
Artificial Neural Networks

Chung-Ming Kuan

Institute of Economics

Academia Sinica

Abstract

Artificial neural networks (ANNs) constitute a class of flexible nonlinear models de-

signed to mimic biological neural systems. In this entry, we introduce ANN using familiar

econometric terminology and provide an overview of ANN modeling approach and its im-

plementation methods.

† Correspondence: Chung-Ming Kuan, Institute of Economics, Academia Sinica, 128 Academia Road,

Sec. 2, Taipei 115, Taiwan; ckuan@econ.sinica.edu.tw.

†† I would like to express my sincere gratitude to the editor, Professor Steven Durlauf, for his patience

and constructive comments on early drafts of this entry. I also thank Shih-Hsun Hsu and Yu-Lieh Huang

for very helpful suggestions. The remaining errors are all mine.

1 Introduction

Artificial neural networks (ANNs) constitute a class of flexible nonlinear models designed

to mimic biological neural systems. Typically, a biological neural system consists of

several layers, each with a large number of neural units (neurons) that can process the

information in a parallel manner. The models with these features are known as ANN

models. Such models can be traced back to the simple input-output model of McCulloch

and Pitts (1943) and the “perceptron” of Rosenblatt (1958). The early yet simple ANN

models, however, did not receive much attention because of their limited applicability

and also because of the limitation of computing capacity at that time. In seminal works,

Rumelhart et al. (1986) and McClelland et al. (1986) presented the new developments of

ANN, including more complex and flexible ANN structures and a new network learning

method. Since then, ANN has become a rapidly growing research area.

As far as model specification is concerned, ANN has a multi-layer structure such that

the middle layer is built upon many simple nonlinear functions that play the role of neu-

rons in a biological system. By allowing the number of these simple functions to increase

indefinitely, a multi-layered ANN is capable of approximating a large class of functions

to any desired degree of accuracy, as shown in, e.g., Cybenko (1989), Funahashi (1989),

Hornik, Stinchcombe and White (1989, 1990), and Hornik (1991, 1993). From an econo-

metric perspective, ANN can be applied to approximate the unknown conditional mean

(median, quantile) function of the variable of interest without suffering from the problem

of model misspecification, unlike parametric models commonly used in empirical stud-

ies. Although nonparametric methods, such as series and polynomial approximators,

also possess this property, they usually require a larger number of components to achieve

similar approximation accuracy (Barron, 1993). ANNs are thus a parsimonious approach

to nonparametric functional analysis.

ANNs have been widely applied to solve many difficult problems in different areas, in-

cluding pattern recognition, signal processing, language learning, etc. Since White (1988),

there have also been numerous applications of ANN in economics and finance. Unfortu-

nately, the ANN literature is not easy to penetrate, so it is hard for applied economists to

understand why ANN works and how it can be implemented properly. Fortunately, while

the ANN jargon originated from cognitive science and computer science, they often have

econometric interpretations. For example, a “target” is, in fact, a dependent variable

of interest, an “input” is an explanatory variable, and network “learning” amounts to

1

the estimation of unknown parameters in a network. The purpose of this entry is thus

two-fold. First, this entry introduces ANN using familiar econometric terminology and

hence serves to bridge the gap between the fields of ANN and economics. Second, this

entry provides an overview of ANN modeling approach and its implementation methods.

For an early review of ANN from an econometric perspective, we refer to Kuan and

White (1994).

This entry proceeds as follows. We introduce various ANN model specifications and

the choices of network functions in Section 2. We present the “universal approximation”

property of ANN in Section 3. Model estimation and model complexity regularization

are discussed in Section 4. Section 5 concludes.

2 ANN Model Specifications

Let Y denote the collection of n variables of interest with the t-th observation yt (n× 1)

and X the collection of m explanatory variables with the t-th observation xt (m× 1). In

the ANN literature, the variables in Y are known as targets or target variables, and the

variables in X are inputs or input variables. There are various ways to build an ANN

model that can be used to characterize the behavior of yt using the information contained

in the input variables xt. In this section, we introduce some network architectures and

the functions that are commonly used to build an ANN.

