
Chapter 10

Quasi-Maximum Likelihood:

Applications

10.1 Binary Choice Models

In many economic applications the dependent variables of interest may assume only

finitely many integer values, each labeling a category of data. The simplest case of

discrete dependent variables is the binary variable that takes on the values one and

zero. For example, the ownership of a durable goods and the choice of participating

a particular event may be represented by a binary dependent variable. Such variables

are different from standard “continuous” variables such as GDP and income. It is

then natural to take into account the data characteristics in the specification of quasi-

likelihood function.

Conditional on the explanatory variables xt, the binary variable yt is such that

yt =

{
1, with probability IP(yt = 1|xt),

0, with probability 1 − IP(yt = 1|xt).

The density function of yt given xt is of the Bernoulli type:

g(yt|xt) = IP(yt = 1|xt)
yt [1 − IP(yt = 1|xt)]

1−yt .

A standard modeling approach is to find a function F such that F (xt;θ) approximates

the conditional probability IP(yt = 1|xt). The quasi-likelihood function is then:

f(yt|xt;θ) = F (xt;θ)yt [1 − F (xt;θ)]1−yt .
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268 CHAPTER 10. QUASI-MAXIMUM LIKELIHOOD: APPLICATIONS

The QMLE θ̃T is then obtained by maximizing

LT (θ) =
1
T

T∑
t=1

[
yt log F (xt;θ) + (1 − yt) log(1 − F (xt;θ))

]
.

As 0 ≤ IP(yt = 1|xt) ≤ 1, it is natural to choose F as a function bounded between

zero and one, such as a distribution functions. When F (xt;θ) = Φ(x′
tθ) with Φ the

standard normal distribution function:

Φ(u) =
∫ u

−∞

1√
2π

e−v2/2 dv,

we have the probit model. For Φ(u) = p, its inverse Φ−1(p) is known as the probit

transformation. When F (xt;θ) = G(x′
tθ) with G the logistic distribution function:

G(u) =
1

1 + e−u
=

eu

1 + eu
.

it is the logit model. The logistic distribution has mean zero and variance π2/3, and it

is more peaked around its mean and has slightly thicker tails than the standard normal

distribution. For G(u) = p, its inverse

G−1(p) = log
( p

1 − p

)
,

is known as the logit transformation. It is easy to verify that G′(u) = G(u)[1 − G(u)]

which is convenient for estimating a logit model.

For the logit model,

∇θLT (θ) =
1
T

T∑
t=1

[
yt

G′(x′
tθ)

G(x′
tθ)

− (1 − yt)
G′(x′

tθ)
1 − G(x′

tθ)

]
xt

=
1
T

T∑
t=1

[yt − G(x′
tθ)]xt,

and

∇2
θLT (θ) = − 1

T

T∑
t=1

G(x′
tθ)[1 − G(x′

tθ)]xtx
′
t.

Given that G(x′
tθ)[1 − G(x′

tθ)] > 0 for all θ, this matrix is is negative definite, so that

the quasi-log-likelihood function is globally concave on the parameter space. When xt

contains a constant term, the first order condition implies

1
T

T∑
t=1

yt =
1
T

T∑
t=1

G(x′
tθ̃T );
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10.1. BINARY CHOICE MODELS 269

that is, the average of fitted values is the relative frequency of yt = 1.

For the probit model,

∇θLT (θ) =
1
T

T∑
t=1

[
yt

φ(x′
tθ)

Φ(x′
tθ)

− (1 − yt)
φ(x′

tθ)
1 − Φ(x′

tθ)

]
xt

=
1
T

T∑
t=1

yt − Φ(x′
tθ)

Φ(x′
tθ)[1 − Φ(x′

tθ)]
φ(x′

tθ)xt,

where φ is the standard normal density function. It can also be verified that

∇2
θLT (θ) = − 1

T

T∑
t=1

[
yt

φ(x′
tθ) + x′

tθΦ(x′
tθ)

Φ2(x′
tθ)

+ (1 − yt)
φ(x′

tθ) − x′
tθ[1 − Φ(x′

tθ)]
[1 − Φ(x′

tθ)]2

]
φ(x′

tθ)xtx
′
t,

which is also negative definite; see e.g., Amemiya (1985, pp. 273–274).

