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Abstract

We propose an encompassing test for non-nested linear quantile regression models and

show that it has an asymptotic χ2 distribution. It is also shown that the proposed test is

a regression rank score test in a comprehensive model under conditional homogeneity. Our

simulation results indicate that the proposed test performs very well in finite samples.
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1 Introduction

There are two leading approaches to constructing non-nested tests: the comprehensive-

model approach (Atkinson, 1970) and the encompassing approach (Mizon, 1984; Mizon and

Richard, 1986). The former bases tests on an artificial nesting model that includes competing

models as special cases, e.g., Davidson and MacKinnon (1981), Fisher and McAleer (1981),

MacKinnon et al. (1983), and Santos Silva (2001). The latter compares a statistic of the al-

ternative model and its pseudo-true value, e.g., Gouriéroux et al. (1983), Wooldrdige (1990),

Smith (1992), Chen and Kuan (2002, 2007), and Ramalho and Simth (2002). Yet, Bontemps

and Mizon (2008) showed that there is implicitly a comprehensive model underlying each test

obtained from the encompassing approach.

Although the encompassing approach is valid in general, the existing encompassing tests

are not readily applied to the models for which the objective function or the estimating func-

tion is not smooth, such as the quantile regression (QR) of Koenker and Bassett (1978). In

this paper we follow the encompassing approach to obtain the conditional quantile encom-

passing (CQE) test for non-nested, linear QR models. We show that the CQE test has an

asymptotic χ2 distribution and is asymptotically equivalent to the regression rank score test

of Gutenbrunner et al. (1993) in a comprehensive model under conditional homogeneity. Our

simulation results indicate that the proposed test performs very well in finite samples.

The paper proceeds as follows. We derive the CQE test and its limiting distribution in

Section 2. We show the CQE test is a rank score test in Section 3. Simulation results are

reported in Section 4. Section 5 concludes this paper.

2 The Conditional Quantile Encompassing Test

Let (yi,x
′
i, z
′
i)
′, i = 1, . . . , n, be independent random vectors, with xi a p × 1 vector and zi

a q × 1 vector. Let Qyi|Fi
(τ), τ ∈ (0, 1), denote the τ -th conditional quantile function of yi

given Fi, the information set generated by xi and zi. We want to test the QR model:

M0 : Qyi|Fi
(τ) = x′iβ(τ), i = 1, . . . , n,

against the alternative specification:

M1 : Qyi|Fi
(τ) = z′iγ(τ), i = 1, . . . , n,

where β(τ) and γ(τ) are unknown parameter vectors. Let ρτ (u) = u[τ − 1(u < 0)], with

1(A) the indicator function of the event A. The QR estimator of β(τ) in model M0, denoted

as β̂n(τ), minimizes n−1
∑n

i=1 ρτ (yi−x′iβ). The QR estimator of γ(τ) in model M1, denoted

as γ̂n(τ), minimizes n−1
∑n

i=1 ρτ (yi − z′iγ). The parameter estimates may be computed via

a linear programming algorithm (Koenker and Bassett, 1978).
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The existing encompassing tests can not be directly applied to test non-nested QR models.

A parameter encompassing test requires evaluating the pseudo-true value (i.e., the probability

limit under the null hypothesis) of the parameter estimator for the alternative model. This is,

however, a formidable task because the QR estimator does not have an analytic form. Chen

and Kuan (2002) propose the pseudo-true score encompassing (PSE) test that compares the

score function of the alternative model and its pseudo-true value. The PSE test is appealing

because the functional form of score function is usually available and its pseudo-true value

is relative easy to obtain. Yet, the PSE test is derived when the objective (likelihood)

function and score function are “smooth.” This approach can be extended to construct an

encompassing test for QR models, even when ρτ (u) in the QR objective function is not

differentiable at u = 0.