2.1 Feedforward Neural Networks

We first consider a network with an input layer, an output layer, and a hidden layer in

between. The input (output) layer contains m input units (n output units) such that each

unit corresponds to a particular input (output) variable. In the hidden layer, there are q

hidden units connected to all input and output units; the strengths of such connections

are labeled by (unknown) parameters known as the network connection weights. In

particular, γh = (γh,1, . . . , γh,m)′ denotes the vector of the connection weights between

the h-th hidden unit and all m input units, and βj = (βj,1, . . . , βj,q)′ denotes the vector

of the connection weights between the j-th output unit and all q hidden units. An ANN

in which the sample information (signals) are passed forward from the input layer to

the output layer without feedback is known as a feedforward neural network. Figure 1

illustrates the architecture of a 3-layer feedforward network with 3 input units, 4 hidden

units and 2 output units.

2

 output layer

hidden layer

input layer

activation function F, β weights

activation function G, γ weights

X1 X2 X3

O2 O1

Figure 1: A feedforward network with 3 input units, 4 hidden units and 2 output units.

This multi-layered structure of a feedforward network is designed to function as a

biological neural system. The input units are the neurons that receive the information

(stimuli) from the outside environment and pass them to the neurons in a middle layer

(i.e., hidden units). These neurons then transform the input signals to generate neural

signals and forward them to the neurons in the output layer. The output neurons in turn

generate signals that determine the action to be taken. Note that all information from

the units in one layer are processed simultaneously, rather than sequentially, by the units

in an “upper” layer.1

Formally, the input units receive the information xt and send to all hidden units,

weighted by the connection weights between the input and hidden units. This information

is then transformed by the activation function G in each hidden unit. That is, the h-th

hidden unit receives x′tγh and transforms it to G(x′tγh). The information generated by

all hidden units is further passed to the output units, again weighted by the connection

weights, and transformed by the activation function F in each output unit. Hence, the

j-th output unit receives
∑q

h=1 βj,hG(x′tγh) and transforms it into the network output:

ot,j = F
(q∑

h=1

βj,hG(x′tγh)
)
, j = 1, . . . , n. (1)

The output Oj is used to describe or predict the behavior of the j-th target Yj .

In practice, it is typical to include a constant term, also known as the bias term, in
1This concept, also known as parallel processing or massive parallelism, differs from the traditional

concept of sequential processing and led to a major advance in designing computer architecture.

3

each activation function in (1). That is,

ot,j = F
(
βj,0 +

q∑
h=1

βj,hG(γh,0 + x′tγh)
)
, j = 1, . . . , n, (2)

where γh,0 is the bias term in the h-th hidden unit and βj,0 is the bias term in the

j-th output unit. A constant term in each activation function adds flexibility to hidden-

unit and output-unit responses (activations), in a way similar to the constant term in

(non)linear regression models. Note that when there is no transformation in the output

units, F is an identity function (i.e., F (a) = a) so that

ot,j = βj,0 +
q∑

h=1

βj,hG(γh,0 + x′tγh), j = 1, . . . , n, (3)

It is also straightforward to construct networks with two or more hidden layers. For

simplicity, we will focus on the 3-layer networks with only one hidden layer.

While parametric econometric models are typically formulated using a given function

of the input xt, the network (2) is a class of flexible nonlinear functions of xt. The exact

form of a network model depends on the activation functions (F and G) and the number

of hidden units (q). In particular, the network function in (3) is an affine transformation

of G and hence may be interpreted as an expansion with the “basis” function G.

The networks (2) and (3) can be further extended. For example, one may construct

a network in which the input units are connected not only to the hidden units but

also directly to the output units. This leads to networks with shortcut connections.

Corresponding to (2), the outputs of a feedforward network with shortcuts are

ot,j = F
(
βj,0 + x′tαj +

q∑
h=1

βj,hG(γh,0 + x′tγh)
)
, j = 1, . . . , n,

where αj is the vector of connection weights between the output and input units. and

corresponding to (3), the outputs are

ot,j = βj,0 + x′tαj +
q∑

h=1

βj,hG(γh,0 + x′tγh), j = 1, . . . , n.

Figure 2 illustrates the architecture of a feedforward network with 2 input units, 3 hidden

units, 1 output unit and shortcut connections. Thus, parametric econometric models may

be interpreted as feedforward networks with shortcut connections but no hidden-layer

connections. The linear combination of hidden-unit activations,
∑q

h=1 βj,hG(γh,0+x′tγh),

in effect characterizes the nonlinearity not captured by the linear function of xt.

