σ2
o(X

′X)−1 0

0 2σ4
o

T

⎤⎦ ,

which is the Cramér-Rao lower bound by Lemma 2.10. Clearly, var(β̂T ) achieves this

lower bound so that β̂T must be the best unbiased estimator for βo. Although the

variance of σ̂2
T is greater than the lower bound, it can be shown that σ̂2

T is still the best

unbiased estimator for σ2
o ; see, e.g., Rao (1973, p. 319) for a proof. �

Remark: Comparing to the Gauss-Markov theorem, Theorem 3.8 gives a stronger

result at the expense of a stronger condition (the normality condition [A3]). The OLS

estimators now are the best (most efficient) in a much larger class of estimators, namely,

the class of unbiased estimators. Note also that Theorem 3.8 covers σ̂2
T , whereas the

Gauss-Markov theorem does not.

3.3 Hypotheses Testing

After a specification is estimated, it is often desirable to test various economic and

econometric hypotheses. Given the classical conditions [A1] and [A3], we consider the

linear hypothesis

Rβo = r, (3.10)

where R is a q × k non-stochastic matrix with rank q < k, and r is a vector of pre-

specified, hypothetical values.

3.3.1 Tests for Linear Hypotheses

If the null hypothesis (3.10) is true, it is reasonable to expect that Rβ̂T is “close” to

the hypothetical value r; otherwise, they should be quite different. Here, the closeness

between Rβ̂T and r must be justified by the null distribution of the test statistics.

If there is only a single hypothesis, the null hypothesis (3.10) is such that R is a row

vector (q = 1) and r is a scalar. Note that a single hypothesis may involve two or more

parameters. Consider the following statistic:

Rβ̂T − r

σo[R(X ′X)−1R′]1/2
.
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By Theorem 3.7(a), β̂T ∼ N (βo, σ
2
o(X

′X)−1), and hence

Rβ̂T ∼ N (Rβo, σ
2
oR(X ′X)−1R′).

Under the null hypothesis, we have

Rβ̂T − r

σo[R(X ′X)−1R′]1/2
=

R(β̂T − βo)
σo[R(X ′X)−1R′]1/2

∼ N (0, 1). (3.11)

Although the left-hand side has a known distribution, it cannot be used as a test statistic

because σo is unknown. Replacing σo by its OLS estimator σ̂T yields an operational

statistic:

τ =
Rβ̂T − r

σ̂T [R(X ′X)−1R′]1/2
. (3.12)

The null distribution of τ is given in the result below.

Theorem 3.9 Given the linear specification (3.1), suppose that [A1] and [A3] hold.

Then under the null hypothesis (3.10) with R a 1 × k vector,

τ ∼ t(T − k),

where τ is given by (3.12).

Proof: We first write the statistic τ as

τ =
Rβ̂T − r

σo[R(X ′X)−1R′]1/2

/√
(T − k)σ̂2

T /σ2
o

T − k
,

where the numerator is distributed as N (0, 1) by (3.11), and (T −k)σ̂2
T /σ2

o is distributed

as χ2(T − k) by Theorem 3.7(b). Hence, the square of the denominator is a central χ2

random variable divided by its degrees of freedom T − k. The assertion follows if we

can show that the numerator and denominator are independent. Note that the random

components of the numerator and denominator are, respectively, β̂T and ê′ê, where β̂T

and ê are two normally distributed random vectors with the covariance matrix

cov(ê, β̂T ) = IE[(IT − P )(y − Xβo)y
′X(X ′X)−1]

= (IT − P ) IE[(y − Xβo)y
′]X(X ′X)−1

= σ2
o(IT − P )X(X ′X)−1

= 0.
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Since uncorrelated normal random vectors are also independent, β̂T is independent of

ê. By Lemma 2.1, we conclude that β̂T is also independent of ê′ê. �

As the null distribution of the statistic τ is t(T − k) by Theorem 3.9, τ is known as

the t statistic. When the alternative hypothesis is Rβo �= r, this is a two-sided test;

when the alternative hypothesis is Rβo > r (or Rβo < r), this is a one-sided test. For

each test, we first choose a small significance level α and then determine the critical

region Cα. For the two-sided t test, we can find the values ±tα/2(T − k) from the table

of t distributions such that

α = IP{τ < −tα/2(T − k) or τ > tα/2(T − k)}
= 1 − IP{−tα/2(T − k) ≤ τ ≤ tα/2(T − k)}.

