
Chapter 9

The Quasi-Maximum Likelihood

Method: Theory

As discussed in preceding chapters, estimating linear and nonlinear regressions by the

least squares method results in an approximation to the conditional mean function of

the dependent variable. While this approach is important and common in practice, its

scope is still limited and does not fit the purposes of various empirical studies. First,

this approach is not suitable for analyzing the dependent variables with special fea-

tures, such as binary and truncated (censored) variables, because it is unable to take

data characteristics into account. Second, it has little room to characterize other con-

ditional moments, such as conditional variance, of the dependent variable. As far as a

complete description of the conditional behavior of a dependent variable is concerned,

it is desirable to specify a density function that admits specifications of different con-

ditional moments and other distribution characteristics. This motivates researchers to

consider the method of quasi-maximum likelihood (QML).

The QML method is essentially the same as the ML method usually seen in statistics

and econometrics textbooks. It is conceivable that specifying a density function, while

being more general and more flexible than specifying a function for conditional mean,

is more likely to result in specification errors. How to draw statistical inferences under

potential model misspecification is thus a major concern of the QML method. By con-

trast, the traditional ML method assumes that the specified density function is the true

density function, so that specification errors are “assumed away.” Therefore, the results

in the ML method are just special cases of the QML method. Our discussion below is

primarily based on White (1994); for related discussion we also refer to White (1982),

Amemiya (1985), Godfrey (1988), and Gourieroux, (1994).
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230 CHAPTER 9. THE QUASI-MAXIMUM LIKELIHOOD METHOD: THEORY

9.1 Kullback-Leibler Information Criterion

We first discuss the concept of information. In a random experiment, suppose that

the event A occurs with probability p. The message that A will surely occur would be

more valuable when p is small but less important when p is large. For example, when

p = 0.99, the message that A will occur is not much informative, but when p = 0.01,

such a message is very helpful. Hence, the information content of the message that A

will occur ought to be a decreasing function of p. A common choice of the information

function is

ι(p) = log(1/p),

which decreases from positive infinity (p ≈ 0) to zero (p = 1). It should be clear that

ι(1 − p), the information that A will not occur, is not the same as ι(p), unless p = 0.5.

The expected information of these two messages is

I = p ι(p) + (1 − p) ι(1 − p) = p log
(1
p

)
+ (1 − p) log

( 1
1 − p

)
.

It is also common to interpret ι(p) as the “surprise” resulted from knowing that the

event A will occur when IP(A) = p. The expected information I is thus also a weighted

average of “surprises” and known as the entropy of the event A.

Similarly, the information that the probability of the event A changes from p to q

would be useful when p and q are very different, but not of much value when p and q

are close. The resulting information content is then the difference between these two

pieces of information:

ι(p) − ι(q) = log(q/p),

which is positive (negative) when q > p (q < p). Given n mutually exclusive events

A1, . . . , An, each with an information value log(qi/pi), the expected information value

is then

I =
n∑

i=1

qi log
( qi
pi

)
.

This idea is readily generalized to discuss the information content of density functions,

as discussed below.

Let g be the density function of the random variable z and f be another density

function. Define the Kullback-Leibler Information Criterion (KLIC) of g relative to f

as

II(g :f) =
∫

R

log
( g(ζ)
f(ζ)

)
g(ζ) dζ.
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9.1. KULLBACK-LEIBLER INFORMATION CRITERION 231

When f is used to describe z, the value II(g : f) is the expected “surprise” resulted from

knowing g is in fact the true density of z. The following result shows that the KLIC of

g relative to f is non-negative.

Theorem 9.1 Let g be the density function of the random variable z and f be another

density function. Then II(g : f) ≥ 0, with the equality holding if, and only if, g = f

almost everywhere (i.e., g = f except on a set with the Lebesgue measure zero).

Proof: Using the fact that log(1 + x) < x for all x > −1, we have

log
( g
f

)
= − log

(
1 +

f − g

g

)
> 1 − f

g
.

It follows that∫
log
( g(ζ)
f(ζ)

)
g(ζ) dζ >

∫ (
1 − f(ζ)

g(ζ)

)
g(ζ) dζ = 0.

Clearly, if g = f almost everywhere, II(g :f) = 0. Conversely, given II(g :f) = 0, suppose

without loss of generality that g = f except that g > f on the set B that has a non-zero

Lebesgue measure. Then,∫
R

log
( g(ζ)
f(ζ)

)
g(ζ) dζ =

∫
B

log
( g(ζ)
f(ζ)

)
g(ζ) dζ >

∫
B

(log 1)g(ζ) dζ = 0,

contradicting II(g :f) = 0. Thus, g must be the same as f almost everywhere. �

Note, however, that the KLIC is not a metric because it is not reflexive in general, i.e.,

II(g :f) �= II(f :g), and it does not obey the triangle inequality; see Exercise 9.1. Hence,

the KLIC is only a crude measure of the closeness between f and g.

Let {zt} be a sequence of R
ν-valued random variables defined on the probability

space (Ω,F , IPo). Without causing any confusion, we shall use the same notations for

random vectors and their realizations. Let

zT = (z1,z2, . . . ,zT )

denote the the information set generated by all zt. The vector zt is divided into two

parts yt and wt, where yt is a scalar and wt is (ν − 1)× 1. Corresponding to IPo, there

exists a joint density function gT for zT :

gT (zT ) = g(z1)
T∏

t=2

gt(zt)
gt−1(zt−1)

= g(z1)
T∏

t=2

gt(zt | zt−1),

where gt denote the joint density of t random variables z1, . . . ,zt, and gt is the density

function of zt conditional on past information z1, . . . ,zt−1. The joint density function
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232 CHAPTER 9. THE QUASI-MAXIMUM LIKELIHOOD METHOD: THEORY

gT is the random mechanism governing the behavior of zT and will be referred to as

the data generation process (DGP) of zT .

As gT is unknown, we may postulate a conditional density function ft(zt | zt−1;θ),

where θ ∈ Θ ⊆ R
k, and approximate gT (zT ) by

fT (zT ;θ) = f(z1)
T∏

t=2

ft(zt | zt−1;θ).