The first-order derivative of the QR objective function for model M0, except at yi = x′iβ,

is s0τ (β) = n−1
∑n

i=1 xi[τ−1(yi−x′iβ < 0)]. This function is understood as an (approximate)

estimating function for the QR model M0 because it, when evaluated at β̂n(τ), yields the

“asymptotic first-order condition” (see, e.g., Otsu, 2008): n1/2s0τ
(
β̂n(τ)

)
= oIP(1). Similarly,

s1τ (γ) =
1

n

n∑
i=1

zi[τ − 1(yi − z′iγ < 0)]

is an estimating function for the alternative model M1, and n1/2s0τ
(
γ̂n(τ)

)
= oIP(1). The

estimating function plays the role of the score function under the likelihood framework.

In the light of Chen and Kuan (2002), it is natural to base an encompassing test on the

difference between s1τ (γ) and its pseudo-true value. Under the null, model M0 is the τ -th

conditional quantile function and satisfies the conditional moment restriction:

IE0[τ − 1(yi − x′iβ(τ) < 0)|Fi] = τ − Fyi|Fi
(x′iβ(τ)) = 0, a.s., (1)

where IE0 denotes the expectation under the null, and Fyi|Fi
is the distribution function of

yi conditional on Fi (with the conditional density fyi|Fi
). By the restriction (1) and the law

of iterated expectations,

IE0[s
1
τ (γ)] =

1

n
IE0

n∑
i=1

zi[1(yi − x′iβ(τ) < 0)− 1(yi − z′iγ < 0)].

The limit of this function is the pseudo-true value of s1τ (γ), and its sample counterpart is

ζ̂n(β(τ),γ) =
1

n

n∑
i=1

zi
[
1(yi − x′iβ(τ) < 0)− 1(yi − z′iγ < 0)

]
.

The proposed CQE test is based on:

√
n
[
s1τ
(
γ̂n(τ)

)
− ζ̂n

(
β̂n(τ), γ̂n(τ)

)]
=

1√
n

n∑
i=1

zi
[
τ − 1

(
yi − x′iβ̂n(τ) < 0

)]
. (2)
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The function in (2) will be denoted as ψ̂n
(
β̂n(τ)

)
and is analogous to the basic ingredient of

the conditional mean encompassing (CME) test of Wooldridge (1990), a special case of the

PSE test for non-nested (non)linear models. Note that a test based on (2) is also a test of the

conditional moment restriction (1). When xi and zi have r variables in common (r < p, q),

let z†i denote the sub-vector of the common variables in zi and z∗i the sub-vector of remaining

q − r variables. We may ignore z†i and base the CQE test on

ψ̂
∗
n

(
β̂n(τ)

)
=

1√
n

n∑
i=1

z∗i
[
τ − 1

(
yi − x′iβ̂n(τ) < 0

)]
, (3)

since n−1/2
∑n

i=1 z
†
i

[
τ−1

(
yi−x′iβ̂n(τ) < 0

)]
= oIP(1) by the asymptotic first-order condition.

As shown in Appendix, (3) can be expressed in terms of the true parameter β(τ):

ψ̂
∗
n(β̂n(τ)) =

1√
n

n∑
i=1

(
z∗i −M fzxM

−1
fxxxi

)[
τ − 1

(
yi − x′iβ(τ) < 0

)]
+ oIP(1), (4)

withM fzx = plimn

∑n
i=1 fyi|Fi

(
x′iβ(τ)

)
z∗ix

′
i/n andM fxx = plimn

∑n
i=1 fyi|Fi

(
x′iβ(τ)

)
xix

′
i/n

(assuming these limits exist). Under the null hypothesis, 1
(
yi −x′iβ(τ) < 0

)
has conditional

mean τ and conditional variance τ(1− τ). When the data are independent random variables

obeying the Lindeberg-Feller central limit theorem (e.g., White, 1999, Theorem 5.6), we have

ψ̂
∗
n

(
β̂n(τ)

) D−→ N
(
0, τ(1− τ)V o,τ

)
,

where V o,τ = limn→∞ n
−1IEo

∑n
i=1(z

∗
i −M fzxM

−1
fxxxi)(z

∗
i −M fzxM

−1
fxxxi)

′. Letting V̂ n,τ

be a consistent estimator of V o,τ , the proposed CQE test is

Ψ∗n,τ =
1

τ(1− τ)
ψ̂
∗
n

(
β̂n(τ)

)′
V̂
−1
n,τ ψ̂

∗
n

(
β̂n(τ)

)
, (5)

which has χ2(q − r) distribution under the null.