The critical region is then

Cα = (−∞,−tα/2(T − k)) ∪ (tα/2(T − k),∞),

and ±tα/2(T − k) are the critical values at the significance level α. For the alternative

hypothesis Rβo > r, the critical region is (tα(T −k),∞), where tα(T −k) is the critical

value such that

α = IP{τ > tα(T − k)}.

Similarly, for the alternative Rβo < r, the critical region is (−∞,−tα(T − k)).

The null hypothesis is rejected at the significance level α when τ falls in the critical

region. As α is small, the event {τ ∈ Cα} is unlikely under the null hypothesis. When

τ does take an extreme value relative to the critical values, it is an evidence against the

null hypothesis. The decision of rejecting the null hypothesis could be wrong, but the

probability of the type I error will not exceed α. When τ takes a “reasonable” value

in the sense that it falls in the complement of the critical region, the null hypothesis is

not rejected.

Example 3.10 To test a single coefficient equal to zero: βi = 0, we choose R as the

transpose of the i th Cartesian unit vector:

R = [ 0 · · · 0 1 0 · · · 0 ].

Let mii be the i th diagonal element of M−1 = (X ′X)−1. Then, R(X ′X)−1R′ = mii.

The t statistic for this hypothesis, also known as the t ratio, is

τ =
β̂i,T

σ̂T

√
mii

∼ t(T − k).
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When a t ratio rejects the null hypothesis, it is said that the corresponding estimated co-

efficient is significantly different from zero; econometrics and statistics packages usually

report t ratios along with the coefficient estimates. �

Example 3.11 To test the single hypothesis βi + βj = 0, we set R as

R = [ 0 · · · 0 1 0 · · · 0 1 0 · · · 0 ].

Hence, R(X ′X)−1R′ = mii + 2mij + mjj, where mij is the (i, j) th element of M−1 =

(X ′X)−1. The t statistic is

τ =
β̂i,T + β̂j,T

σ̂T (mii + 2mij + mjj)1/2
∼ t(T − k). �

Several hypotheses can also be tested jointly. Consider the null hypothesis Rβo = r,

where R is now a q × k matrix (q ≥ 2) and r is a vector. This hypothesis involves q

single hypotheses. Similar to (3.11), we have under the null hypothesis that

[R(X ′X)−1R′]−1/2(Rβ̂T − r)/σo ∼ N (0, Iq).

Therefore,

(Rβ̂T − r)′[R(X ′X)−1R′]−1(Rβ̂T − r)/σ2
o ∼ χ2(q). (3.13)

Again, we can replace σ2
o by its OLS estimator σ̂2

T to obtain an operational statistic:

ϕ =
(Rβ̂T − r)′[R(X ′X)−1R′]−1(Rβ̂T − r)

σ̂2
T q

. (3.14)

The next result gives the null distribution of ϕ.

Theorem 3.12 Given the linear specification (3.1), suppose that [A1] and [A3] hold.

Then under the null hypothesis (3.10) with R a q × k matrix with rank q < k, we have

ϕ ∼ F (q, T − k),

where ϕ is given by (3.14).

Proof: Note that

ϕ =
(Rβ̂T − r)′[R(X ′X)−1R′]−1(Rβ̂T − r)/(σ2

oq)

(T − k) σ̂2
T

σ2
o

/
(T − k)

.
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In view of (3.13) and the proof of Theorem 3.9, the numerator and denominator terms

are two independent χ2 random variables, each divided by its degrees of freedom. The

assertion follows from the definition of F random variable. �

The statistic ϕ is known as the F statistic. We reject the null hypothesis at the

significance level α when ϕ is too large relative to the critical value Fα(q, T − k) from

the table of F distributions, where Fα(q, T − k) is such that

α = IP{ϕ > Fα(q, T − k)}.

If there is only a single hypothesis, the F statistic is just the square of the corresponding

t statistic. When ϕ rejects the null hypothesis, it simply suggests that there is evidence

against at least one single hypothesis. The inference of a joint test is, however, not

necessary the same as the inference of individual tests; see also Section 3.4.