4

 output layer

hidden layer

input layer

activation function F, β weights

activation function G, γ weights

X1 X2

O1

Figure 2: A feedforward neural network with shortcuts.

2.2 Recurrent Neural Networks

From the preceding section we can see that there is no “memory” device in feedforward

networks that can store the signals generated earlier. Hence, feedforward networks treat

all sample information as “new;” the signals in the past do not help to identify data

features, even when sample information exhibits temporal dependence. As such, a feed-

forward network must be expanded to a large extent so as to represent complex dynamic

patterns. This causes practical difficulty because a large network may not be easily

implemented. To utilize the information from the past, it is natural to include lagged

target information yt−k, k = 1, . . . , s, as input variables, similar to linear AR and ARX

models in econometric studies. Yet, such networks do not have any built-in structure

that can “memorize” previous neural responses (transformed sample information). The

so-called recurrent neural networks overcome this difficulty by allowing internal feedbacks

and hence are especially appropriate for dynamic problems.

Jordan (1986) first introduced a recurrent network with feedbacks from output units.

That is, the output units are connected to input units but with time delay, so that the

network outputs at time t− 1 are also the input information at time t. Specifically, the

outputs of a Jordan network are

ot,j = F
(
βj,0 +

q∑
h=1

βj,hG(γh,0 + x′tγh + o′t−1δh)
)
, j = 1, . . . , n. (4)

where δh is the vector of the connection weights between the h-th hidden unit and the

input units that receive lagged outputs ot−1 = (ot−1,1, . . . , ot−1,n)′. The network (4) can

be further extended to allow for more lagged outputs ot−2,ot−3,

5

X1 X2

O1

(a) Jordan network

 output layer

hidden layer

input layer

X1 X2

O1

with delay

(b) Elman network
Figure 3: Recurrent neural networks: Jordan (left) and Elman (right).

Similarly, Elman (1990) considered a recurrent network in which the hidden units are

connected to input units with time delay. The outputs of an Elman network are:

ot,j = F
(
βj,0 +

q∑
h=1

βj,hat,h

)
, j = 1, . . . , n,

at,h = G(γh,0 + x′tγh + a′t−1δh), h = 1, . . . , q,

(5)

where at−1 = (at−1,1, . . . , at−1,q)′ is the vector of lagged hidden-unit activations, and

δh here is the vector of the connection weights between the h-th hidden unit and the

input units that receive lagged hidden-unit activations at−1. The network (5) can also

be extended to allow for more lagged hidden-unit activations at−2,at−3, Figure 3

illustrates the architectures of a Jordan network and an Elman network.

From (4) and (5) we can see that, by recursive substitution, the outputs of these recur-

rent networks can be expressed in terms of current and all past inputs. Such expressions

are analogous to the distributed lag model or the AR representation of an ARMA model

(when the inputs are lagged targets). Thus, recurrent networks incorporate the informa-

tion in the past input variables without including all of them in the model. By contrast,

a feedforward network requires a large number of inputs to carry such information. Note

that the Jordan network and the Elman network summarize past input information in dif-

ferent ways and hence have their own merits. When the previous “location” of a network

is crucial in determining the next move, as in the design of a robot, a Jordan network

seems more appropriate. When the past internal neural responses are more important,

as in language learning problems, an Elman network may be preferred.

6

2.3 Choices of Activation Function

As far as model specifications are concerned, the building blocks of an ANN model are

the activation functions F and G. Different choices of the activation functions result

in different network models. We now introduce some activation functions commonly

employed in empirical studies.

Recall that the hidden units play the role of neurons in a biological system. Thus, the

activation function in each hidden unit determines whether a neuron should be turned on

or off. Such an on/off response can be easily represented using an indicator (threshold)

function, also known as a heaviside function in the ANN literature, i.e.,

G(γh,0 + x′tγh) =

{
1, if γh,0 + x′tγh ≥ c,

0, if γh,0 + x′tγh < c,

where c is a pre-determined threshold value. That is, depending on the strength of

connection weights and input signals, the activation function G will determine whether

a particular neuron is on (G(γh,0 + x′tγh) = 1) or off (G(γh,0 + x′tγh) = 0).