Clearly, the conditional mean of yt is just the conditional probability P (yt = 1 | xt),

and its conditional variance is

var(yt|xt) = IP(yt = 1|xt)[1 − IP(yt = 1|xt)],

which changes with xt. Thus, F (xt;θ) is also an approximation to the conditional mean

function; F (xt;θ)[1−F (xt;θ)] is an approximation to the conditional variance function.

Writing

yt = F (xt;θ) + et,

we can see that the probit and logit models are in effect different nonlinear mean spec-

ifications with conditional heteroskedasticity. Although θ may be estimated using the

NLS method, the resulting estimator cannot be efficient because it ignores conditional

heteroskedasticity. Even a weighted NLS estimator that takes into account the condi-

tional variance is still inefficient because it does not consider the Bernoulli feature of

yt. Note that the linear probability model in which F (xt;θ) = x′
tθ (Section 4.4) is not

appropriate because the fitted values may be outside the range of [0, 1].

It should be noted that the marginal response of the choice probability to the change

of a particular variable xtj in a probit model is

∂Φ(x′
tθ)

∂xtj

= ϕ(x′
tθ)θj ,
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270 CHAPTER 10. QUASI-MAXIMUM LIKELIHOOD: APPLICATIONS

and the marginal response in a logit model is

∂G(x′
tθ)

∂xtj

= G(x′
tθ)[1 − G(x′

tθ)]θj ,

which change with xt. By contrast, the marginal response to the change of a regressor

in a linear regression model is the associated coefficient which is invariant with respect

to t. Thus, it is typical to evaluate the marginal response based on a particular value

of xt, such as xt = 0 or xt = x̄, the sample average of xt. Note that when xt = 0,

ϕ(0) ≈ 0.4 and G(0)[1−G(0)] = 0.25. This suggests that the QMLE for the logit model

is approximately 1.6 times the QMLE for the probit model when xt are close to zero.

An alternative view of the binary choice model is to assume that the observed

variable yt is determined by the latent (index) variable y∗t :

yt =

{
1, y∗t > 0,

0, y∗t ≤ 0,

where y∗t = x′
tβ + et. Thus,

IP(yt = 1|xt) = IP(y∗t > 0|xt) = IP(et > −xtβ|xt).

The probability on the right-hand side is also IP(et < xtβ|xt) provided that et is

symmetric about zero. The probit specification Φ or the logit specification G can then

be viewed as specifications of the conditional distribution of et. This suggests that

a possible modification of these two models is to consider an asymmetric distribution

function for et.

10.2 Models for Multiple Choices

A more general discrete choice model would be needed when one faces multiple choices

of job, event or transportation alternatives. In this case, the dependent variable yt takes

on J + 1 integer values (0, 1, . . . , J) which correspond to different categories that are

not overlapping and do not have a natural ordering. We have

yt =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, with probability IP(yt = 0|xt),

1, with probability IP(yt = 1|xt),
...

J, with probability IP(yt = J |xt).

The number of choices J may depend on t because, for example, an individual who does

not own a car can not have the choice of driving to work. We shall not consider this

complication here, however.
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10.2. MODELS FOR MULTIPLE CHOICES 271

10.2.1 Multinomial Logit Models

Define the new binary variable dt,j for j = 0, 1, . . . , J as

dt,j =

{
1, if yt = j,

0, otherwise .

Note that
∑J

j=0 dt,j = 1. The density function of dt,0, . . . , dt,J given xt is then

g(dt,0, . . . , dt,J |xt) =
J∏

j=0

IP(yt = j|xt)
dt,j .

The conditional probabilities can be approximated by some functions F (xt;θj), where

the regressors are t-specific (individual specific) but not choice specific, yet their re-

sponses to the choices j may be different. Note that only J conditional probabilities

need to be specified; otherwise, there would be an identification problem because the

sum of J + 1 probabilities must be one.