Example 3.13 Joint null hypothesis: Ho : β1 = b1 and β2 = b2. The F statistic is

ϕ =
1

2σ̂2
T

(
β̂1,T − b1

β̂2,T − b2

)′ [
m11 m12

m21 m22

]−1(
β̂1,T − b1

β̂2,T − b2

)
∼ F (2, T − k),

where mij is as defined in Example 3.11. �

Remark: For the null hypothesis of s coefficients being zero, if the corresponding F

statistic ϕ > 1 (ϕ < 1), dropping these s regressors will reduce (increase) R̄2; see

Exercise 3.12.

3.3.2 Power of the Tests

Recall that the power of a test is the probability of rejecting the null hypothesis when the

null hypothesis is indeed false. In this section, we consider the hypothesis Rβo = r +δ,

where δ characterizes the deviation from the null hypothesis, and analyze the power

performance of the t and F tests.

Theorem 3.14 Given the linear specification (3.1), suppose that [A1] and [A3] hold.

Then under the hypothesis that Rβo = r+δ, where R is a q×k matrix with rank q < k,

we have

ϕ ∼ F (q, T − k; δ′D−1δ, 0),

where ϕ is given by (3.14), D = σ2
o [R(X ′X)−1R′], and δ′D−1δ is the non-centrality

parameter of the numerator term.
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Proof: When Rβo = r + δ,

[R(X ′X)−1R′]−1/2(Rβ̂T − r)/σo

= [R(X ′X)−1R′]−1/2[R(β̂T − βo) + δ]/σo.

Given [A3],

[R(X ′X)−1R′]−1/2R(β̂T − βo)/σo. ∼ N (0, Iq),

and hence

[R(X ′X)−1R′]−1/2(Rβ̂T − r)/σo ∼ N (D−1/2δ, Iq).

It follows from Lemma 2.7 that

(Rβ̂T − r)′[R(X ′X)−1R′]−1(Rβ̂T − r)/σ2
o ∼ χ2(q; δ′D−1δ),

which is the non-central χ2 distribution with q degrees of freedom and the non-centrality

parameter δ′D−1δ. This is in contrast with (3.13) which has a central χ2 distribution

under the null hypothesis. As (T − k)σ̂2
T /σ2

o is still distributed as χ2(T − k) by The-

orem 3.7(b), the assertion follows because the numerator and denominator of ϕ are

independent. �

Clearly, when the null hypothesis is correct, we have δ = 0, so that ϕ ∼ F (q, T −k).

Theorem 3.14 thus includes Theorem 3.12 as a special case. In particular, for testing a

single hypothesis, we have

τ ∼ t(T − k; D−1/2δ),

which reduces to t(T − k) when δ = 0, as in Theorem 3.9.

Theorem 3.14 implies that when Rβo deviates farther from the hypothetical value

r, the non-centrality parameter δ′D−1δ increases, and so does the power. We illustrate

this point using the following two examples, where the power are computed using the

GAUSS program. For the null distribution F (2, 20), the critical value at 5% level is 3.49.

Then for F (2, 20; ν1, 0) with the non-centrality parameter ν1 = 1, 3, 5, the probabilities

that ϕ exceeds 3.49 are approximately 12.1%, 28.2%, and 44.3%, respectively. For the

null distribution F (5, 60), the critical value at 5% level is 2.37. Then for F (5, 60; ν1, 0)

with ν1 = 1, 3, 5, the probabilities that ϕ exceeds 2.37 are approximately 9.4%, 20.5%,

and 33.2%, respectively. In both cases, the power increases with the non-centrality

parameter.
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3.3.3 An Alternative Approach

Given the specification (3.1), we may take the constraint Rβo = r into account and

consider the constrained OLS estimation that finds the saddle point of the Lagrangian:

min
β,λ

1
T

(y − Xβ)′(y − Xβ) + (Rβ − r)′λ,

where λ is the q× 1 vector of Lagrangian multipliers. It is straightforward to show that

the solutions are

λ̈T = 2[R(X ′X/T )−1R′]−1(Rβ̂T − r),

β̈T = β̂T − (X ′X/T )−1R′λ̈T /2,
(3.15)

which will be referred to as the constrained OLS estimators.