The matrices M fzx and M fxx involve conditional density and may be estimated by non-

parametric estimators, such as the “Powell sandwich” of Powell (1991); see also Koenker (2005)

for other estimators. Let M̂ fzx and M̂ fxx denote their consistent estimators. Using the ma-

trix notations X (an n× p matrix with the i-th row x′i) and Z∗ (an n× (q − r) matrix with

the i-th row z∗′i ), a consistent estimator V̂ n,τ is:

1

n

[
Z∗′Z∗− (Z∗′X)M̂

−1
fxxM̂

′
fzx−M̂ fzxM̂

−1
fxx(X ′Z∗) +M̂ fzxM̂

−1
fxx(X ′X)M̂

−1
fxxM̂

′
fzx

]
.

Under conditional homogeneity: fyi|Fi
= fyi , the test (5) can be easily implemented. First

note that (4) becomes

ψ̂
∗
n(β̂n(τ)) =

1√
n

n∑
i=1

(z∗i −M zxM
−1
xxxi)

[
τ − 1

(
yi − x′iβ(τ) < 0

)]
+ oIP(1),
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with M zx = plimn

∑n
i=1 z

∗
ix
′
i/n and Mxx = plimn

∑n
i=1 xix

′
i/n. Then, the asymptotic

normality of ψ̂
∗
n(β̂n(τ)) holds with

V o,τ = lim
n→∞

1

n
IEo

n∑
i=1

(z∗i −M zxM
−1
xxxi)(z

∗
i −M zxM

−1
xxxi)

′,

which does not involve density function. A consistent estimator of V o,τ is easily computed

as V̂ n,τ = Z∗′[In −X(X ′X)−1X ′]Z∗/n.

3 CQE Test as a Rank Score Test

Given the comprehensive linear model that involves both xi and z∗i :

yi = x′iβ + z∗′i γ
∗ + ei,

where β and γ∗ are parameter vectors, and ei is the error term, consider the null hypothesis

H0 : γ∗ = 0. Let âi(t) denote the rank generating function based on the residual of the

constrained model: yi = x′iβ+ui. That is, âi(t) = 1 if yi > x
′
iβ̂n(t); âi(t) = 0 if yi < x

′
iβ̂n(t);

otherwise, âi(t) is between zero and one. For a score-generating function ϕ, define b̂n(ϕ) as

the vector of rank scores with the i-th element:

b̂i(ϕ) = −
∫ 1

0
ϕ(t) dâi(t), i = 1, . . . , n,

and A2(ϕ) =
∫ 1
0

[
ϕ(t) −

∫ 1
0 ϕ(t) dt

]2
dt. To test γ∗ = 0, the regression rank score test of

Gutenbrunner et al. (1993) is:

RSn = r′n(ϕ)Σ̂
−1
n rn(ϕ)/A2(ϕ)

D−→ χ2(q − r), (6)

where rn(ϕ) = n−1/2(Z∗−Ẑ
∗
)′b̂n(ϕ), Σ̂n = (Z∗−Ẑ

∗
)′(Z∗−Ẑ

∗
)/n, and Ẑ

∗
= X(X ′X)−1X ′Z∗

is the least-squares projection of Z∗ on X, with the i-th row ẑ∗′i = x′i(X
′X)−1X ′Z∗.

To focus on the τ -th quantile, we set ϕ as ϕτ (t) = τ − 1(t < τ), the τ -quantile score

function. It is easy to verify that A2(ϕτ ) = τ(1− τ) and b̂i(ϕτ ) = τ − [1− âi(τ)]. By invoking

the definition of âi(τ),

rn(ϕτ ) =
1√
n

n∑
i=1

(z∗i − ẑ∗i )[τ − 1(yi − x′iβ̂n(τ) < 0)] + oIP(1)