The function fT is referred to as the quasi-likelihood function, in the sense that fT need

not agree with gT . For notation convenience, we set the unconditional density g(z1) (or

f(z1)) as a conditional density and write gT (or fT ) as the product of all conditional

density functions. Clearly, the postulated density fT would be useful if it is close to the

DGP gT . It is therefore natural to consider minimizing the KLIC of gT relative to fT :

II(gT :fT ;θ) =
∫

RT

log
(

gT (ζT )
fT (ζT ;θ)

)
gT (ζT ) d(ζT ). (9.1)

This amounts to minimizing the “surprise” level resulted from specifying an fT for the

DGP gT . As gT does not involve θ, minimizing the KLIC (9.1) with respect to θ is

equivalent to maximizing∫
RT

log(fT (ζT ;θ))gT (ζT ) d(ζT ) = IE[log fT (zT ;θ)],

where IE is the expectation operator with respect to the DGP gT (zT ). This is, in turn,

equivalent to maximizing the average of log ft:

L̄T (θ) =
1
T

IE[log fT (zT ;θ)] =
1
T

IE

(
T∑

t=1

log ft(zt | zt−1;θ)

)
. (9.2)

Let θ∗ be the maximizer of L̄T (θ). Then, θ∗ is also the minimizer of the KLIC (9.1).

If there exists a unique θo ∈ Θ such that fT (zT ;θo) = gT (zT ) for all T , we say that

{ft} is specified correctly in its entirety for {zt}. In this case, the resulting KLIC

II(gT : fT ;θo) = 0 and reaches the minimum. This shows that θ∗ = θo when {ft} is

specified correctly in its entirety.

Maximizing L̄T is, however, not a readily solvable problem because the objective

function (9.2) involves the expectation operator and hence depends on the unknown

DGP gT . It is therefore natural to consider maximizing the sample counterpart of

L̄T (θ):

LT (zT ;θ) :=
1
T

T∑
t=1

log ft(zt | zt−1;θ), (9.3)
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9.1. KULLBACK-LEIBLER INFORMATION CRITERION 233

which is known as the quasi-log-likelihood function. The maximizer of LT (zT ;θ), θ̃T , is

known as the quasi-maximum likelihood estimator (QMLE) of θ. The prefix “quasi” is

used to indicate that this solution may be obtained from a misspecified log-likelihood

function. When {ft} is specified correctly in its entirety for {zt}, the QMLE is under-

stood as the MLE, as in standard statistics textbooks.

Specifying a complete probability model for zT may be a formidable task in practice

because it involves too many random variables (T random vectors zt, each with ν ran-

dom variables). Instead, econometricians are typically interested in modeling a variable

of interest, say, yt, conditional on a set of “pre-determined” variables, say, xt, where xt

includes some elements of wt and zt−1. This is a relatively simple job because only the

conditional behavior of yt need to be considered. As wt are not explicitly modeled, the

conditional density gt(yt | xt) provides only a partial description of {zt}. We then find

a quasi-likelihood function ft(yt | xt;θ) to approximate gt(yt | xt). Analogous to (9.1),

the resulting average KLIC of gt relative to ft is

ĪIT ({gt :ft};θ) :=
1
T

T∑
t=1

II(gt :ft;θ). (9.4)

Let yT = (y1, . . . , yT ) and xT = (x1, . . . ,xT ). Minimizing ĪIT ({gt :ft};θ) in (9.4) is thus

equivalent to maximizing

L̄T (θ) =
1
T

T∑
t=1

IE[log ft(yt | xt;θ)]; (9.5)

cf. (9.2). The parameter θ∗ that maximizes (9.5) must also minimize the average KLIC

(9.4). If there exists a θo ∈ Θ such that ft(yt | xt;θo) = gt(yt | xt) for all t, we say

that {ft} is correctly specified for {yt | xt}. In this case, ĪIT ({gt : ft};θo) is zero, and

θ∗ = θo.

Similar as before, L̄T (θ) is not directly observable, we instead maximize its sample

counterpart:

LT (yT ,xT ;θ) :=
1
T

T∑
t=1

log ft(yt | xt;θ), (9.6)

which will also be referred to as the quasi-log-likelihood function; cf. (9.3). The resulting

solution is the QMLE θ̃T . When {ft} is correctly specified for {yt | xt}, the QMLE θ̃T

is also understood as the usual MLE.

As a special case, one may concentrate on certain conditional attribute of yt and

postulate a specification µt(xt;θ) for this attribute. A leading example is the following
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234 CHAPTER 9. THE QUASI-MAXIMUM LIKELIHOOD METHOD: THEORY

specification of conditional normality with µt(xt;θ) as the specification of its mean:

yt | xt ∼ N
(
µt(xt;β), σ2

)
;

note that conditional variance is not explicitly modeled. Setting θ = (β′ σ2)′, it is easy

to see that the maximizer of the quasi-log-likelihood function T−1
∑T

t=1 log ft(yt | xt;θ)

is also the solution to

min
β

1
T

T∑
t=1

[yt − µt(xt;β)]′ [yt − µt(xt;β)] .

The resulting QMLE of β is thus the NLS estimator. Therefore, the NLS estimator can

be viewed as a QMLE under the assumption of conditional normality with conditional

homoskedasticity. We say that {µt} is correctly specified for the conditional mean

IE(yt | xt) if there exists a θo such that µt(xt;θo) = IE(yt | xt). A more flexible

specification, such as

yt | xt ∼ N
(
µt(xt;β), h(xt;α)

)
,

would allow us to characterize conditional variance as well.

9.2 Asymptotic Properties of the QMLE

The quasi-log-likelihood function is, in general, a nonlinear function in θ, so that the

QMLE thus must be computed numerically using a nonlinear optimization algorithm.

Given that maximizing LT is equivalent to minimizing −LT , the algorithms discussed in

Section 8.2.2 are readily applied. We shall not repeat these methods here but proceed to

the discussion of the asymptotic properties of the QMLE. For our subsequent analysis,

we always assume that the specified quasi-log-likelihood function is twice continuously

differentiable on the compact parameter space Θ with probability one and that inte-

gration and differentiation can be interchanged. Moreover, we maintain the following

identification condition.

[ID-2] There exists a unique θ∗ that minimizes the KLIC (9.1) or (9.4).

9.2.1 Consistency

We sketch the idea of establishing the consistency of the QMLE. In the light of the

uniform law of large numbers discussed in Section 8.3.1, we know that if LT (zT ;θ) (or

LT (yT ,xT ;θ)) tends to L̄T (θ) uniformly in θ ∈ Θ, i.e., LT (zT ;θ) obeys a WULLN, then
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9.2. ASYMPTOTIC PROPERTIES OF THE QMLE 235

θ̃T → θ∗ in probability. This shows that the QMLE is a weakly consistent estimator

for the minimizer of KLIC II(gT : fT;θ) (or the average KLIC ĪIT ({gt : ft};θ)), whether

the specification is correct or not. When {ft} is specified correctly in its entirety (or

for {yt | xt}), the KLIC minimizer θ∗ is also the true parameter θo. In this case, the

QMLE is weakly consistent for θo. Therefore, the conditions required to ensure QMLE

consistency are also those for a WULLN; we omit the details.