Given β̈T , the vector of constrained OLS residuals is

ë = y − Xβ̈T = y − Xβ̂T + X(β̂T − β̈T ) = ê + X(β̂T − β̈T ).

It follows from (3.15) that

β̂T − β̈T = (X ′X/T )−1R′λ̈T /2

= (X ′X)−1R′[R(X ′X)−1R′]−1(Rβ̂T − r).

The inner product of ë is then

ë′ë = ê′ê + (β̂T − β̈T )′X ′X(β̂T − β̈T )

= ê′ê + (Rβ̂T − r)′[R(X ′X)−1R′]−1(Rβ̂T − r).

Note that the second term on the right-hand side is nothing but the numerator of the

F statistic (3.14). The F statistic now can be written as

ϕ =
ë′ë − ê′ê

qσ̂2
T

=
(ESSc − ESSu)/q

ESSu/(T − k)
, (3.16)

where ESSc = ë′ë and ESSu = ê′ê denote, respectively, the ESS resulted from con-

strained and unconstrained estimations. Dividing the numerator and denominator of

(3.16) by centered TSS (y′y − T ȳ2) yields another equivalent expression for ϕ:

ϕ =
(R2

u − R2
c)/q

(1 − R2
u)/(T − k)

, (3.17)

where R2
c and R2

u are, respectively, the centered coefficient of determination of con-

strained and unconstrained estimations. As the numerator of (3.17), R2
u − R2

c , can be

interpreted as the loss of fit due to the imposed constraint, the F test is in effect a

loss-of-fit test. The null hypothesis is rejected when the constrained specification fits

data much worse.
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Example 3.15 Consider the specification: yt = β1 + β2xt2 + β3xt3 + et. Given the

hypothesis (constraint) β2 = β3, the resulting constrained specification is

yt = β1 + β2(xt2 + xt3) + et.

By estimating these two specifications separately, we obtain ESSu and ESSc, from which

the F statistic can be easily computed. �

Example 3.16 Test the null hypothesis that all the coefficients (except the constant

term) equal zero. The resulting constrained specification is yt = β1 +et, so that R2
c = 0.

Then, (3.17) becomes

ϕ =
R2

u/(k − 1)
(1 − R2

u)/(T − k)
∼ F (k − 1, T − k),

which requires only estimation of the unconstrained specification. This test statistic is

also routinely reported by most of econometrics and statistics packages and known as

the “regression F test.” �

3.4 Confidence Regions

In addition to point estimators for parameters, we may also be interested in finding

confidence intervals for parameters. A confidence interval for βi,o with the confidence

coefficient (1 − α) is the interval (g
α
, gα) that satisfies

IP{ g
α
≤ βi,o ≤ gα} = 1 − α.

That is, we are (1− α) × 100 percent sure that such an interval would include the true

parameter βi,o.

From Theorem 3.9, we know

IP

{
−tα/2(T − k) ≤ β̂i,T − βi,o

σ̂T

√
mii

≤ tα/2(T − k)

}
= 1 − α,

where mii is the i th diagonal element of (X ′X)−1, and tα/2(T − k) is the critical value

of the (two-sided) t test at the significance level α. Equivalently, we have

IP
{

β̂i,T − tα/2(T − k)σ̂T

√
mii ≤ βi,o ≤ β̂i,T + tα/2(T − k)σ̂T

√
mii
}

= 1 − α.

This shows that the confidence interval for βi,o can be constructed by setting

g
α

= β̂i,T − tα/2(T − k)σ̂T

√
mii,

gα = β̂i,T + tα/2(T − k)σ̂T

√
mii.
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It should be clear that the greater the confidence coefficient (i.e., α smaller), the larger

is the magnitude of the critical values ±tα/2(T − k) and hence the resulting confidence

interval.

The confidence region for Rβo with the confidence coefficient (1 − α) satisfies

IP{(β̂T − βo)
′R′[R(X ′X)−1R′]−1R(β̂T − βo)/(qσ̂

2
T ) ≤ Fα(q, T − k)}

= 1 − α,

where Fα(q, T − k) is the critical value of the F test at the significance level α.