In a complex neural system, neurons need not have only an on/off response but may

be in an intermediate position. This amounts to allowing the activation function to

assume any value between zero and one. In the ANN literature, it is common to choose a

sigmoid (S-shaped) and squashing (bounded) function. In particular, if the input signals

are “squashed” between zero and one, the activation function is understood as a smooth

counterpart of the indicator function. A leading example is the logistic function:

G(γh,0 + x′tγh) =
1

1 + exp
(
−[γh,0 + x′tγh]

) .

which approaches one (zero) when its argument goes to infinity (negative infinity). Hence,

the logistic activation function generates a partially on/off signal based on the received

input signals.

Alternatively, the hyperbolic tangent (tanh) function, which is also a sigmoid and

squashing function, can serve as an activation function:

G(γh,0 + x′tγh) =
exp

(
γh,0 + x′tγh

)
− exp

(
−[γh,0 + x′tγh]

)
exp

(
γh,0 + x′tγh

)
+ exp

(
−[γh,0 + x′tγh]

) .

Compared to the logistic function, this function may assume negative values and is

bounded between −1 and 1. It approaches 1 (−1) when its argument goes to infin-

ity (minus infinity). This function is more flexible because the negative values, in effect,

7

0.5

0

1

(b) logistic

1

0

-1

(c) tanhFigure 4: Activation functions: logistic (left) and tanh (right).

represent “suppressing” signals from the hidden unit. See Figure 4 for an illustration of

the logistic and tanh functions. Note that for the logistic function G, a re-scaled function

G̃ such that G̃(a) = 2G(a)− 1 also generates values between −1 and 1 and may be used

in place of the tanh function.2

The aforementioned activation functions are chosen for convenience because they are

differentiable everywhere and their derivatives are easy to compute. In particular, when

G is the logistic function,

dG(a)
da

= G(a)[1−G(a)];

when G is the tanh function,

dG(a)
da

=
[

2
exp(a) + exp(−a)

]2

= sech2(a).

These properties facilitate parameter estimation, as will be seen in Section 4.1. Nev-

ertheless, these functions are not necessary for building proper ANNs. For example,

smooth cumulative distribution functions, which are sigmoidal and squashing, are also

legitimate candidates for activation function. In Section 3, it is shown that, as far as

network approximation property is concerned, the activation function in hidden units

does not even have to be sigmoidal, yet boundedness is usually required. Thus, sine and

cosine functions can also serve as an activation function.

As for the activation function F in the output units, it is common to set it as the

identity function so that the outputs of (3) enjoy the freedom of assuming any real
2A choice of the activation function in classification problems is the so-called radial basis function. We

do not discuss this choice because its argument is not an affine transformation of inputs and hence does

not fit in our framework here. Moreover, the networks with this activation function provide only local

approximation to unknown functions, in contrast with the approximation property discussed in Section 3.

8

value. This choice suffices for the network approximation property discussed in Section 3.

When the target is a binary variable taking the values zero and one, as in a classification

problem, F may be chosen as the logistic function so that the outputs of (2) must fall

between zero and one, analogous to a logit model in econometrics.

3 ANN as an Universal Approximator

What makes ANN a useful econometric tool is its universal approximation property which

basically means that a multi-layered ANN with a large number of hidden units can well

approximate a large class of functions. This approximation property is analogous to that

of nonparametric approximators, such as polynomials and Fourier series, yet it is not

shared by parametric econometric models.

To present the approximation property, we consider the network function element by

element. Let fG,q : Rm×Θm,q → R denote the network function with q hidden units, the

output activation function F being the identity function, and the hidden-unit activation

function G, i.e.,

fG,q(x;θ) = β0 +
q∑

h=1

βhG(γh,0 + x′γh),

as in (3), where Θm,q is the parameter space whose dimension depends on m and q, and

θ ∈ Θm,q (note that the subscripts m and q for θ are suppressed). Given the activation

function G, the collection of all fG,q functions with different q is:

FG =
∞⋃

q=1

{
fG,q : fG,q(x;θ) = β0 +

q∑
h=1

βhG(γh,0 + x′γh)

}
;

when the union is taken up to a finite number N , the resulting collection is denoted as

FN
G . Intuitively, FG is capable of functional approximation because fG,q can be viewed

as an expansion with the “basis” function G and hence is similar to a nonparametric

approximator.

More formally, we follow Hornik (1991) and consider two measures of the closeness

between functions. First define the uniform distance between functions f and g on the

set K as

dK(f, g) = sup
x∈K

|f(x)− g(x)|.