9.2.2 Asymptotic Normality

Consider first the specification of the quasi-log-likelihood function for zT : LT (zT ;θ).

When θ∗ is in the interior of Θ, the mean-value expansion of ∇LT (zT ; θ̃T ) about θ∗ is

∇LT (zT ; θ̃T ) = ∇LT (zT ;θ∗) + ∇2LT (zT ;θ†
T )(θ̃T − θ∗), (9.7)

where θ†
T is between θ̃T and θ∗. Note that requiring θ∗ in the interior of Θ is to ensure

that the mean-value expansion and subsequent asymptotics are valid in the parameter

space.

The left-hand side of (9.7) is zero because the QMLE θ̃T solves the first order

condition ∇LT (zT ;θ) = 0. Then, as long as ∇2LT (zT ;θ†
T ) is invertible with probability

one, (9.7) can be written as

√
T (θ̃T − θ∗) = −∇2LT (zT ;θ†

T )−1
√
T ∇LT (zT ;θ∗).

Note that the invertibility of ∇2LT (zT ;θ†
T ) amounts to requiring quasi-log-likelihood

function LT being locally quadratic at θ∗. Let IE[∇2LT (zT ;θ)] = HT (θ) be the ex-

pected Hessian matrix. When ∇2LT (zT ;θ†
T ) obeys a WULLN, we have

∇2LT (zT ;θ) − HT (θ) IP−→ 0,

uniformly in Θ. As θ̃T is weakly consistent for θ∗, so is θ†
T . The assumed WULLN then

implies that

∇2LT (zT ;θ†
T ) − HT (θ∗) IP−→ 0.

It follows that

√
T (θ̃T − θ∗) = −HT (θ∗)−1

√
T ∇LT (zT ;θ∗) + oIP(1). (9.8)

This shows that the asymptotic distribution of
√
T (θ̃T − θ∗) is essentially determined

by the asymptotic distribution of the normalized score:
√
T ∇LT (zT ;θ∗).
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236 CHAPTER 9. THE QUASI-MAXIMUM LIKELIHOOD METHOD: THEORY

Let BT denote the variance-covariance matrix of the normalized score
√
T∇LT (zT ;θ):

BT (θ) = var
(√
T∇LT (zT ;θ)

)
,

which will also be referred to as the information matrix. Then provided that log ft(zt |
zt−1) obeys a CLT, we have

BT (θ∗)−1/2
√
T
(
∇LT (zT ;θ∗) − IE[∇LT (zT ;θ∗)]

) D−→ N (0, Ik). (9.9)

When differentiation and integration can be interchanged,

IE[∇LT (zT ;θ)] = ∇ IE[LT (zT ;θ)]∇L̄T (θ),

where the right-hand side is the first order derivative of (9.2). As θ∗ is the KLIC

minimizer, ∇L̄T (θ∗) = 0 so that IE[∇LT (zT ;θ∗)] = 0. By (9.8) and (9.9),

√
T (θ̃T − θ∗) = −HT (θ∗)BT (θ∗)1/2

[
BT (θ∗)−1/2

√
T ∇LT (zT ;θ∗)

]
+ oIP(1),

which has an asymptotic normal distribution. This immediately leads to the following

result.

Theorem 9.2 When (9.7), (9.8) and (9.9) hold,

CT (θ∗)−1/2
√
T (θ̃T − θ∗) D−→ N (0, Ik),

where

CT (θ∗) = HT (θ∗)−1BT (θ∗)HT (θ∗)−1,

with HT (θ∗) = IE[∇2LT (zT ;θ∗)] and BT (θ∗) = var
(√
T∇LT (zT ;θ∗)

)
.

Remark: For the specification of {yt | xt}, the QMLE is obtained from the quasi-log-

likelihood function LT (yT ,xT ;θ), and its asymptotic normality holds similarly as in

Theorem 9.2. That is,

CT (θ∗)−1/2
√
T (θ̃T − θ∗) D−→ N(0, Ik),

where CT (θ∗) = HT (θ∗)−1BT (θ∗)HT (θ∗)−1 with HT (θ∗) = IE[∇2LT (yT ,xT ;θ∗)] and

BT (θ∗) = var
(√
T∇LT (yT ,xT ;θ∗)

)
.
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9.3. INFORMATION MATRIX EQUALITY 237

9.3 Information Matrix Equality

A useful result in the quasi-maximum likelihood theory is the information matrix equal-

ity. This equality shows that, under certain conditions, the information matrix BT (θ)

is the same as the negative of the expected Hessian matrix −HT (θ) so that the covari-

ance matrix CT (θ) can be simplified. In such a case, the estimation of CT (θ) would be

much simpler.

Define the following score functions: st(zt;θ) = ∇ log ft(zt | zt−1;θ). The average

of these scores is

sT (zT ;θ) = ∇LT (zT ;θ) =
1
T

T∑
t=1

st(z
t;θ).

Clearly, st(zt;θ)ft(zt | zt−1;θ) = ∇ft(zt | zt−1;θ). It follows that

sT (zT ;θ)fT (zT ;θ) =

(
1
T

T∑
t=1

st(z
t;θ)

)(
T∏

t=1

f τ (zτ | zτ−1;θ)

)

=
1
T

T∑
t=1

⎛⎝∇ft(zt|zt−1;θ)
∏
τ �=t

f τ (zτ | zτ−1;θ)

⎞⎠
=

1
T
∇fT (zT ;θ).

As
∫
fT (zT ;θ) dzT = 1, its derivative must be zero. By permitting interexchange of

differentiation and integration we have

0 =
1
T

∫
∇fT (zT ;θ) dzT =

∫
sT (zT ;θ)fT (zT ;θ) dzT ,

and

0 =
1
T

∫
∇2fT (zT ;θ) dzT

=
∫ [

∇sT (zT ;θ) + TsT (zT ;θ)sT (zT ;θ)′
]
fT (zT ;θ) dzT .

The equalities are simply the expectations with respect to fT (zT ;θ), yet they need not

hold when the integrator is not fT (zT ;θ).

If {ft} is correctly specified in its entirety for {zt}, the results above imply IE[sT (zT ;θo)] =

0 and

IE[∇sT (zT ;θo)] + T IE[sT (zT ;θo)s
T (zT ;θo)

′] = 0,

where the expectations are taken with respect to the true density gT (zT ) = fT (zT ;θo).