Common specifications of the conditional probabilities are

F (xt;θ1, . . . ,θJ) = Gt,0 =
1

1 +
∑J

k=1 exp(x′
tθk)

,

F (xt;θ1, . . . ,θJ) = Gt,j =
exp(x′

tθj)

1 +
∑J

k=1 exp(x′
tθk)

,

which lead to the so-called multinomial logit model. The quasi-log-likelihood function

of this model reads

LT (θ1, . . . ,θJ) =
1
T

T∑
t=1

J∑
j=1

dt,jx
′
tθj −

1
T

T∑
t=1

log

(
1 +

J∑
k=1

exp(x′
tθk)

)
.

The gradient vector with respect to θj is

∇θj
LT (θ1, . . . ,θJ) =

1
T

T∑
t=1

(dt,j − Gt,j)xt, j = 1, . . . , J.

Setting these equations to zero we can solve for the QMLE of θj. The first order

condition again implies that, when xt contains a constant term, the predicted relative

frequency of the j th category equals its actual relative frequency.

It can also be verified that the (i, j) th off-diagonal block of the Hessian matrix is

∇θjθ′
i
LT (θ1, . . . ,θJ) =

1
T

T∑
t=1

(Gt,jGt,i)xtx
′
t, i �= j, i, j = 1, . . . , J,
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272 CHAPTER 10. QUASI-MAXIMUM LIKELIHOOD: APPLICATIONS

and the j th diagonal block is

∇θjθ′
j
LT (θ1, . . . ,θJ) = − 1

T

T∑
t=1

Gt,j(1 − Gt,j)xtx
′
t, j = 1, . . . , J.

We may then use these information to compute the asymptotic covariance matrix for

the QMLEs.

As in the binomial logit model, one should be careful about the the marginal response

of the choice probability, Gt,j , to the change of the variables xt. It is easy to verify that

∇xt
Gt,0 = −Gt,0

J∑
i=1

Gt,iθi,

∇xt
Gt,j = Gt,j

(
θj −

J∑
i=1

Gt,iθi

)
, j = 1, . . . , J.

Thus, when xt changes, all coefficient vectors θi, i = 1, . . . , J , enter the marginal

response of Gt,j .

10.2.2 Conditional Logit Model

A model closely related to the multinomial logit model is McFadden’s conditional logit

model, in which the regressors are choice-specific. For example, when an individual

makes choice among several commuting modes, the regressors may include the in-vehicle

time and waiting time that vary with the vehicle he/she chooses. As such, we shall

consider xt = (x′
t,0 x′

t,1 . . . x′
t,J)′, where xt,j is the vector of regressors characterizing

the t th individual’s attributes with respect to the j th choice.

As in Section 10.2.1, we define the binary variable dt,j for j = 0, 1, . . . , J as

dt,j =

{
1, if yt = j,

0, otherwise ,

and the density function of dt,0, . . . , dt,J given xt is

g(dt,0, . . . , dt,J |xt) =
J∏

j=0

IP(yt = j|xt)
dt,j .

In the conditional logit model, the conditional probabilities are approximated by

G†
t,j =

exp(x′
t,jθ)∑J

k=0 exp(x′
t,kθ)

, j = 0, 1, . . . , J.
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10.2. MODELS FOR MULTIPLE CHOICES 273

Note that θ is now common for all j, so that we may have J + 1 specifications for the

conditional probabilities without causing an identification problem. This model would

be convenient if one wants to predict the probability of a new choice.

Similar to the preceding subsection, the quasi-log-likelihood function is

LT (θ) =
1
T

T∑
t=1

J∑
j=0

dt,jx
′
t,jθ − 1

T

T∑
t=1

log

(
J∑

k=0

exp(x′
t,kθ)

)
.

The first order condition is

∇θLT (θ) =
1
T

T∑
t=1

J∑
j=0

(dt,j − G†
t,j)xt,j = 0,

from which the QMLE for θ can be easily calculated. The Hessian matrix of the quasi-

log-likelihood function is

∇2
θLT (θ) = − 1

T

T∑
t=1

⎡
⎣ J∑

j=0

G†
t,jxt,jx

′
t,j −

⎛
⎝ J∑

j=0

G†
t,jxt,j

⎞
⎠

⎛
⎝ J∑

j=0

G†
t,jx

′
t,j

⎞
⎠
⎤
⎦

= − 1
T

T∑
t=1

J∑
j=0

G†
t,j(xt,j − x̄t)(xt,j − x̄t)

′,

where x̄t =
∑J

j=0 G†
t,jxt,j is the weighted average of xt,j . It is then clear that the

Hessian matrix is negative definite so that the quasi-log-likelihood function is globally

concave. The marginal response of G†
t,j to xt,i, is

∇xt,i
G†

t,j = −G†
t,jG

†
t,iθ, i �= j, i = 0, . . . , J,

and the marginal response of G†
t,j to xt,j is

∇xt,j
G†

t,j = G†
t,j(1 − G†

t,j)θ, j = 0, . . . , J.