Example 3.17 The confidence region for (β1,o = b1, β2,o = b2). Suppose T − k = 30

and α = 0.05, then F0.05(2, 30) = 3.32. In view of Example 3.13,

IP

⎧⎨⎩ 1
2σ̂2

T

(
β̂1,T − b1

β̂2,T − b2

)′ [
m11 m12

m21 m22

]−1(
β̂1,T − b1

β̂2,T − b2

)
≤ 3.32

⎫⎬⎭ = 0.95,

which results in an ellipse with the center (β̂1,T , β̂2,T ). �

Remark: A point (β1,o, β2,o) may be outside the joint confidence ellipse but inside

the confidence box formed by individual confidence intervals. Hence, each t ratio may

show that the corresponding coefficient is insignificantly different from zero, while the F

test indicates that both coefficients are not jointly insignificant. It is also possible that

(β1, β2) is outside the confidence box but inside the joint confidence ellipse. That is,

each t ratio may show that the corresponding coefficient is significantly different from

zero, while the F test indicates that both coefficients are jointly insignificant. See also

an illustrative example in Goldberger (1991, Chap. 19).

3.5 Multicollinearity

In Section 3.1.2 we have seen that a linear specification suffers from the problem of

exact multicollinearity if the basic identifiability requirement (i.e., X is of full column

rank) is not satisfied. In this case, the OLS estimator cannot be computed as (3.4).

This problem may be avoided by modifying the postulated specifications.

3.5.1 Near Multicollinearity

In practice, it is more common that explanatory variables are related to some extent but

do not satisfy an exact linear relationship. This is usually referred to as the problem of
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near multicollinearity. But as long as there is no exact multicollinearity, parameters can

still be estimated by the OLS method, and the resulting estimator remains the BLUE

under [A1] and [A2].

Nevertheless, there are still complaints about near multicollinearity in empirical

studies. In some applications, parameter estimates are very sensitive to small changes

in data. It is also possible that individual t ratios are all insignificant, but the regres-

sion F statistic is highly significant. These symptoms are usually attributed to near

multicollinearity. This is not entirely correct, however. Write X = [xi Xi], where Xi

is the submatrix of X excluding the i th column xi. By the result of Theorem 3.3, the

variance of β̂i,T can be expressed as

var(β̂i,T ) = var
(
[x′

i(I − P i)xi]
−1x′

i(I − P i)y
)

= σ2
o [x

′
i(I − P i)xi]

−1,

where P i = Xi(X
′
iXi)−1X ′

i. It can also be verified that

var(β̂i,T ) =
σ2

o∑T
t=1(xti − x̄i)2(1 − R2(i))

,

where R2(i) is the centered coefficient of determination from the auxiliary regression of

xi on X i. When xi is closely related to other explanatory variables, R2(i) is high so

that var(β̂i,T ) would be large. This explains why β̂i,T are sensitive to data changes and

why corresponding t ratios are likely to be insignificant. Near multicollinearity is not a

necessary condition for these problems, however. Large var(β̂i,T ) may also arise due to

small variations of xti and/or large σ2
o .

Even when a large value of var(β̂i,T ) is indeed resulted from high R2(i), there is

nothing wrong statistically. It is often claimed that “severe multicollinearity can make

an important variable look insignificant.” As Goldberger (1991) correctly pointed out,

this statement simply confuses statistical significance with economic importance. These

large variances merely reflect the fact that parameters cannot be precisely estimated

from the given data set.

Near multicollinearity is in fact a problem related to data and model specification.

If it does cause problems in estimation and hypothesis testing, one may try to break the

approximate linear relationship by, e.g., adding more observations to the data set (if

plausible) or dropping some variables from the current specification. More sophisticated

statistical methods, such as the ridge estimator and principal component regressions,

may also be used; details of these methods can be found in other econometrics textbooks.
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3.5.2 Digress: Dummy Variables

A linear specification may include some qualitative variables to indicate the presence or

absence of certain attributes of the dependent variable. These qualitative variables are

typically represented by dummy variables which classify data into different categories.