This is the information matrix equality stated below.
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238 CHAPTER 9. THE QUASI-MAXIMUM LIKELIHOOD METHOD: THEORY

Theorem 9.3 Suppose that there exists a θo such that ft(zt | zt−1;θo)} = gt(zt | zt−1).

Then,

HT (θo) + BT (θo) = 0,

where HT (θo) = IE[∇2LT (zT ;θo)] and BT (θo) = var
(√
T∇LT (zT ;θo)

)
.

When this equality holds, the covariance matrix CT in Theorem 9.2 simplifies to

CT (θo) = BT (θo)
−1 = −HT (θo)

−1.

That is, the QMLE achieves the Cramér-Rao lower bound asymptotically.

On the other hand, when fT is not a correct specification for zT , the score function

is not related to the true density gT . Hence, there is no guarantee that the mean score

is zero, i.e.,

IE[sT (zT ;θ)] =
∫

sT (zT ;θ)gT (zT ) dzT �= 0,

even when this expectation is evaluated at θ∗. By the same reason,

IE[∇sT (zT ;θ)] + T IE[sT (zT ;θ)sT (zT ;θ)′] �= 0,

even when it is evaluated at θ∗.

For the specification of {yt | xt}, we have ∇ft(yt | xt;θ) = st(yt,xt;θ)ft(yt | xt;θ),

and
∫
ft(yt | xt;θ) dyt = 1. Similar as above,∫

st(yt,xt;θ)ft(yt | xt;θ) dyt = 0,

and ∫
[∇st(yt,xt;θ) + st(yt,xt;θ)st(yt,xt;θ)′] ft(yt | xt;θ) dyt = 0.

If {ft} is correctly specified for {yt | xt}, we have IE[st(yt,xt;θo) | xt] = 0. Then by

the law of iterated expectations, IE[st(yt,xt;θo)] = 0, so that the mean score is still

zero under correct specification. Moreover,

IE[∇st(yt,xt;θo) | xt] + IE[st(yt,xt;θo)st(yt,xt;θo)
′ | xt] = 0,

which implies

1
T

T∑
t=1

IE[∇st(yt,xt;θo)] +
1
T

T∑
t=1

IE[st(yt,xt;θo)st(yt,xt;θo)
′]

= HT (θo) +
1
T

T∑
t=1

IE[st(yt,xt;θo)st(yt,xt;θo)
′]

= 0.
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9.3. INFORMATION MATRIX EQUALITY 239

The equality above is not necessarily equivalent to the information matrix equality,

however.

To see this, consider the specifications {ft(yt | xt;θ)}, which are correct for {yt | xt}.
These specifications are said to have dynamic misspecification if they are not correctly

specified for {yt | wt,z
t−1}. That is, there does not exist any θo such that ft(yt |

xt;θo) = gt(yt | wt,z
t−1). Thus, the information contained in wt and zt−1 cannot be

fully represented by xt. On the other hand, when dynamic misspecification is absent,

it is easily seen that

IE[st(yt,xt;θo) | xt] = IE[st(yt,xt;θo) | wt,z
t−1]. (9.10)

It is then easily verified that

BT (θo) =
1
T

IE

[(
T∑

t=1

st(yt,xt;θo)

)(
T∑

t=1

st(yt,xt;θo)
′
)]

=
1
T

T∑
t=1

IE[st(yt,xt;θo)st(yt,xt;θo)
′] +

1
T

T−1∑
τ=1

T∑
t=τ+1

IE[st−τ (yt−τ ,xt−τ ;θo)st(yt,xt;θo)
′] +

1
T

T−1∑
τ=1

T∑
t=τ+1

IE[st(yt,xt;θo)st+τ (yt+τ ,xt+tau;θo)
′]

=
1
T

T∑
t=1

IE[st(yt,xt;θo)st(yt,xt;θo)
′],

where the last equality holds by (9.10) and the law of iterated expectations. When there

is dynamic misspecification, the last equality fails because the covariances of scores

do not vanish. This shows that the average of individual information matrices, i.e.,

var(st(yt,xt;θo)), need not be the information matrix.

Theorem 9.4 Suppose that there exists a θo such that ft(yt | xt;θo) = gt(yt | xt) and

there is no dynamic misspecification. Then,

HT (θo) + BT (θo) = 0,

where HT (θo) = T−1
∑T

t=1 IE[∇st(yt,xt;θo)] and

BT (θo) =
1
T

T∑
t=1

IE[st(yt,xt;θo)st(yt,xt;θo)
′].
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240 CHAPTER 9. THE QUASI-MAXIMUM LIKELIHOOD METHOD: THEORY

When Theorem 9.4 holds, the covariance matrix needed to normalize
√
T (θ̃T −θo) again

simplifies to BT (θo)
−1 = −HT (θo)

−1, and the QMLE achieves the Cramér-Rao lower

bound asymptotically.

Example 9.5 Consider the following specification: yt | xt ∼ N (x′
tβ, σ

2) for all t. Let

θ = (β′ σ2)′, then

log f(yt | xt;θ) = −1
2

log(2π) − 1
2

log(σ2) − (yt − x′
tβ)2

2σ2
,

and

LT (yT ,xT ;θ) = −1
2

log(2π) − 1
2

log(σ2) − 1
T

T∑
t=1

(yt − x′
tβ)2

2σ2
.

Straightforward calculation yields

∇LT (yT ,xT ;θ) =
1
T

T∑
t=1

⎡⎣ xt(yt−x′
tβ)

σ2

− 1
2σ2 + (yt−x′

tβ)2

2(σ2)2

⎤⎦ ,
∇2LT (yT ,xT ;θ) =

1
T

T∑
t=1

⎡⎣ −xtx′
t

σ2 −xt(yt−x′
tβ)

(σ2)2

− (yt−x′
tβ)x′

t
(σ2)2

1
2(σ2)2 − (yt−x′

tβ)2

(σ2)3

⎤⎦ .
Setting ∇LT (yT ,xT ;θ) = 0 we can solve for β to obtain the QMLE. It is easily verified

that the QMLE of β is the OLS estimator β̂T and that the QMLE of σ2 is the average

of the OLS residuals: σ̃2
T = T−1

∑T
t=1(yt − x′

tβ̂T )2.