This shows that each choice probability is affected not only by xt,j but also the regressors

for other choices, xt,i.

The conditional logit model may be understood under a random utility framework

(McFadden, 1974). Given the random utility of the choice j:

Ut,j = x′
t,jθ + εt,j , j = 0, 1, . . . , J,

the alternative i would be chosen if

IP(yt = i|xt) = IP(Ut,i > Ut,j, for all j �= i|xt).
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274 CHAPTER 10. QUASI-MAXIMUM LIKELIHOOD: APPLICATIONS

Suppose that εt,j are independent random variables across j such that they have the

type I extreme value distribution: exp[− exp(−εt,j)]. To see how this setup leads to

a conditional logit model, consider the simple case that there are 3 choices (J = 2).

Letting μt,j = x′
t,jθ we have

IP(yt = 2|xt) = IP(εt,2 + μt,2 − μt,1 > εt,1 and εt,2 + μt,2 − μt,0 > εt,0)

=
∫ ∞

−∞
f(εt,2)

(∫ εt,2+μt,2−μt,1

−∞
f(εt,1) dεt,1

)
(∫ εt,2+μt,2−μt,0

−∞
f(εt,0) dεt,0

)
dεt,2,

where f(εt,j) is the type I extreme value density function: exp(−εt,j) exp[− exp(−εt,j)].

Then,

IP(yt = 2|xt) =
∫ ∞

−∞
exp(−εt,2) exp[− exp(−εt,2)] exp[− exp(−εt,2 − μt,2 + μt,1)]

× exp[− exp(−εt,2 − μt,2 + μt,0)] dεt,2

=
exp(μt,2)

exp(μt,0) + exp(μt,1) + exp(μt,2)
.

This is precisely the conditional logit specification of IP(yt = 2|xt). The specifications

for other conditional probabilities can be obtained similarly. Thus, the conditional logit

model hinges on the condition that the choices must be quite different such that they

are independent of each other. This is also known as the condition of independence

of irrelevant alternatives (IIA). The IIA condition may not hold in applications and

therefore must be tested empirically.

10.2.3 Ordered Data

In some applications, the multiple categories of interest may have a natural ordering,

such as the levels of education, opinion, and price. In particular, yt is said to be ordered

if

yt =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, y∗t ≤ c1

1, c1 < y∗t ≤ c2
...

J, cJ < y∗t ;

otherwise, it is unordered. The variable yt in Section 10.2.1 is unordered.
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10.3. MODELS OF COUNT DATA 275

Setting y∗t = x′
tθ + et, the conditional probabilities are:

IP(yt = j|xt) = IP(cj < y∗t < cj+1 | xt)

= F (cj+1 − x′
tθ) − F (cj − x′

tθ), j = 0, 1, . . . , J,

where c0 = −∞, cJ+1 = ∞, and F is the distribution of et. When F is the logistic

distribution function G, this is the ordered logit model; when F is the standard normal

distribution function Φ, it is the ordered probit model. The quasi-log-likelihood function

of the ordered model is

LT (θ) =
1
T

T∑
t=1

J∑
j=0

log[F (cj+1 − x′
tθ) − F (cj − x′

tθ)],

from which we can easily compute its gradient and Hessian matrix. Pratt (1981) showed

that the Hessian matrix is negative definite so that the quasi-log-likelihood function is

globally concave. The marginal responses of the choice probabilities to the change of

the variables can be easily calculated. For the ordered probit model, these responses

are

∇xt
IP(yt = j|xt) =

⎧⎪⎪⎨
⎪⎪⎩

−φ(c1 − x′
tθ)θ, j = 0[

φ(cj − x′
tθ) − φ(cj+1 − x′

tθ)
]
θ, j = 1, . . . , J − 1,

φ(cJ − x′
tθ)θ, j = J.