For example, let yt denote the annual salary of college teacher t and xt the years

of teaching experience of t. Consider the dummy variable: Dt = 1 if t is a male and

Dt = 0 if t is a female. Then, the specification

yt = α0 + α1Dt + βxt + et

yields two regression lines with different intercepts. The “male” regression line has the

intercept α0 + α1, and the “female” regression line has the intercept α0. We may test

the hypothesis α1 = 0 to see if there is a difference between the starting salaries of male

and female teachers.

This specification can be expanded to incorporate an interaction term between D

and x:

yt = α0 + α1Dt + β0xt + β1(Dtxt) + et,

which yields two regression lines with different intercepts and slopes. The slope of the

“male” regression line is mow β0 + β1, whereas the slope of the “female” regression line

is β0. By testing β1 = 0, we can check whether teaching experience is treated the same

in determining salaries for male and female teachers.

In the analysis of quarterly data, it is also common to include the seasonal dummy

variables D1t, D2t and D3t, where for i = 1, 2, 3, Dit = 1 if t is the observation of

the i th quarter and Dit = 0 otherwise. Similar to the previous example, the following

specification,

yt = α0 + α1D1t + α2D2t + α3D3t + βxt + et,

yields four regression lines. The regression line for the data of the i th quarter has

the intercept α0 + αi, i = 1, 2, 3, and the regression line for the fourth quarter has

the intercept α0. Including seasonal dummies allows us to classify the levels of yt into

four seasonal patterns. Various interesting hypotheses can be tested based on this

specification. For example, one may test the hypotheses that α1 = α2 and α1 = α2 =

α3 = 0. By the Frisch-Waugh-Lovell theorem we know that the OLS estimate of β

can also be obtained from regressing y∗t on x∗
t , where y∗t and x∗

t are the residuals of
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regressing, respectively, yt and xt on seasonal dummies. Although some seasonal effects

of yt and xt may be eliminated by the regressions on seasonal dummies, their residuals

y∗t on x∗
t are not the so-called “seasonally adjusted data” which are usually computed

using different methods or algorithms.

Remark: The preceding examples show that, when a specification contains a constant

term, the number of dummy variables is always one less than the number of categories

that dummy variables intend to classify. Otherwise, the specification would have exact

multicollinearity; this is known as the “dummy variable trap.”

3.6 Limitations of the Classical Conditions

The previous estimation and testing results are based on the classical conditions. As

these conditions may be violated in practice, it is important to understand their limi-

tations.

Condition [A1] postulates that explanatory variables are non-stochastic. Although

this condition is quite convenient and facilitates our analysis, it is not practical. When

the dependent variable and regressors are economic variables, it does not make too

much sense to treat only the dependent variable as a random variable. This condition

may also be violated when a lagged dependent variable is included as a regressor, as in

many time-series analysis. Hence, it would be more reasonable to allow regressors to be

random as well.

In [A2](i), the linear specification Xβ is assumed to be correct up to some unknown

parameters. It is possible that the systematic component IE(y) is in fact a non-linear

function of X. If so, the estimated regression hyperplane could be very misleading. For

example, an economic relation may change from one regime to another at some time

point so that IE(y) is better characterized by a piecewise liner function. This is known

as the problem of structural change; see e.g., Exercise 3.14. Even when IE(y) is a linear

function, the specified X may include some irrelevant variables or omit some important

variables. Example 3.6 shows that in the former case, the OLS estimator β̂T remains

unbiased but is less efficient. In the latter case, it can be shown that β̂T is biased but

with a smaller variance-covariance matrix; see Exercise 3.6.

Condition [A2](ii) may also easily break down in many applications. For example,

when yt is the consumption of the t th household, it is likely that yt has smaller variation

for low-income families than for high-income families. When yt denotes the GDP growth

rate of the t th year, it is also likely that yt are correlated over time. In both cases, the
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variance-covariance matrix of y cannot be expressed as σ2
oIT . A consequence of the

failure of [A2](ii) is that the OLS estimator for var(β̂T ), σ̂2
T (X ′X)−1, is biased, which

in turn renders the tests discussed in Section 3.3 invalid.