If the specification above is correct for {yt | xt}, there exists θo = (β′
o σ

2
o)′ such

that the conditional distribution of yt given xt is N (x′
tβo, σ

2
o). Taking expectation with

respect to the true distribution function, we have

IE[xt(yt − x′
tβ)] = IE(xtx

′
t)(βo − β),

which is zero when evaluated at β = βo. Similarly,

IE[(yt − x′
tβ)2] = IE[(yt − x′

tβo + x′
tβo − x′

tβ)2]

= IE[(yt − x′
tβo)

2] + IE[(x′
tβo − x′

tβ)2]

= σ2
o + IE[(x′

tβo − x′
tβ)2],

where the second term on the right-hand side is zero if it is evaluated at β = βo. These

results together show that

HT (θ) = IE[∇2LT (θ)]

=
1
T

T∑
t=1

⎡⎣ − IE(xtx′
t)

σ2 − IE(xtx′
t)(βo−β)

(σ2)2

− (βo−β)′ IE(xtx′
t)

(σ2)2
1

2(σ2)2
− σ2

o+IE[(x′
tβo−x′

tβ)2]
(σ2)3

⎤⎦ .
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When this matrix is evaluated at θo = (β′
o σ

2
o)

′,

HT (θo) =
1
T

T∑
t=1

⎡⎣ − IE(xtx′
t)

σ2
o

0

0 − 1
2(σ2

o)2

⎤⎦ .
If there is no dynamic misspecification,

BT (θ) =
1
T

T∑
t=1

IE

⎡⎣ (yt−x′
tβ)2xtx′

t
(σ2)2

−xt(yt−x′
tβ)

2(σ2)2
+ xt(yt−x′

tβ)3

2(σ2)3

− (yt−x′
tβ)x′

t
2(σ2)2 + (yt−x′

tβ)3x′
t

2(σ2)3
1

4(σ2)2 − (yt−x′
tβ)2

2(σ2)3 + (yt−x′
tβ)4

4(σ2)4

⎤⎦ .
Given that yt is conditionally normally distributed, its conditional third and fourth

central moments are zero and 3(σ2
o)

2, respectively. It can then be verified that

IE[(yt − x′
tβ)3] = −3σ2

o IE[(x′
tβo − x′

tβ)] − IE[(x′
tβo − x′

tβ)3], (9.11)

which is zero when evaluated at β = βo, and that

IE[(yt − x′
tβ)4] = 3(σ2

o)
2 + 6σ2

o IE[(x′
tβo − x′

tβ)2] + IE[(x′
tβo − x′

tβ)3], (9.12)

which is 3(σ2
o)

2 when evaluated at β = βo; see Exercise 9.2. Consequently,

BT (θo) =
1
T

T∑
t=1

⎡⎣ IE(xtx′
t)

σ2
o

0

0 1
2(σ2

o)2

⎤⎦ .
This shows that the information matrix equality holds.

A typical consistent estimator of HT (θo) is

HT (θ̃T ) = −

⎡⎣ ∑T
t=1 xtx′

t

T σ̃2
T

0

0 1
2(σ̃2

T )2

⎤⎦ .
Due to the information matrix equality, a consistent estimator of BT (θo) is BT (θ̃T ) =

−HT (θ̃T ). It can be seen that the upper-left block of HT (θ̃T ) is the standard estimator

for the covariance matrix of β̂T . On the other hand, when there is dynamic missepcifi-

cation, BT (θ) is not the same as given above so that the information matrix equality

fails; see Exercise 9.3. �

The information matrix equality may also fail in different circumstances. The ex-

ample below shows that, even when the specification for IE(yt | xt) is correct and there

is no dynamic misspecification, the information matrix equality may still fail to hold

if there is misspecification of other conditional moments, such as neglected conditional

heteroskedasticity.
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Example 9.6 Consider the specification as in Example 9.5: yt | xt ∼ N (x′
tβ, σ

2) for

all t. Suppose that the DGP is

yt | xt ∼ N
(
x′

tβo, h(x
′
tγo)
)
,

where the conditional variance h(x′
tγo) varies with xt. Then, this specification includes

a correct specification for the conditional mean but itself is incorrect for {yt | xt} because

it ignores conditional heteroskedasticity. From Example 9.5 we see that the upper-left

block of HT (θ) is

− 1
σ2T

T∑
t=1

IE(xtx
′
t)σ

2,

and that the corresponding block of BT (θ) is

1
T

T∑
t=1

IE[(yt − x′
tβ)2xtx

′
t]

(σ2)2
.

As the specification is correct for the conditional mean but not the conditional variance,

the KLIC minimzer is θ∗ = (β′
o, (σ

∗)2)′. Evaluating the submatrix of HT (θ) at θ∗ yields

− 1
(σ∗)2T

T∑
t=1

IE(xtx
′
t),

which differs from the corresponding submatrix of BT (θ) evaluated at θ∗:

1
(σ∗)4T

T∑
t=1

IE[h(x′
tγo)

2xtx
′
t].

Thus, the information matrix equality breaks down, despite that the conditional mean

specification is correct.

A consistent estimator of HT (θ∗) is

HT (θ̃T ) = −

⎡⎣ ∑T
t=1 xtx′

t

T σ̃2
T

0

0 1
2(σ̃2

T )2

⎤⎦ ,
yet a consistent estimator of BT (θ∗) is

BT (θ̃T ) =

⎡⎣
∑T

t=1 ê2
t xtx′

t

T (σ̃2
T )2

0

0 − 1
4(σ̃2

T )2
+
∑T

t=1 ê4
t

T 4(σ̃2
T )4

⎤⎦ ;
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see Exercise 9.4. Due to the block diagonality of H(θ̃T ) and B(θ̃T ), it is easy to verify

that the upper-left block of H(θ̃T )−1B(θ̃T )H(θ̃T )−1 is(
1
T

T∑
t=1

xtx
′
t

)−1(
1
T

T∑
t=1

ê2t xtx
′
t

)(
1
T

T∑
t=1

xtx
′
t

)−1

.

This is precisely the the Eicker-White estimator (6.10) for the covariance matrix of the

OLS estimator β̂T , as shown in Section 6.3.1. �

9.4 Hypothesis Testing

In this section we discuss three classical large sample tests (Wald, LM, and likelihood

ratio tests), the Hausman (1978) test, and the information matrix test of White (1982,

1987) for the null hypothesis Rθ∗ = r, where R is q × k matrix with full row rank.

Failure to reject the null hypothesis suggests that there is no empirical evidence against

the specified model under the null hypothesis.

9.4.1 Wald Test

Similar to the Wald test for linear regression discussed in Section 6.4.1, the Wald test

under the QMLE framework is based on the difference Rθ̃T ) − r. From (9.8),

√
TR(θ̃T − θ∗) = −RHT (θ∗)−1BT (θ∗)1/2

[
BT (θ∗)−1/2

√
T ∇LT (zT ;θ∗)

]
+ oIP(1).

