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Introduction

The behavior of a random variable is governed by its distribution.

Moment or summary measures:

Location measures: mean, median

Dispersion measures: variance, range

Other moments: skewness, kurtosis, etc.

Quantiles: quartiles, deciles, percentiles

Except in some special cases, a distribution can not be completely

characterized by its moments or by a few qunatiles.

Mean and median characterize the “average” and “center” of y but

may provide little info about the tails.
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Conventional Methods

For the behavior of y conditional on x, consider regression yt = x′tβ + et .

Least squares (LS): Legendre (1805)

Minimizing
∑T

t=1(yt − x′tβ)2 to obtain β̂T .

x′β̂T approximates the conditional mean of y given x.

Least absolute deviation (LAD): Boscovich (1755)

Minimizing
∑T

t=1 |yt − x′tβ| to obtain β̌T .

x′β̌T approximates the conditional median of y given x.

Both the LS and LAD methods provide only partial description of the

conditional distribution of y .
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Mosteller F. and J. Tukey, Data Analysis and Regression:

“What the regression curve does is (to) give a grand summary

for the averages of the distributions corresponding to the set of

xs. We could go further and compute several different regression

curves corresponding to the various percentage points of the

distributions and thus get a more complete picture of the set.

Ordinarily this is not done, and so regression often gives a rather

incomplete picture. Just as the mean gives an incomplete picture

of a single distribution, so the regression curve gives a

correspondingly incomplete picture for a set of distributions.”
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Quantiles

The θ th (0 < θ < 1) quantile of FY is

qY (θ) := F−1
Y (θ) = inf{y : FY (y) ≥ θ}.

qY (θ) is an order statistic, and it can also be obtained by minimizing

an asymmetric (linear) loss function:

θ

∫
y>q

|y − q| dFY (y) + (1− θ)
∫

y<q
|y − q| dFY (y).

The first order condition of this minimization problem is

0 = −θ
∫

y>q
dFY (y) + (1− θ)

∫
y<q

dFY (y)

= −θ[1− FY (q)] + (1− θ)FY (q) = −θ + FY (q).
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Sample Quantiles

The sample counterpart of the asymmetric linear loss function is

1

T

T∑
t=1

ρθ(yt − q) =
1

T

[
θ

∑
t:yt≥q

|yt − q|+ (1− θ)
∑

t:yt<q

|yt − q|
]
,

where ρθ(u) = (θ − 1{u<0})u is known as the check function.

Given θ, minimizing this function yields the θ th sample quantile of y .

Key point: Other than sorting the data, a sample quantile can also be

found via an optimization program.

Given various θ values, we can compute a collection of sample

quantiles, from which the distribution can be traced out.
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ρθ

u

θ = 0.8

θ = 0.5

θ = 0.2

Figure: Check function ρθ(u) = (θ − 1{u<0})u.
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Quantile Regression (QR) Method

Koenker and Basset (1978)

Given yt = x′tβ + et , the θ th QR estimator β̂(θ) minimizes

VT (β; θ) =
1

T

T∑
t=1

ρθ(yt − x′tβ)

where ρθ(e) = (θ − 1{e<0})e.

For θ = 0.5, VT is symmetric, and β̂(0.5) is the LAD estimator.

x′β̂(θ) approximates the θ th conditional quantile function Qy |x(θ),

with β̂i (θ) the estimated marginal effect of the i th regressor on

Qy |x(θ).
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Finding the Solution to VT

Difficulties in estimation:

The QR estimator β̂(θ) does not have a closed form.

VT is not everywhere differentiable, so that standard numerical

algorithms do not work.

A minimizer of VT (β; θ) is such that the directional derivatives at

that point are non-negative in all directions w:

d

dδ
VT (β + δw; θ)

∣∣∣
δ=0

=
−1

T

T∑
t=1

ψ∗θ(yt − x′tβ, − x′tw)x′tw,

ψ∗θ(a, b) = θ − 1{a<0} if a 6= 0, ψ∗θ(a, b) = θ − 1{b<0} if a = 0.
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Let b be the point such that yt = x′tb for t = 1, . . . , k. This is a

minimizer of Vk because the directional derivative is

−1

k

k∑
t=1

(
θ − 1{−x′

tw<0}
)
x′tw,

which must be non-negative for any w. Thus, b a basic solution to

the minimization of VT .