See Exercise 10.5 for the marginal responses of the ordered logit model.

10.3 Models of Count Data

In practice, there are integer-valued dependent variables that are not categorical, such

as the number of accidents of a plant or the number of patents filed by a company. Such

data, also known as count data, differ from categorical data in that they represent the

intensity of the occurrence of an event.

It is typical to postulate a Poisson distribution for the conditional probability of the

count data yt = 0, 1, 2, . . .:

IP(yt|xt) = exp(−λt)
λyt

t

yt!
,

where the parameter λt, which is also the conditional mean, has a log-linear form:

log λt = x′
tθ.
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The quasi-log-likelihood function is then

LT (θ) =
1
T

T∑
t=1

[−λt + yt log(λt) − log(yt!)
]

=
1
T

T∑
t=1

[− exp(x′
tθ) + yt(x

′
tθ) − log(yt!)

]
.

The gradient vector is

∇θLT (θ) =
1
T

T∑
t=1

[yt − exp(x′
tθ)]xt,

and the Hessian matrix is

∇2
θLT (θ) = − 1

T

T∑
t=1

exp(x′
tθ)xtx

′
t.

Since exp(x′
tθ) are non-negative, the Hessian matrix is also negative definite on the

parameter space.

A drawback of the Poisson specification is that it in effect restricts the conditional

variance to be the same as the conditional mean λt. Writing

yt = exp(x′
tθ) + et,

we simply have a nonlinear specification of the conditional mean function without re-

stricting the conditional variance. Such a specification does not consider the feature

that yt are discrete-valued count data, however.

10.4 Models of Limited Dependent Variables

There are also numerous economic applications in which a dependent variable can only

be observed within a limited range. Such a variable is known as a limited dependent

variable. For example, in the study of the household expenditure on durable goods,

Tobin (1958) noticed that positive expenditures can be observed only when households

spend more than the cheapest available price; potential expenditures below the “mini-

mum” price are not observable but appear as zeros. In this case, the expenditure data

are said to be censored. On the other hand, data may be truncated if they are com-

pletely lost outside a given range; for example, income data may be truncated when

they are below certain level. A proper specification for a limited dependent variable

must take data censoring or truncation into account, as will be apparent in subsequent

sub-sections.
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10.4.1 Truncated Regression Models

First consider the dependent variable yt which is truncated from below at c, i.e., yt > c.

The conditional density of truncated yt is

g̃(yt|yt > c,xt) = g(yt|xt)/ IP(yt > c|xt),

and we may approximate g(yt|xt) using

f(yt|xt;β, σ2) =
1√

2πσ2
exp

(
−(yt − x′

tβ)2

2σ2

)
=

1
σ

φ
(yt − x′

tβ

σ

)
.

Setting ut = yt/σ, we have

IP(yt > c|xt) =
1
σ

∫ ∞

c
φ
(yt − x′

tβ

σ

)
dyt

=
∫ ∞

(c−x′
tβ)/σ

φ(ut) dut

= 1 − Φ
(c − x′

tβ

σ

)
.

It follows that the truncated density function g̃(yt|yt > c,xt) can be approximated by

f(yt|yt > c,xt;β, σ2) =
φ[(yt − x′

tβ)/σ]
σ
[
1 − Φ

(
(c − x′

tβ)/σ
)] ,

which, of course, depends on the truncation parameter c.

The quasi-log-likelihood function is therefore

−1
2
[log(2π) + log(σ2)] − 1

2Tσ2

T∑
t=1

(yt − x′
tβ)2 − 1

T

T∑
t=1

log
[
1 − Φ

(c − x′
tβ

σ

)]
.