This shows that RCT (θ∗)R′ = RHT (θ∗)−1BT (θ∗)HT (θ∗)−1R′ can be used to normal-

ize
√
TR(θ̃T −θ∗) to obtain asymptotic normality. Under the null hypothesis, Rθ∗ = r

so that

[RCT (θ∗)R′]−1/2
√
T (R(θ̃T − r) D−→ N(0, Iq). (9.13)

This is the key distribution result for the Wald test.

For notation simplicity, we let H̃T = HT (θ̃T ) denote a consistent estimator for

HT (θ∗) and B̃T = BT (θ̃T ) denote a consistent estimator for BT (θ∗). It follows that a

consistent estimator for CT (θ∗) is

C̃T = CT (θ̃T ) = H̃
−1
T B̃T H̃

−1
T .

Substituting C̃T for CT (θ) in (9.13) we have

[R tildebCT (θ∗)R′]−1/2
√
T (R(θ̃T − r) D−→ N(0, Iq). (9.14)
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The Wald test statistic is the inner product of the left-hand side of (9.14):

WT = T (Rθ̃T − r)′(RC̃T R′)−1(Rθ̃T − r). (9.15)

The limiting distribution of the Wald test now follows from (9.14) and the continuous

mapping theorem.

Theorem 9.7 Suppose that Theorem 9.2 for the QMLE θ̃T holds. Then under the null

hypothesis,

WT
D−→ χ2(q),

where WT is defined in (9.15) and q is the number of rows of R.

Example 9.8 Consider the quasi-log-likelihood function specified in Example 9.5. We

write θ = (σ2 β′)′ and β = (b′1 b′2)′, where b1 is (k − s) × 1, and b2 is s × 1. We are

interested in the null hypothesis that b∗2 = Rθ∗ = 0, where R = [0 R1] is s × (k + 1)

and R1 = [0 Is] is s× k. The Wald test can be computed according to (9.15):

WT = T β̃
′
2,T (RC̃T R′)−1β̃2,T ,

where β̃2,T = Rθ̃T is the estimator of b2.

As shown in Example 9.5, when the information matrix equality holds, C̃T = −H̃
−1
T

is block diagnoal so that

RC̃T R′ = −RH̃
−1
T R′ = σ̃2

T R1(X
′X/T )−1R′

1.

The Wald test then becomes

WT = T β̃
′
2,T [R1(X

′X/T )−1R′
1]
−1β̃2,T/σ̃

2
T .

In this case, the Wald test is just s times the standard F statistic which is readily

available from most of econometric packages. �

9.4.2 Lagrange Multiplier Test

Consider now the problem of maximizing LT (θ) subject to the constraint Rθ = r. The

Lagrangian is

LT (θ) + θ′R′λ,
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where λ is the vector of Lagrange multipliers. The maximizers of the Lagrangian and

denoted as θ̈T and λ̈T , where θ̈T is the constrained QMLE of θ. Analogous to Sec-

tion 6.4.2, the LM test under the QML framework also checks whether λ̈T is sufficiently

close to zero.

First note that θ̈T and λ̈T satisfy the saddle-point condition:

∇LT (θ̈T ) + R′λ̈T = 0.

The mean-value expansion of ∇LT (θ̈T ) about θ∗ yields

∇LT (θ∗) + ∇2LT (θ†
T )(θ̈T − θ∗) + R′λ̈T = 0,

where θ†
T is the mean value between θ̈T and θ∗. It has been shown in (9.8) that

√
T (θ̃T − θ∗) = −HT (θ∗)−1

√
T∇LT (θ∗) + oIP(1).

Hence,

−HT (θ∗)
√
T (θ̃T − θ∗) + ∇2LT (θ†

T )
√
T (θ̈T − θ∗) + R′√T λ̈T = oIP(1).

Using the WULLN result: ∇2LT (θ†
T ) − HT (θ∗) IP−→ 0, we obtain

√
T (θ̈T − θ∗) =

√
T (θ̃T − θ∗) − HT (θ∗)−1R′√T λ̈T + oIP(1). (9.16)

This establishes a relationship between the constrained and unconstrained QMLEs.

Pre-multiplying both sides of (9.16) by R and noting that the constrained estimator

θ̈T must satisfy the constraint so that R(θ̈T − θ∗) = 0, we have
√
T λ̈T = [RHT (θ∗)−1R′]−1R

√
T (θ̃T − θ∗) + oIP(1), (9.17)

which relates the Lagrangian multiplier and the unconstrained QMLE θ̃T . When The-

orem 9.2 holds for the normalized θ̃T , we obtain the following asymptotic normality

result for the normalized Lagrangian multiplier:

Λ−1/2
T

√
T λ̈T = Λ−1/2

T [RHT (θ∗)−1R′]−1R
√
T (θ̃T − θ∗) D−→ N(0, Iq), (9.18)

where

ΛT (θ∗) = [RHT (θ∗)−1R′]−1RCT (θ∗)R′[RHT (θ∗)−1R′]−1.

Let ḦT = HT (θ̈T ) denote a consistent estimator for HT (θ∗) and C̈T = CT (θ̈T ) denote

a consistent estimator for CT (θ∗), both based on the constrained QMLE θ̈T . Then,

Λ̈T = (RḦ
−1
T R′)−1RC̈T R′(RḦ

−1
T R′)−1
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is consistent for ΛT (θ∗). It follows from (9.18) that

Λ̈
−1/2
T

√
T λ̈T = Λ̈

−1/2
T (RḦ

−1
T R′)−1R

√
T (θ̃T − θ∗) D−→ N(0, Iq), (9.19)

The LM test statistic is the inner product of the left-hand side of (9.19):

LMT = T λ̈
′
T Λ̈

−1
T λ̈T = T λ̈

′
T RḦ

−1
T R′(RC̈T R′)−1RḦ

−1
T R′λ̈T . (9.20)

The limiting distribution of the LM test now follows easily from (9.19) and the contin-

uous mapping theorem.

Theorem 9.9 Suppose that Theorem 9.2 for the QMLE θ̃T holds. Then under the null

hypothesis,

LMT
D−→ χ2(q),

where LMT is defined in (9.20) and q is the number of rows of R.

Remark: When the information matrix equality holds, the LM statistic (9.20) becomes

LMT = −T λ̈
′
T RḦ

−1
T R′λ̈T = −T∇LT (θ̈T )′Ḧ

−1
T ∇LT (θ̈T ),

which mainly involves the averages of scores: ∇LT (θ̈T ). The LM test is thus a test that

checks if the average of scores is sufficiently close to zero and hence also known as the

score test.