Condition [A3] may fail when yt have non-normal distributions. Although the BLUE

property of the OLS estimator does not depend on normality, [A3] is crucial for deriving

the distribution results in Section 3.3. When [A3] is not satisfied, the usual t and F

tests do not have the desired t and F distributions, and their exact distributions are

typically unknown. This causes serious problems for hypothesis testing.

Our discussion thus far suggests that the classical conditions are quite restrictive.

In subsequent chapters, we will try to relax these conditions and discuss more generally

applicable methods. These methods play an important role in contemporary empirical

studies.

Exercises

3.1 Construct a linear regression model for each equation below:

y = α xβ, y = α eβx, y =
x

αx − β
, y =

eα+βx

1 + eα+βx
.

3.2 Use the general formula (3.4) to find the OLS estimators from the specifications

below:

yt = α + βxt + e, t = 1, . . . , T,

yt = α + β(xt − x̄) + e, t = 1, . . . , T,

yt = βxt + e, t = 1, . . . , T.

Compare the resulting regression lines.

3.3 Given the specification yt = α + βxt + e, t = 1, . . . , T , assume that the classical

conditions hold. Let α̂T and β̂T be the OLS estimators for α and β, respectively.

(a) Apply the general formula of Theorem 3.4(c) to show that

var(α̂T ) = σ2
o

∑T
t=1 x2

t

T
∑T

t=1(xt − x̄)2
,

var(β̂T ) = σ2
o

1∑T
t=1(xt − x̄)2

,

cov(α̂T , β̂T ) = −σ2
o

x̄∑T
t=1(xt − x̄)2

.
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What kind of data can make the variances of the OLS estimators smaller?

(b) Suppose that a prediction ŷT+1 = α̂T + β̂T xT+1 is made based on the new

observation xT+1. Show that

IE(ŷT+1 − yT+1) = 0,

var(ŷT+1 − yT+1) = σ2
o

(
1 +

1
T

+
(xT+1 − x̄)2∑T

t=1(xt − x̄)2

)
.

What kind of xT+1 can make the variance of prediction error smaller?

3.4 Given the specification (3.1), suppose that X is not of full column rank. Does

there exist a unique ŷ ∈ span(X) that minimizes (y − ŷ)′(y − ŷ)? If yes, is there

a unique β̂T such that ŷ = Xβ̂T ? Why or why not?

3.5 Given the estimated model

yt = β̂1,T + β̂2,T xt2 + · · · + β̂k,T xtk + êt,

consider the standardized regression:

y∗t = β̂∗
2,T x∗

t2 + · · · + β̂∗
k,T x∗

tk + ê∗t ,

where β̂∗
i,T are known as the beta coefficients, and

y∗t =
yt − ȳ

sy

, x∗
ti =

xti − x̄i

sxi

, ê∗t =
êt

sy

,

with s2
y = (T − 1)−1

∑T
t=1(yt − ȳ)2 is the sample variance of yt and for each

i, s2
xi

= (T − 1)−1
∑T

t=1(xti − x̄i)
2 is the sample variance of xti. What is the

relationship between β̂∗
i,T and β̂i,T ? Give an interpretation of the beta coefficients.

3.6 Given the following specification

y = X1β1 + e,

where X1 (T × k1) is a non-stochastic matrix, let b̂1,T denote the resulting OLS

estimator. Suppose that IE(y) = X1b1 + X2b2 for some b1 and b2, where X2

(T × k2) is also a non-stochastic matrix, b2 �= 0, and var(y) = σ2
oI.

(a) Is b̂1,T unbiased?

(b) Is σ̂2
T unbiased?

(c) What is var(b̂1,T )?
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(d) Let β̂T = (β̂
′
1,T β̂

′
2,T )′ denote the OLS estimator obtained from estimating

the specification: y = X1β1 + X2β2 + e. Compare var(β̂1,T ) and var(b̂1,T ).

(e) Does your result in (d) change when X ′
1X2 = 0?

3.7 Given the specification (3.1), will the changes below affect the resulting OLS

estimator β̂T , t ratios, and R2?

(a) y∗ = 1000 × y and X are used as the dependent and explanatory variables.

(b) y and X∗ = 1000×X are used as the dependent and explanatory variables.

(c) y∗ and X∗ are used as the dependent and explanatory variables.

3.8 Let R2
k denote the centered R2 obtained from the model with k explanatory vari-

ables.