Reparameterizing by α = β/σ and γ = σ−1, we have

LT (θ) = − log(2π)
2

+ log(γ) − 1
2T

T∑
t=1

(γyt − x′
tα)2 − 1

T

T∑
t=1

log
[
1 − Φ(γc − x′

tα)
]
,

where θ = (α′ γ)′. The first-order condition is

∇θLT (θ) =

⎡
⎣ 1

T

∑T
t=1

[
(γyt − x′

tα) − φ(γc−x′
tα)

1−Φ(γc−x′
tα)

]
xt

1
γ − 1

T

∑T
t=1

[
(γyt − x′

tα)yt − φ(γc−x′
tα)

1−Φ(γc−x′
tα)

c
]
⎤
⎦ = 0,

from which we can solve for the QMLE of θ. It can be verified that LT (θ) is globally

concave in θ.
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When f(yt|yt > c,xt;θo) is the correct specification for g̃(yt|yt > c,xt), it is not too

difficult to derive the conditional mean of truncated yt as

IE(yt|yt > c,xt) =
∫ ∞

c
ytf(yt|yt > c,xt;θo) dyt

= x′
tβo + σo

φ
(
(c − x′

tβo)/σo

)
1 − Φ

(
(c − x′

tβo)/σo

) ;
(10.1)

which differs from x′
tβo by a nonlinear term; see Exercise 10.8. Thus, the OLS estimator

of regressing yt on xt would be inconsistent for βo when yt are truncated. This also

shows why a proper model must consider data truncation.

Define the hazard function λ as

λ(u) = φ(u)/[1 − Φ(u)],

which is also known as the inverse Mill’s ratio. Setting ut = (c−x′
tβo)/σo, the truncated

mean can be expressed as

IE(yt|yt > c,xt) = x′
tβo + σoλ(ut).

It can also be shown that the truncated variance is

var(yt|yt > c,xt) = σ2
o

[
1 − λ2(ut) + λ(ut)ut

]
,

instead of σ2
o ; see Exercise 10.9. The marginal response of IE(yt|yt > c,xt) to a change

of xt is

βo

[
1 − λ2(ut) + λ(ut)ut

]
=

βo

σ2
o

var(yt|yt > c,xt),

which depends on the truncated variance.

Consider now the case that the dependent variable yt is truncated from above at c,

i.e., yt < c. The truncated density function g̃(yt|yt < c,xt) can be approximated by

f(yt|yt < c,xt;β, σ2) =
φ[(yt − x′

tβ)/σ]
σ Φ

(
(c − x′

tβ)/σ
) .

Then, analogous to (10.1), we have

IE(yt|yt < c,xt) = x′
tβo − σo

φ
(
(c − x′

tβo)/σo

)
Φ
(
(c − x′

tβo)/σo

) ,

with the inverse Mill’s ratio λ(u) = −φ(u)/Φ(u).
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10.4.2 Censored Regression Models

Consider the following censored dependent variable:

yt =

{
y∗t , y∗t > 0,

0, y∗t ≤ 0,

where y∗t = x′
tβ + et is an index variable. It does not matter whether the threshold

value of y∗t is zero or a non-zero constant c (e.g., the cheapest available price) because

c can always be absorbed into the constant term in the specification of y∗t .

Let g and g∗ denote, respectively, the densities of yt and y∗t conditional on xt.

When y∗t > 0, g(yt|xt) = g∗(y∗t |xt), and when y∗t ≤ 0, censoring yields the conditional

probability

IP(yt = 0|xt) =
∫ 0

−∞
g∗(y∗t |xt) dy∗t .

In the standard Tobit model (Tobin, 1958), g∗(y∗t |xt) is approximated by

f(y∗t |xt;β, σ2) =
1√

2πσ2
exp

(
−(y∗t − x′

tβ)2

2σ2

)
=

1
σ

φ
(y∗t − x′

tβ

σ

)
.

For y∗t ≤ 0, IP{yt = 0|xt} is approximated by

1
σ

∫ 0

−∞
φ((y∗t − x′

tβ)/σ) dy∗t =
∫ −x′

tβ/σ

−∞
φ(vt) dvt = 1 − Φ

(x′
tβ

σ

)
.

Letting α = β/σ and γ = σ−1, the model would be correctly specified for {y∗t |xt} if

there exists θo = (α′
o γo)

′ such that f(y∗t |xt;θo) = g∗(y∗t |xt).