9

Let K denote a compact subset in Rm and C(K) denote the space of all continuous

functions on K. Then, when the activation function G is continuous, bounded and non-

constant, the collection FG is dense in C(K) for all K in Rm in terms of dK (Theorem 2

of Hornik, 1991).3 That is, for any function g in C(K) and any ε > 0, there is a network

function fG,q in FG such that dK(fG,q − g) < ε. As FN
G is not dense in C(K) for any

finite number N , this result shows that any continuous function can be approximated

arbitrarily well on compacta by a 3-layered feedforward network fG,q, provided that q,

the number of hidden units, is sufficiently large.

Taking x as random variables, defined in the probability space with the probability

measure IP, we consider the Lr-norm of f(x)− g(x):

‖f − g‖r =
(∫

Rm

|f(x)− g(x)|r d IP(x)
)1/r

,

1 ≤ r < ∞. For r = 2 (r = 1), this is the well known measure of mean squared error

(mean absolute error). Then, when the activation function G is bounded and nonconstant,

the collection FG is dense in the Lr space (Theorem 1 of Hornik, 1991). That is, any

function g (with finite Lr-norm) can also be well approximated by a 3-layered feedforward

network fG,q in terms of Lr-norm when q is sufficiently large.

It should be emphasized that the universal approximation property of a feedforward

network hinges on the 3-layered architecture and the number of hidden units, but not

on the activation function per se. As stated above, the activation function in the hidden

unit can be a general bounded function and does not have to be sigmoidal. Hornik (1993)

provides results that permit even more general activation functions. Moreover, a feedfor-

ward network with only one hidden layer suffices for such approximation property. More

hidden layers may be helpful in certain applications but are not necessary for functional

approximation.

Barron (1993) further derived the rate of approximation in terms of mean squared

error ‖f−g‖22. It was shown that 3-layered feedforward networks fG,q with G a sigmoidal

function can achieve the approximation rate of order O(1/q), for which the number of

parameters grows linearly with q (with the order O(mq)). This is in sharp contrast

with other expansions, such as polynomial (with p the degree of the polynomial) and
3Hornik (1991) considered the network without the bias term in the output unit, i.e., β0 = 0. Yet as

long as G is not a constant function, all the results in Hornik (1991) carry over; see Stinchcombe and

White (1998) for details.

10

spline (with p the number of knots per coordinate), which yield suitable approximation

when the number of parameters grows exponentially (with the order O(pm)). Thus, it is

practically difficult for such expansions to approximate well when the dimension of the

input space, m, is large.

4 Implementation of ANNs

In practice, when the activation functions in an ANN are chosen, it remains to estimate its

connection weights (unknown parameters) and to determine a proper number of hidden

units. Given that the connection weights of an ANN model are unknown, this network

must be properly “trained” so as to “learn” the unknown weights. This is why parameter

estimation is referred to as network learning and the sample used for parameter estimation

is referred to a training sample in the ANN literature. As the number of hidden units

q determines network complexity, finding a suitable q is known as network complexity

regularization.

4.1 Model Estimation

The network parameters can be estimated by either on-line or off-line methods. An on-

line learning algorithm is just a recursive estimation method which updates parameter

estimates when new sample information becomes available. By contrast, off-line learning

methods are based on fixed training samples; standard econometric estimation methods

are typically off-line.

To ease the discussion of model estimation, we focus on the simple case that there

is only one target variable y and the network function fG,q. Generalization to the case

with multiple target variables and vector-valued network functions is straightforward.

Once the activation function G is chosen and the number of hidden units is given, fG,q

is a nonlinear parametric model for the target y; the network with multiple outputs is a

system of nonlinear models. Taking mean squared error as the criterion, the parameter

vector of interest θ∗ thus minimizes

IE[y − fG,q(x;θ)]2. (6)

It is well known that

IE
[
y − fG,q(x;θ)

]2 = IE
[
y − E(y|x)

]2 + IE
[
IE(y|x)− fG,q(x;θ)

]2
.

11

As IE(y|x) is the best L2 predictor of y, θ∗ must also minimize the mean squared approxi-

mation error: IE
[
IE(y|x)−fG,q(x;θ)

]2. This shows that, among all 3-layered feedforward

networks with the activation function G and q hidden units, fG,q(x;θ∗) provides the best

approximation to the conditional mean function.