(a) Show that

R2
k =

k∑
i=1

β̂i,T

∑T
t=1(xti − x̄i)yt∑T

t=1(yt − ȳ)2
,

where β̂i,T is the i th element of β̂T , x̄i =
∑T

t=1 xti/T , and ȳ =
∑T

t=1 yt/T .

(b) Show that R2
k ≥ R2

k−1.

3.9 Consider the following two regression lines: ŷ = α̂ + β̂x and x̂ = γ̂ + δ̂y. At

which point do these two lines intersect? Using the result in Exercise 3.8 to show

that these two regression lines coincide if and only if the centered R2s for both

regressions are one.

3.10 Given the specification (3.1), suppose that X does not contain the constant term.

Show that the centered R2 need not be bounded between zero and one if it is

computed as (3.7).

3.11 Rearrange the matrix X as [xi Xi], where xi is the i th column of X. Let ui and

vi denote the residual vectors of regressing y on Xi and xi on Xi, respectively.

Define the partial correlation coefficient of y and xi as

ri =
u′

ivi

(u′
iui)1/2(v′

ivi)1/2
.

Let R2
i and R2 be obtained from the regressions of y on X i and y on X, respec-

tively.
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(a) Apply the Frisch-Waugh-Lovell Theorem to show

I − P = (I − P i) −
(I − P i)xix

′
i(I − P i)

x′
i(I − P i)xi

,

where P = X(X ′X)−1X ′ and P i = Xi(X
′
iXi)

−1X ′
i. This result can also

be derived using the matrix inversion formula; see, e.g., Greene (1993. p. 27).

(b) Show that (1 − R2)/(1 − R2
i ) = 1 − r2

i , and use this result to verify

R2 − R2
i = r2

i (1 − R2
i ).

What does this result tell you?

(c) Let τi denote the t ratio of β̂i,T , the i th element of β̂T obtained from regress-

ing y on X. First show that τ2
i = (T − k)r2

i /(1 − r2
i ), and use this result to

verify

r2
i = τ2

i /(τ2
i + T − k).

(d) Combine the results in (b) and (c) to show

R2 − R2
i = τ2

i (1 − R2)/(T − k).

What does this result tell you?

3.12 Suppose that a linear model with k explanatory variables has been estimated.

(a) Show that σ̂2
T = Centered TSS(1 − R̄2)/(T − 1). What does this result tell

you?

(b) Suppose that we want to test the hypothesis that s coefficients are zero. Show

that the F statistic can be written as

ϕ =
(T − k + s)σ̂2

c − (T − k)σ̂2
u

sσ̂2
u

,

where σ̂2
c and σ̂2

u are the variance estimates of the constrained and uncon-

strained models, respectively. Let a = (T − k)/s. Show that

σ̂2
c

σ̂2
u

=
a + ϕ

a + 1
.

(c) Based on the results in (a) and (b), what can you say when ϕ > 1 and ϕ < 1?
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3.13 For the linear specification y = Xβ + e, an alternative expression of k−m linear

restrictions on β can be expressed as β = Sθ + d, where θ is a m-dimensional

vector of unknown parameters, S is a k×m matrix of pre-specified constants with

full column rank, and d is a vector of pre-specified constants.

(a) By incorporating this restriction into the specification, find the OLS estima-

tor θ̂ of θ.

(b) The constrained least squares estimator of β is β̂d = Sθ̂ + d. Show that

β̂d = QSβ̂ + (I − QS)d,

where QS = S(S ′X ′XS)−1S′X ′X. Is this decomposition orthogonal?

(c) Show that

Xβ̂d = P XSy + (I − P XS)Xd,

where P XS = XS(S′X ′XS)−1S′X ′. Use a graph to illustrate this result.

3.14 (The Chow Test) Consider the model of a one-time structural change at a known

change point:[
y1

y2

]
=

[
X1 0

X2 X2

][
βo

δo

]
+

[
e1

e2

]
,

where y1 and y2 are T1 × 1 and T2 × 1, X1 and X2 are T1 × k and T2 × k,

respectively. The null hypothesis is δo = 0. How would you test this hypothesis

based on the constrained and unconstrained models?
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