Given the specification above, the quasi-log-likelihood function is

− T1

2T
[log(2π) + log(σ2)] +

1
T

∑
{t:yt=0}

log(1−Φ(x′
tβ/σ))− 1

2T

∑
{t:yt>0}

[(yt −x′
tβ)/σ]2,

where T1 is the number of t such that yt > 0. The QMLE of θ = (α′ γ)′ can then be

obtained by maximizing

LT (θ) =
1
T

⎛
⎝ ∑

{t:yt=0}
log(1 − Φ(x′

tα)) + T1 log γ − 1
2

∑
{t:yt>0}

(γyt − x′
tα)2

⎞
⎠.

The first order condition is

∇θLT (θ) =
1
T

⎡
⎣ −∑

{t:yt=0}
φ(x′

tα)
1−Φ(x′

tα)xt +
∑

{t:yt>0}(γyt − x′
tα)xt

T1
γ −∑

{t:yt>0}(γyt − x′
tα)yt.

⎤
⎦ = 0,
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from which the QMLE can be computed. Again, LT (θ) is globally concave in α and γ.

The conditional mean of censored yt is

IE(yt|xt) = IE(yt|yt > 0,xt) IP(yt > 0|xt) + IE(yt|yt = 0,xt) IP(yt = 0|xt)

= IE(y∗t |y∗t > 0,xt) IP(y∗t > 0|xt).

When f(y∗t |xt;β, σ2) is correctly specified for g∗(y∗t |xt),

IP(y∗t > 0|xt) = IP
(

y∗t − x′
tβo

σo

>
−x′

tβo

σo

∣∣∣∣xt

)
= Φ(x′

tβo/σo).

This leads to the following conditional density:

g̃(y∗t |y∗t > 0,xt) =
g∗(y∗t |xt)

IP(y∗t > 0|xt)
=

φ[(y∗t − x′
tβo)/σo]

σo Φ(x′
tβo/σo)

.

Then, analogous to (10.1), we have

IE(y∗t |y∗t > 0,xt) =
∫ ∞

0
y∗t g̃(y∗t |y∗t > 0,xt) dy∗t

= x′
tβo + σo

φ(x′
tβo/σo)

Φ(x′
tβo/σo)

;
(10.2)

see Exercise 10.10. It follows that

IE(yt|xt) = x′
tβoΦ(x′

tβo/σo) + σoφ(x′
tβo/σo).

This shows that x′
tβ can not be the correct specification of the conditional mean of

censored yt. Similar to truncated regression models, regressing yt on xt results in an

inconsistent estimator for βo. It is also easy to calculate that the marginal response of

IE(yt|xt) to a change of xt is βoΦ(x′
tβo/σo).

Consider the case that yt is censored from above:

yt =

{
y∗t , y∗t < 0,

0, y∗t ≥ 0,

where y∗t = x′
tβ + et. When f(y∗t |xt;β, σ2) is correctly specified for g∗(y∗t |xt),

IP(y∗t < 0|xt) = 1 − Φ(x′
tβo/σo).

Then,

g̃(y∗t |y∗t < 0,xt) =
g∗(y∗t |xt)

IP(y∗t < 0|xt)
=

φ[(y∗t − x′
tβo)/σo]

σo [1 − Φ(x′
tβo/σo)]

,
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and hence, analogous to (10.2),

IE(y∗t |y∗t < 0,xt) = x′
tβo − σo

φ(x′
tβo/σo)

1 − Φ(x′
tβo/σo)

.

Consequently,

IE(yt|xt) = x′
tβo[1 − Φ(x′

tβo/σo)] − σoφ(x′
tβo/σo).

and its marginal response to a change of xt is βo[1 − Φ(x′
tβo/σo)].

10.4.3 Models of Sample Selection

It is also common to encounter the problem of sample selection or incidental truncation

in empirical studies. For example, in the study on how wages and individual character-

istics determine working hours, the data of working hours are not resulted from random

sampling but from those who select to work. In other words, only those whose market

wages are above their reservation wages (the minimum wages for which they are willing

to work) may be observed. Thus, the decision of working must be related to working

hours.