=
1√
n

n∑
i=1

z∗i [τ − 1(yi − x′iβ̂n(τ) < 0)] + oIP(1),

where the last equality follows because n−1/2
∑n

i=1 ẑ
∗
i [τ−1(yi−x′iβ̂n(τ) < 0)] is oIP(1) by the

asymptotic first-order condition. Thus, rn(ϕτ ) is asymptotically equivalent to ψ̂
∗
n

(
β̂n(τ)

)
in

(3) and Σ̂n = Z∗′[In −X(X ′X)−1X ′]Z∗/n is V̂ n,τ under conditional homogeneity. This

shows asymptotic equivalence between the CQE test and the rank score test (6). This result

is consistent with the argument in Bontemps and Mizon (2008) that there is a comprehensive

model underlying an encompassing test.
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Table 1: Empirical sizes of the proposed test: Nominal size 5%.

τ = 0.25 τ = 0.5 τ = 0.75

q = 2 q = 4 q = 6 q = 8 q = 2 q = 4 q = 6 q = 8 q = 2 q = 4 q = 6 q = 8

p = 2 5.0 5.5 4.4 4.8 4.7 5.4 5.6 4.5 5.0 4.7 4.2 4.9

p = 4 5.4 5.0 5.1 5.5 5.5 5.8 5.5 5.8 5.6 5.1 5.4 4.8

p = 6 6.1 5.5 5.7 6.6 5.2 6.2 5.7 6.3 5.7 5.7 5.8 5.8

p = 8 6.3 6.6 6.9 6.2 6.1 5.7 6.5 6.8 6.5 6.4 6.5 6.6

p = 2 5.5 4.9 5.5 5.0 4.6 5.0 5.3 5.6 4.5 5.0 5.7 5.3

p = 4 4.6 5.6 4.6 4.9 5.2 5.3 5.1 5.4 5.4 5.2 5.3 4.5

p = 6 4.9 5.2 6.0 5.3 5.9 5.4 5.5 6.0 4.9 5.5 4.6 5.8

p = 8 5.5 6.6 5.5 5.0 5.5 5.3 4.6 5.0 6.0 5.2 5.1 4.9

Note: Upper and lower panels are the results for n = 100 and n = 300, respectively; all entries

are in percentages.

4 Monte Carlo Simulations

In our simulations, we consider the following data generating process (DGP):

yi = (1− λ)x′iβ + λz′iγ + εi, i = 1, . . . , n, λ ∈ [−1, 1], (7)

where xi (p×1) and zi (q×1) both contain a constant term, εi and the remaining elements of

xi and zi are i.i.d. N (0, 1). Both β and γ are set to vector of ones. For the τ -th QR, the error

term εi satisfies the restriction that its τ -th conditional quantile is zero. For example, when

τ = 0.25, 0.5, 0.75, the errors are N (0, 1) plus 0.6475, 0,−0.6475, respectively. We consider

different numbers of regressors (p, q = 2, 3, . . . , 8) and different samples (n = 100, 300); the

number of replications is 3000.

Note that the null model is (7) with λ = 0, and the alternative model is (7) with λ = 1.

Table 1 contains the empirical sizes of the proposed test for τ = 0.25, 0.5, 0.75 and the nominal

size 5%; the results for other τ and nominal sizes are qualitatively similar. To conserve space,

we report only the results for p, q = 2, 4, 6, 8. It can be seen that, when n = 100, the proposed

test is properly sized when p and q are not too large; otherwise it may be slightly over-sized.

Yet, the size distortion becomes smaller when the sample increases.

In the power simulations, we consider the alternative model with (p, q) = (2, 6), (4, 4), (6, 2)

and τ = 0.25, 0.5, 0.75. We plot the power functions against λ for the sample n = 300 in

Figures 1. It can be seen that, for given (p, q), the power functions for different τ are close to

each other. In particular, each power function increases with the magnitude of λ and reaches

power one quickly, and it is symmetric about λ = 0. For a given λ that is not too big, the
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(p, q) = (2, 6) (p, q) = (4, 4) (p, q) = (6, 2)

Figure 1: Empirical power functions against λ values: n = 300.

power is higher when q (the number of regressors in the alternative model) is larger. The

power functions for n = 100 (not reported) are of similar shapes but with smaller values.