Given a training sample of T observations, an estimator of θ∗ can be obtained by

minimizing the sample counterpart of (6):

1
T

T∑
t=1

[yt − fG,q(xt;θ)]2,

which is just the objective function of the nonlinear least squares (NLS) method. The

NLS method is an off-line estimation method because the size of the training sample

is fixed. Under very general conditions on the data and nonlinear function, it is well

known that the NLS estimator is strongly consistent for θ∗ and asymptotically normally

distributed; see, e.g., Gallant and White (1988).

In many ANN applications (e.g., signal processing and language learning), the train-

ing sample is not fixed but constantly expands with new data. In such cases, off-line

estimation may not be feasible, but on-line estimation methods, which update the pa-

rameter estimates based solely on the newly available data, are computationally more

tractable. Moreover, on-line estimation methods can be interpreted as “adaptive learn-

ing” by biological neural systems. It should be emphasized that when there is only a

given sample, as in most empirical studies in economics, recursive estimation is not to

be preferred because it is, in general, statistically less efficient than the NLS method in

finite samples.

Note that the parameter of interest θ∗ is the zero of the first order condition of (6):

IE
[
∇fG,q(x;θ)

(
y − fG,q(x;θ)

)]
= 0,

where ∇fG,q(x;θ) is the (column) gradient vector of fG,q with respect to θ. To estimate

θ∗, a recursive algorithm proposed by Rumelhart, Hinton, and Williams (1986) is

θ̂t+1 = θ̂t + ηt∇fG,q(xt; θ̂t)
[
yt − fG,q(xt; θ̂t)

]
, (7)

where ηt > 0 is a parameter that re-scales the adjustment term in the square bracket.

It can be seen from (7) that the adjustment term is determined by the gradient descent

12

direction and the error between the target and network output: yt − fG,q(xt; θ̂t), and it

requires only the information at time t, i.e., yt, xt, and the estimate θ̂t.4

The algorithm (7) is known as the error back-propagation (or simply back-propagation)

algorithm in the ANN literature, because the error signal [yt−fG,q(xt; θ̂t)] is propagated

back through the network to determine the change of each weight. The underlying idea

of this algorithm can be traced back to the classical stochastic approximation method in-

troduced in Robins and Monro (1951). White (1989) established consistency and asymp-

totic normality of θ̂t in (7). Note that the parameter ηt in the algorithm is known as

a learning rate. For consistency of θ̂t, it is required that ηt satisfies
∑∞

t=1 ηt = ∞ and∑∞
t=1 η2

t < ∞, e.g., ηt = 1/t. The former condition ensures that the updating process

may last indefinitely, whereas the latter implies ηt → 0 so that the adjustment in the

parameter estimates can be made arbitrarily small.5

Instead of the gradient descent direction, it is natural to construct a recursive algo-

rithm with a Newton search direction. Kuan and White (1994) proposed the following

algorithm:

Ĥt+1 = Ĥt + ηt

[
∇fG,q(xt; θ̂t)∇fG,q(xt; θ̂t)

′ − Ĥt

]
,

θ̂t+1 = θ̂t + ηt Ĥ
−1

t+1∇fG,q(xt; θ̂t)
[
yt − fG,q(xt; θ̂t)

]
,

(8)

where Ĥt+1 characterizes a Newton direction and is recursively updated via the first

equation. Kuan and White (1994) showed that θ̂t in (8) is
√

t-consistent, statistically

more efficient than θ̂t in (7), and asymptotically equivalent to the NLS estimator. The

algorithm (8) may be implemented in different ways; for example, there is an algorithm

that is algebraically equivalent to (8) but does not involve matrix inversion. See Kuan

and White (1994) for more discussions on the implementation of the Newton algorithms.

On the other hand, estimating recurrent networks is more cumbersome. From (4) and

(5) we can see that recurrent network functions depend on θ directly and also indirectly

through the presence of internal feedbacks (i.e., lagged output and lagged hidden-unit

activations). The indirect dependence on parameters must be taken into account in
4The algorithm (7) is analogous to the numerical steepest-descent algorithm. However, (7) utilizes

only the information at time t, whereas numerical optimization algorithms are computed using all the

information in a given sample and hence are off-line methods.
5In many applications of ANN, the learning rate is often set to a constant ηo; the resulting estimate θ̂t

loses consistency in this case. Kuan and Hornik (1991) established a convergence result based on small-ηo

asymptotics.