Consider two variables y1 and yt, where y1 is a binary choice variable. The selection

problem arises when the former affects the latter. These two variables are

y1,t =

{
1, y∗1,t > 0,

0, y∗1,t ≤ 0.

y2,t = y∗2,t, if y1,t = 1,

where y∗1,t = x′
1,tβ + e1,t and y∗2,t = x′

2,tγ + e2,t are index variables. We observe y1,t

but not the index variable y∗1,t. Also, we observe y2,t when y1,t = 1 so that y2,t are

incidentally truncated when y1,t = 0. It is typical to model (y∗1,t y∗2,t)
′ based on a

bivariate normal distribution:

N
((

x′
1,tβ

x′
2,tγ

)
,

[
σ2

1 σ12

σ12 σ2
2

])
.

When this is a correct specification for the conditional distribution of (y∗1,t y∗2,t)
′, the

corresponding true parameters are βo, γo, σ2
1,o, σ2

2,o and σ12,o.

Computing the QMLE based on this bivariate specification is quite complicated.

Heckman (1976) suggest a simpler, two-step estimator for the sample-selection model.
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For notation simplicity, we shall, in what follows, omit the conditioning variables x1,t

and x2,t. First recall that the conditional mean of y2,t given y1,t is

IE(y∗2,t|y∗1,t) = x′
2,tγo + σ12,o(y

∗
1,t − x′

1,tβo)/σ
2
1,o.

The result of the truncated regression model also shows that, when the truncation

parameter c = 0,

IE(y∗1,t|y∗1,t > 0) = x′
1,tβo + σ1,oλ(x′

1,tβo/σ1,o),

with λ(u) = φ(u)/Φ(u). Ptting these results together we have

IE(y∗2,t|y∗1,t > 0) = x′
2,tγo +

σ12,o

σ1,o

λ
(x′

1,tβo

σ1,o

)
.

This motivates the following specification:

y2,t = x′
2,tγ +

σ12

σ1

λ(x′
1,tβ/σ1) + et,

which is a complicated nonlinear regression with heteroskedastic errors.

Heckman’s two-step estimator is computed as follows.

1. Estimate α = β/σ1 based on the probit model of y1,t and denote the estimator as

α̃T .

2. Regress y2,t on x2,t and λ(x′
1,tα̃T ).

As the QMLE α̃T in the first step is consistent for αo, the second step is equivalent to

regressing y2,t on x2,t and λ(x′
1,tαo). Thus, the OLS estimator of regressing y2,t on x2,t

alone, which ignores the λ term, is inconsistent and may have severe sample-selection

bias in finite samples.
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Exercises

10.1 In the logit model with the k× 1 parameter vector θ, consider the null hypothesis

that an s × 1 subvector θ is zero, where s < k. Write down the Wald statistic

with a hteroskedasticity-consistent covariance matrix estimator.

10.2 In the logit model with the k× 1 parameter vector θ, consider the null hypothesis

that an s× 1 subvector θ is zero, where s < k. Write down the LM statistic with

a hteroskedasticity-consistent covariance matrix estimator.

10.3 Construct a PSE test for testing the null hypothesis of a logit model with F (xt;θ) =

G(x′
tθ) against the alternative hypothesis of a probit model with F (xt;θ) =

Φ(x′
tθ).

10.4 In the conditional logit model with the k×1 parameter vector θ, consider the null

hypothesis that an s × 1 subvector θ is zero, where s < k. Write down the Wald

statistic with a hteroskedasticity-consistent covariance matrix estimator.

10.5 For the ordered logit model, find the marginal responses of the choice probabilities

to the change of the variables.

10.6 In the Poisson regression model with the parameter vector θ, consider the null

hypothesis Rθ = r, with R a q × k given matrix. Write down the Wald statistic

with a hteroskedasticity-consistent covariance matrix estimator.

10.7 In the Poisson regression model with the parameter vector θ, consider the null

hypothesis Rθ = r, with R a q × k given matrix. Write down the LM statistic

with a hteroskedasticity-consistent covariance matrix estimator.

10.8 In the truncated regression model with the truncation parameter c, show that

IE(yt|yt > c,xt) is given by (10.1).

10.9 In the truncated regression model with the truncation parameter c, show that

var(yt|yt > c,xt) = σ2
o

[
1− λ2(ut) + λ(ut)ut

]
, where λ(ut) = φ(ut)/[1−Φ(ut)] and

ut = (c − x′
tβo)/σo.

10.10 In the Tobit model, show that IE(y∗t |y∗t > 0,xt) is given by (10.2).
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