Example 9.10 Consider the quasi-log-likelihood function specified in Example 9.5. We

write θ = (σ2 β′)′ and β = (b′1 b′2)
′, where b1 is (k − s) × 1, and b2 is s × 1. We are

interested in the null hypothesis that b∗2 = Rθ∗ = 0, where R = [0 R1] is s × (k + 1)

and R1 = [0 Is] is s× k. From the saddle-point condition,

∇LT (θ̈T ) = −Rλ̈T .

which can be partitioned as

∇LT (θ̈T ) =

⎡⎢⎢⎢⎣
∇σ2LT (θ̈T )

∇b1
LT (θ̈T )

∇b2
LT (θ̈T )

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0

0

−λ̈T

⎤⎥⎥⎥⎦ = −R′λ̈T .

Partitioning xt accordingly as (x′
1t x′

2t)
′, we have

∇b2
LT (θ̈T ) =

1
T σ̈2

T

T∑
t=1

x2tε̈t = X ′
2ε̈/(T σ̈

2
T ).
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where σ̈2
T = ε̈′ε̈/T , and ε̈ is the vector of constrained residuals obtained from regressing

yt on x1t and X2 is the T×s matrix whose t th row is x′
2t. The LM test can be computed

according to (9.20):

LMT = T

⎡⎢⎢⎢⎣
0

0

X ′
2ε̈/(T σ̈

2
T )

⎤⎥⎥⎥⎦
′

Ḧ
−1
T R′(RC̈T R′)−1RḦ

−1
T

⎡⎢⎢⎢⎣
0

0

X ′
2ε̈/(T σ̈

2
T )

⎤⎥⎥⎥⎦ ,
which converges in distribution to χ2(s) under the null hypothesis. Note that we do

not have to evaluate the complete score vector for computing the LM test; only the

subvector of the score that corresponds to the constraint matters.

When the information matrix equality holds, the LM statistic has a simpler form:

LMT = T [0′ ε̈′X2/T ](X ′X/T )−1[0′ ε̈′X2/T ]′/σ̈2
T

= T [ε̈′X(X ′X)−1X ′ε̈/ε̈′ε̈]

= TR2,

where R2 is the non-centered coefficient of determination obtained from the auxiliary

regression of the constrained residuals ε̈t on x1t and x2t. �

Example 9.11 (Breusch-Pagan) Suppose that the specification is

yt | xt, ζt ∼ N
(
x′

tβ, h(ζ
′
tα)
)
,

where h : R → (0,∞) is a differentiable function, and ζ ′
tα = α0 +

∑p
i=1 ζtiαi. The null

hypothesis is conditional homoskedasticity, i.e., α1 = · · · = αp = 0 so that h(α0) = σ2
0 .

Breusch and Pagan (1979) derived the LM test for this hypothesis under the assumption

that the information matrix equality holds. This test is now usually referred to as the

Breusch-Pagan test.

Note that the constrained specification is yt | xt, ζt ∼ N (x′
tβ, σ

2), where σ2 =

h(α0). This is leads to the standard linear regression model without heteroskedasticity.

The constrained QMLEs for β and σ2 are, respectively, the OLS estimators β̂T and

σ̈2
T =
∑T

t=1 ê
2
t/T , where êt are the OLS residuals. The score vector corresponding to α

is:

∇αLT (yt,xt, ζt;θ) =
1
T

T∑
t=1

[
h′(ζ ′

tα)ζt

2h(ζ ′
tα)

(
(yt − x′

tβ)2

h(ζ ′
tα)

− 1
)]

,
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where h′(η) = dh(η)/ dη. Under the null hypothesis, h′(ζ ′
tα

∗) = h′(α∗
0) is just a

constant, say, c. The score vector above evaluated at the constrained QMLEs is

∇αLT (yt,xt, ζt; θ̈T ) =
c

T

T∑
t=1

[
ζt

2σ̈2
T

(
ε̂2t
σ̈2

T

− 1
)]

.

The (p + 1) × (p + 1) block of the Hessian matrix corresponding to α is

1
T

T∑
t=1

[
−(yt − x′

tβ)2

h3(ζ ′
tα)

+
1

2h2(ζ ′
tα)

]
[h′(ζ ′α)]2ζtζ

′
t

+
[
(yt − x′

tβ)2

2h2(ζ ′
tα)

− 1
2h2(ζ ′

tα)

]
h”(ζ ′α)ζtζ

′
t.

Evaluating the expectation of this block at θ∗ = (βo α
∗
0 0′)′ and noting that (σ∗)2 =

h(α∗
0) we have(

c2

2[(σ∗)2]2

)(
1
T

T∑
t=1

IE(ζtζ
′
t)

)
,

which, apart from the constant c, can be estimated by(
c2

2[σ̈2
T ]2

)(
1
T

T∑
t=1

(ζtζ
′
t)

)
.

The LM test is now readily derived from the results above when the information matrix

equality holds.

Setting dt = ε̂2t/σ̈
2
T − 1, the LM statistic is

LMT =

(
T∑

t=1

dtζ
′
t

)(
T∑

t=1

ζtζ
′
t

)−1( T∑
t=1

ζtdt

)
/2

= d′Z(Z ′Z)−1Z′d/2

D−→ χ2(p),

where d is T×1 with the t th element dt, and Z is the T×(p+1) matrix with the t th row

ζ ′
t. It can be seen that the numerator of the LM statistic is the (centered) regression sum

of squares (RSS) of regressing dt on ζt. This shows that the Breusch-Pagan test can also

be computed by running an auxiliary regression and using the resulting RSS/2 as the

statistic. Intuitively, this amounts to checking whether the variables in ζt are capable

of explaining the square of the (standardized) OLS residuals. It is also interesting to

see that the value of c and the functional form of h do not matter in deriving the
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statistic. The latter feature makes the Breusch-Pagan test a general test for conditional

heteroskedasticity.

Koenker (1981) noted that under conditional normality,
∑T

t=1 d
2
t /T

IP−→ 2. Thus, a

test that is more robust to non-normality and asymptotically equivalent to the Breusch-

Pagan test is to replace the denominator 2 with
∑T

t=1 d
2
t/T . This robust version can be

expressed as

LMT = T [d′Z(Z ′Z)−1Z′d/d′d] = TR2,

where R2 is the (centered) R2 from regressing dt on ζt. This is also equivalent to the

centered R2 from regressing ε̂2t on ζt. �

Remarks:

1. To compute the Breusch-Pagan test, one must specify a vector ζt that determines

the conditional variance. Here, ζt may contain some or all the variables in xt. If

ζt is chosen to include all elements of xt, their squares and pairwise products, the

resulting TR2 is also the White (1980) test for (conditional) heteroskedasticity of

unknown form. The White test can also be interpreted as an “information matrix

test” discussed below.