13

calculating the derivatives with respect to θ. Thus, NLS optimization algorithms that

require analytic derivatives are difficult to implement. Kuan, Hornik, and White (1994)

proposed the dynamic back-propagation algorithm for recurrent networks, which is anal-

ogous to (7) but involves more updating equations. Kuan (1995) further proposed a

Newton algorithm for recurrent networks, analogous to (8), and showed that it is
√

t-

consistent and statistically more efficient than the dynamic back-propagation algorithm.

We omit the details of these algorithms; see Kuan and Liu (1995) for an application of

these estimation methods for both feedforward and recurrent networks.

Note that the NLS method and recursive algorithms all require computing the deriva-

tives of the network function. Thus, a smooth and differentiable activation function, as

the examples given in Section 2.3, are quite convenient for network parameter estimation.

Finally, given that ANN models are highly nonlinear, it is likely that there exist multiple

optima in the objective function. There is, however, no guarantee that the NLS method

and the recursive estimation methods discussed above will deliver the global optimum.

This is a serious problem because the dimension of the parameter space is typically large.

Unfortunately, a convenient and effective method for finding the global optimum in ANN

estimation is not yet available.

4.2 Model Complexity Regularization

Section 3 shows that a network model fG,q can approximate unknown function when the

number of hidden units, q, is sufficiently large. When there is a fixed training sample,

a complex network with a very large q may over fit the data. Thus, there is a trade-off

between approximation capability and over-fitting in implementing ANN models.

An easy approach to regularizing the network complexity is to apply a model selec-

tion criteria,6 such as Schwarz (Bayesian) information criterion (BIC), to the network

models with various q. As is well known, BIC consists of two terms: one is based on

model fitness, and the other penalizes model complexity. Hence, it is suitable for regu-

larizing network complexity; see also Barron (1991). A different criterion introduced in

Rissanen (1986, 1987) is predictive stochastic complexity (PSC) which is just an average
6Alternatively, one may consider testing whether some hidden units may be dropped from the model.

This amounts to testing, say, βh = 0 for some h. Unfortunately, the parameters in that hidden-unit

activation function (γh,0 and γh) are not identified under this null hypothesis. It is well known that,

when there are unidentified nuisance parameters, standard econometric tests are not applicable.

14

of squared prediction errors:

PSC =
1

T − k

T∑
t=k+1

[
yt − fG,q(xt, θ̂t)

]2
,

where θ̂t is the predicted parameter estimate based on the sample information up to

time t − 1, and k is the total number of parameters in the network. Given the number

of inputs, the network with the smallest BIC or PSC gives the desired number of hidden

units q∗. Rissanen showed that both BIC and PSC can be interpreted as the criteria for

“minimum description length,” in the sense that they determine the shortest code length

(asymptotically) that is needed to encode a sequence of numbers. In other words, these

criteria lead to the least complex model that still captures the key information in data.

Swanson and White (1997) showed that a network selected by BIC need not perform well

in out-of-sample forecasting, however.

Clearly, PSC requires estimating the parameters at each t. It would be computa-

tionally demanding if the NLS method is to be used, even for a moderate sample. For

simplicity, Kuan and Liu (1995) suggested a two-step procedure for implementing ANN

models. In the first step, one estimates the network models and computes the resulting

PSCs using the recursive Newton algorithm, which is asymptotically equivalent to the

NLS method. When a suitable network structure is determined, the Newton parame-

ter estimates can be used as initial values for NLS estimation in the second step. This

approach thus maintains a balance between computational cost and estimator efficiency.

5 Concluding Remarks

In this entry, we introduce ANN model specifications, their approximation properties,

and the methods for model implementation from an econometric perspective. It should

be emphasized that ANN is neither a magical econometric tool nor a “black box” that can

solve any difficult problems in econometrics. As discussed above, a major advantage of

ANN is its universal approximation property, a property shared by other nonparametric

approximators. Yet compared with parametric econometric models, a simple ANN need

not perform better, and a more complex ANN (with a large number of hidden units) is

more difficult to implement properly and can not be applied when there is only a small

data set. Therefore, empirical applications of ANN models must be exercised with care.

15

References

Barron, A. R. (1991). Complexity regularization with application to artificial neural

networks, in Nonparametric Functional Estimation and Related Topics, G. Roussas

(ed.), pp. 561–576, Dordrecht, the Netherlads: Kluwer Academic Publishers.