Other basic solutions: b(κ) = X(κ)−1y(κ), each yielding a perfect fit

of k observations.

The desired estimator β̂(θ) can be obtained by searching among those

basic solutions, for which a linear programming algorithm will do.
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Linear Programming

y = Xβ + e can be expressed as

y = X(β+ − β−) + (e+ − e−) = Az,

where A = [X, −X, IT , − IT ] and z =
[
β+′, β−′, e+′, e−′

]′
, with

β+ and β− the positive and negative parts of β, respectively.

Let c = [0′, 0′, θ1′, (1− θ)1′]′. Minimizing VT (β; θ) with respect to

β is equivalent to the following linear program:

min
z

1

T
c′z, s.t. y = Az, z ≥ 0.
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Some Remarks

β̂(θ) is also the QMLE based on an asymmetric Laplace density:

fθ(e) = θ(1− θ) exp[−ρθ(e)].

Due to linear loss function, β̂(θ) is more robust to outliers than the

LS estimator.

The estimated θ th quantile regression hyperplane must interpolate k

observations in the sample. (Why?)

QR is not the same as the regressions based on split samples because

every quantile regression utilizes all sample data (with different

weights). Thus, QR also avoids the sample selection problem arising

from sample splitting.
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QR: Location Shift Model

DGP: yt = x′tβo + εt = β0 + x̃′tβ1 + εt , where εt are i.i.d. with the

common distribution function Fε.

The θ-th quantile function of y is

Qy |x(θ) = β0 + x̃′β1 + F−1
ε (θ),

and hence quantile functions differ only by the “intercept” term and

are a vertical displacement of one another.

The model can also be expressed as

yt = [β0 + F−1
ε (θ)︸ ︷︷ ︸

β0(θ)

] + x̃′tβ1 + εt,θ,

where Qεθ|x(θ) = 0.
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QR: Location-Scale Shift Model

DGP: yt = x′tβo + (x′tγo)εt , where εt are i.i.d. with the df Fε.

The θ th quantile function of y is

Qy |x(θ) = x′tβo + (x′tγo)F−1
ε (θ),

and hence quantile functions differ not only by the “intercept” but

also the “slope” term.

The model can also be expressed as

yt = x′t [βo + γoF−1
ε (θ)︸ ︷︷ ︸

β(θ)

] + εt,θ,

where Qεθ|x(θ) = 0.

The QR estimator β̂(θ) converges to β(θ), and x′β̂(θ) approximates

the θ th quantile function of y given x, Qy |x(θ).
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Algebraic Properties: Equivariance

Let β̂(θ) be the qR estimator of the quantile regression of yt on xt .

Scale equivariance: For y∗t = c yt , let β̂
∗
(θ) be the QR estimator of

the quantile regression of y∗t on xt .

For c > 0, β̂
∗
(θ) = c β̂(θ).

For c < 0, β̂
∗
(1− θ) = c β̂(θ).

β̂
∗
(0.5) = c β̂(0.5), regardless of the sign of c .

Shift equivariance: For y∗t = yt + x′tγ, let β̂
∗
(θ) be the QR estimator

of the quantile regression of y∗t on xt . Then, β̂
∗
(θ) = β̂(θ) + γ.

Equivariance to reparameterization of design: Given X∗ = XA for

some nonsingular A, β̂
∗
(θ) = A−1β̂(θ).
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Equivariance to monotonic transformations: For a nondecreasing

function h,

IP{y ≤ a} = IP{h(y) ≤ h(a)},

so that

Qh(y)|x(θ) = h
(
Qy |x(θ)

)
.

Note that the expectation operator does not have this property

because IE[h(y)] 6= h(IE(y)) in general, except when h is linear.

Example: If x′β is the θ th conditional quantile of ln y , then exp(x′β)

is the θ th conditional quantile of y .
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Goodness of Fit

Specification: yt = x1tβ1 + x2tβ2 + et .