5 Conclusions

In this paper we propose a CQE test for linear QR models. This test is an extension of the

CME test to QR models and also a regression rank score test. Our simulations confirm that

this test has good finite sample performance.

Appendix

Proof of Equation (4): We first write

ψ̂∗n(β̂n(τ)) =
1√
n

n∑
i=1

z∗i
[
τ − 1

(
yi − x′iβ(τ) < 0

)]
+

1√
n

n∑
i=1

z∗i
[
1
(
yi − x′iβ(τ) < 0

)
− Fyi|Fi

(
x′iβ(τ)

)]
− 1√

n

n∑
i=1

z∗i
[
1
(
yi − x′iβ̂n(τ) < 0

)
− Fyi|Fi

(
x′iβ̂n(τ)

)]
+

1√
n

n∑
i=1

z∗i
[
Fyi|Fi

(
x′iβ(τ)

)
− Fyi|Fi

(
x′iβ̂n(τ)

)]
.

By Lemma 1 of Gutenbrunner and Jurečková (1992) and Theorem 3.3 of Gutenbrunner et

al. (1993), the second and third terms on the right-hand side vanish in probability, uniformly
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in τ . For the fourth term, the Taylor expansion of yields

1√
n

n∑
i=1

z∗i

(
Fyi|Fi

(
x′iβ(τ)

)
− Fyi|F (x′iβ̂n(τ))

)
= −

(
1

n

n∑
i=1

z∗i fyi|Fi

(
x′iβ(τ)

)
x′i

)(√
n
[
β̂n(τ)− β(τ)

])
+ oIP(1)

= −M fzxM
−1
fxx

1√
n

n∑
i=1

xi
[
τ − 1

(
yi − x′iβ(τ) < 0

)]
+ oIP(1),

where the last equality follows from the Bahadur representation. It follows that

ψ̂∗n(β̂n(τ)) =
1√
n

n∑
i=1

(
z∗i −M fzxM

−1
fxxxi

)[
τ − 1

(
yi − x′iβ(τ) < 0

)]
+ oIP(1). �
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Gutenbrunner, C., J. Jurečkova, R. Koenker, and S. Portnoy (1993). Tests of linear hypothe-

ses based on regression rank scores, Nonparametric Statistics, 2, 307–331.

Koenker, R. (2005). Quantile Regression, New York: Cambridge University Press.

7



Koenker, R. and G. Bassett (1978). Regression quantile, Econometrica, 46, 33–50.

MacKinnon, J., H. White, and R. Davidson (1983). Tests for model specification in the

presence of alternative hypotheses, Journal of Econometrics, 21, 53–70.

Mizon, G. (1984). The encompassing approach in econometrics, in: D. F. Hendry and K. F.

Wallis (eds.), Econometrics and Quantitative Economics, 135–172, Oxford: Blackwell.

Mizon, G. and J. Richard (1986). The encompassing principle and its application to testing

non-nested hypotheses, Econometrica, 54, 657–678.

Otsu, T. (2008). Conditional empirical likelihood estimation and inference for quantile re-

gression models, Journal of Econometrics, 142, 508–538.

Powell, J. (1991). Estimation of monotonic regression models under quantile restrictions,

in W. Barnett, J. Powell, and G. Tauchen (eds.), Nonparametric and Semiparametric

Methods in Econometrics, 357–384, Cambridge: Cambridge University Press.

Ramalho, J. and E. Smith (2002). Generalized empirical likelihood non-nested tests, Journal

of Econometrics, 107, 99–125.

Santos Silva, J. (2001). A score test for non-nested hypotheses with applications to discrete

data models, Journal of Applied Econometrics, 16, 577–597.

Smith, R. (1992). Non-nested tests for competing models estimated by generalized method

of moments, Econometrica, 60, 973–980.

Wooldridge, J. (1990). An encompassing approach to conditional mean tests with applications

to testing nonnested hypotheses, Journal of Econometrics, 45, 331–350.

White, H. (1999). Asymptotic Theory for Econometricians, Academic Press: San Diego.

8