Barron, A. R. (1993). Universal approximation bounds for superpositions of a sigmoidal

function, IEEE Transactions on Information Theory, IT-39, 930–945.

Cybenko, G. (1989). Approximation by superpositions of a sigmoid function, Mathemat-

ics of Control, Signals, and Systems, 2, 303–314.

Elman, J. L. (1990). Finding structure in time, Cognitive Science, 14, 179-211.

Funahashi, K. (1989). On the approximate realization of continuous mappings by neural

networks, Neural Networks, 2, 183–192.

Gallant, A. R. and H. White (1988). A Unified Theory of Estimation and Inference for

Nonlinear Dynamic Models, Oxford, UK: Basil Blackwell.

Hornik, K. (1991). Approximation capabilities of multilayer feedforward nets, Neural

Networks, 4, 231–242.

Hornik, K. (1993). Some new results on neural network approximation, Neural Networks,

6, 1069–1072.

Hornik, K., M. Stinchcombe, and H. White (1989). Multi-layer feedforward networks are

universal approximators, Neural Networks, 2, 359–366.

Hornik, K., M. Stinchcombe, and H. White (1990). Universal approximation of an un-

known mapping and its derivatives using multilayer feedforward networks, Neural

Networks, 3, 551–560.

Jordan, M. I. (1986). Serial order: A parallel distributed processing approach, Institute

for Cognitive Science Report 8604, UC San Diego.

Kuan, C.-M. (1995) “A recurrent Newton algorithm and its convergence properties”,

IEEE Transactions on Neural Networks, 6, 779–783.

Kuan, C.-M. and K. Hornik (1991). Convergence of learning algorithms with constant

learning rates, IEEE Transactions on Neural Networks, 2, 484–489.

Kuan, C,-M., K. Hornik, and H. White (1994). A convergence result for learning in

recurrent neural networks, Neural Computation, 6, 420–440.

16

Kuan, C.-M. and T. Liu (1995). Forecasting exchange rates using feedforward and re-

current neural networks, Journal of Applied Econometrics, 10, 347–364.

Kuan, C.-M. and H. White (1994). Artificial neural networks: An econometric perspec-

tive (with discussions), Econometric Reviews, 13, 1–91 and 139–143.

McClelland, J. L., D. E. Rumelhart, and the PDP Research Group (1986). Parallel

Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 2,

Cambridge, MA: MIT Press.

McCulloch, W. S. and W. Pitts (1943). A logical calculus of the ideas immanent in

nervous activity. Bulletin of Mathematical Biophysics, 5, 115–133.

Rissanen, J. (1986). Stochastic complexity and modeling, Annals of Statistics, 14, 1080–

1100.

Rissanen, J. (1987). Stochastic complexity (with discussions), Journal of the Royal Sta-

tistical Society, B, 49, 223–239 and 252–265.

Robbins, H. and S. Monro (1951). A stochastic approximation method, Annals of Math-

ematical Statistics, 22, 400–407.

Rosenblatt, F. (1958). The perception: A probabilistic model for information storage

and organization in the brain, Psychological Reviews, 62, 386–408.

Rumelhart, D. E., G. E. Hinton, and R. J. Williams (1986). Learning internal represen-

tation by error propagation, in Parallel Distributed Processing: Explorations in the

Microstructure of Cognition, Vol. 1, pp. 318–362, Cambridge, MA: MIT Press.

Rumelhart, D. E., J. L. McClelland, and the PDP Research Group (1986). Parallel

Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 1,

Cambridge, MA: MIT Press.

Stinchcombe, M. B. and H. White (1998). Consistent specification testing with nuisance

parameters present only under the alternative, Econometric Theory, 14, 295–325.

Swanson, N. R. and H. White (1997). A model selection approach to real-time macroe-

conomic forecasting using linear models and artificial neural networks, Review of

Economics and Statistics, 79, 540–550.

White, H. (1988). Economic prediction using neural networks: The case of IBM stock

prices. Proceedings of the Second Annual IEEE Conference on Neural Networks,

pp. II:451–458. New York: IEEE Press.

17

White, H. (1989). Some asymptotic results for learning in single hidden layer feedforward

network models, Journal of the American Statistical Association, 84, 1003–1013.

18