2. The Breusch-Pagan test is obtained under the condition that the information

matrix equality holds. We have seen that the information matrix equality may

fail when there is dynamic misspecification. Thus, the Breusch-Pagan test is not

valid when, e.g., the errors are serially correlated.

Example 9.12 (Breusch-Godfrey) Given the specification yt | xt ∼ N (x′
tβ, σ

2),

suppose that one would like to check if the errors are serially correlated. Consider first

the AR(1) errors: yt −x′
tβ = ρ(yt−1 − x′

t−1β) + ut with |ρ| < 1 and {ut} a white noise.

The null hypothesis is ρ∗ = 0, i.e., no serial correlation. It can be seen that a general

specification that allows for serial correlations is

yt | yt−1,xt,xt−1 ∼ N (x′
tβ + ρ(yt−1 − x′

t−1β), σ2
u).

The constrained specification is just the standard linear regression model yt = x′
tβ.

Testing the null hypothesis that ρ∗ = 0 is thus equivalent to testing whether an ad-

ditional variable yt−1 − xt−1β should be included in the mean specification. In the

light of Example 9.10, if the information matrix equality holds, the LM test can be

computed as TR2, where R2 is obtained from regressing the OLS residuals ε̂t on xt and
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ε̂t−1 = yt−1 −xt−1β̂T . This is precisely the Breusch (1978) and Godfrey (1978) test for

AR(1) errors with the limiting χ2(1) distribution.

The test above can be extended straightforwardly to check AR(p) errors. By regress-

ing ε̂t on xt and ε̂t−1, . . . , ε̂t−p, the resulting TR2 is the LM test when the information

matrix equality holds and has a limiting χ2(p) distribution. Such tests are known as

the Breusch-Godfrey test. Moreover, if the specification is yt − x′
tβ = ut + αut−1, i.e.,

the errors follow an MA(1) process, we can write

yt | xt, ut−1 ∼ N (x′
tβ + αut−1, σ

2
u).

The null hypothesis is α∗ = 0. It is readily seen that the resulting LM test is identical

to that for AR(1) errors. Thus, the Breusch-Godfrey test for MA(p) errors is the same

as that for AR(p) errors. �

Remarks:

1. The Breusch-Godfrey tests discussed above are obtained under the condition that

the information matrix equality holds. We have seen that the information matrix

equality may fail when, for example, there is neglected conditional heteroskedastic-

ity. Thus, the Breusch-Godfrey tests are not valid when conditional heteroskedas-

ticity is present.

2. It can be shown that the square of Durbin’s h test is also an LM test. While

Durbin’s h test may not be feasible in practice, the Breusch-Godfrey test can

always be computed.

9.4.3 Likelihood Ratio Test

As discussed in Section 6.4.3, the LR test compares the performance of the constrained

and unconstrained specifications based on their likelihood ratio:

LRT = −2T [LT (θ̈T ) − LT (θ̃T )]. (9.21)

Utilizing the relationship between the constrained and unconstrained QMLEs (9.16) and

the relationship between the Lagrangian multiplier and unconstrained QMLE (9.17), we

can write
√
T (θ̃T − θ̈T ) = HT (θ∗)−1R′√T λ̈T + oIP(1)

= HT (θ∗)−1R′
(9.22)
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By Taylor expansion of LT (θ̈T ) about θ̃T ,

−2T [LT (θ̈T ) − LT (θ̃T )]

= −2T∇LT (θ̃T )(θ̈T − θ̃T ) − T (θ̈T − θ̃T )′HT (θ̃T )(θ̈T − θ̃T ) + oIP(1)

= −T (θ̈T − θ̃T )′HT (θ∗)(θ̈T − θ̃T ) + oIP(1)

= −T (θ̃T − θ∗)′R′[RHT (θ∗)−1R′]−1R(θ̃T − θ∗) + oIP(1),

where the second equality follows because ∇LT (θ̃T ) = 0. It can be seen that the right-

hand side is essentially the Wald statistic when −RHT (θ∗)−1R′ is the normalizing

variance-covariance matrix. This leads to the following distribution result for the LR

test.

Theorem 9.13 Suppose that Theorem 9.2 for the QMLE θ̃T and the information ma-

trix equality both hold. Then under the null hypothesis,

LRT
D−→ χ2(q),

where LRT is defined in (9.21) and q is the number of rows of R.

Theorem 9.13 differs from Theorem 9.7 and Theorem 9.9 in that it also requires

the validity of the information matrix equality. When the information matrix equality

does not hold, −RHT (θ∗)−1R′ is not a proper normalizing matrix so that LRT does

not have a limiting χ2 distribution. This result clearly indicates that, when LT is

constructed by specifying density functions for {yt | xt}, the LR test is not robust to

dynamic misspecification and misspecifications of other conditional attributes, such as

neglected conditional heteroskedasticity. By contrast, the Wald and LM tests can be

made robust by employing a proper normalizing variance-covariance matrix.
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Exercises

9.1 Let g and f be two density functions. Show that the KLIC II(g :f) does not obey

the triangle inequality, i.e., II(g : f) �≤ II(g : h) + II(h : f) for any other density

function h.

9.2 Prove equations (9.11) and (9.12) in Example 9.5.

9.3 In Example 9.5, suppose there is dynamic misspecification. What is BT (θ∗)?

9.4 In Example 9.6, what is BT (θ∗)? Show that

BT (θ̃T ) =

⎡⎣
∑T

t=1 ê2
t xtx′

t

T (σ̃2
T )2

0

0 − 1
4(σ̃2

T )2
+
∑T

t=1 ê4
t

T 4(σ̃2
T )4

⎤⎦
is a consistent estimator for BT (θ∗).

9.5 Consider the specification yt | xt ∼ N (x′
tβ, h(ζ

′
tα)). What condition would ensure

that HT (θ∗) and BT (θ∗) are block diagonal?

9.6 Consider the specification yt | xt, yt−1 ∼ N (γyt−1+x′
tβ, σ

2) and the AR(1) errors:

yt − αyt−1 − x′
tβ = ρ(yt−1 − αyt−2 − x′

t−1β) + ut,

with |ρ| < 1 and {ut} a white noise. Derive the LM test for the null hypothesis

ρ∗ = 0 and show its square root is Durbin’s h test; see Section 4.3.3.
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