A measure of the relative contribution of additional regressors x2t is

1−
VT

(
β̂1(θ), β̂2(θ); θ

)
VT

(
β̃1(θ), 0; θ

) ,

where VT

(
β̃1(θ), 0; θ

)
is computed under the constraint β2 = 0.

A measure of the goodness-of-fit of a specification is thus

R1(θ) = 1−
VT

(
β̂(θ); θ

)
VT

(
q̂(θ), 0; θ

) .
where q̂(θ) is the sample quantile and VT

(
q̂(θ), 0; θ

)
is obtained from

the model with the constant term only. Clearly, 0 < R1(θ) < 1.
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Asymptotic Properties: Heuristics

Ignoring yt = q, the “FOC” of minimizing T−1
∑T

t=1 ρθ(yt − q) is

gT (q) :=
1

T

T∑
t=1

(1{yt<q} − θ).

Clearly, gT (q) is non-decreasing in q (why?), so that q̂(θ) > q iff

gT (q) < 0. Thus,

IP
[√

T (q̂(θ)− q(θ) > c
]

= IP
[
gT

(
q(θ) + c/

√
T

)
< 0

]
.

We have

IE
[
gT

(
q(θ) +

c√
T

)]
= F

(
q(θ) +

c√
T

)
− θ ≈ f (q(θ))

c√
T

var
[
gT

(
q(θ) +

c√
T

)]
=

1

T
F (1− F ) ≈ 1

T
θ(1− θ).
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Setting λ2 = θ(1− θ)/f 2(q(θ)),

IP
[√

T
(
q̂(θ)− q(θ)

)
> c

]
= IP

[
gT

(
q(θ) + c/

√
T

)√
θ(1− θ)/T

< 0

]

= IP

[
gT

(
q(θ) + c/

√
T

)√
θ(1− θ)/T

− c

λ
< − c

λ

]

= IP

[
gT

(
q(θ) + c/

√
T

)
− f (q(θ))c/

√
T√

θ(1− θ)/T
< − c

λ

]
→ 1− Φ(c/λ),

by a CLT. This implies

√
T

(
q̂(θ)− q(θ)

) D−→ N (0, λ2).
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GMM Estimation

Given q moment conditions IE[m(wt ;βo)] = 0, βo (k × 1) is exactly

identified if q = k and over-identified if q > k. When βo is exactly

identified, the GMM estimator β̂ of βo solves T−1
∑T

t=1 m(wt ;β) = 0.

Asymptotic Distribution of the GMM Estimator

Given the GMM estimator β̂ of βo ,

√
T (β̂ − βo)

A∼ N
(
0, G−1

o ΣoG
−1
o

)
,

with Σo = IE[m(wt ;βo)m(wt ;βo)′], and

1

T

T∑
t=1

∇βm(wt ;βo)
IP−→ Go := IE[∇βm(wt ;βo)].
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QR Estimator as a GMM Estimator

The QR estimator β̂(θ) satisfies the “asymptotic FOC”:

1√
T

T∑
t=1

ϕθ(yt−x′tβ̂(θ)) :=
1√
T

T∑
t=1

xt

(
θ−1{yt−x′

t β̂(θ)<0}
)

= oIP(1).

The (approximate) estimating function is thus

1

T

T∑
t=1

xt

(
θ − 1{yt−x′

tβ<0}
)
.

The expectation of the estimating function is

IE
{
xt

[
θ − IE

(
1{yt−x′

tβ<0} | xt

)]}
= IE

{
xt

[
θ − Fy |x(x

′
tβ)

]}
.

When β is evaluated at β(θ), Fy |x(x
′
tβ) must be θ so that the

moment conditions are IE
[
ϕθ

(
yt − x′tβ(θ)

)]
= 0.
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Asymptotic Distribution

When integration and differentiation can be interchanged,

G(β) = IE
[
∇βϕθ(yt − x′tβ)

]
= ∇β IE

{
xt

[
θ − Fy |x(x

′
tβ)

]}
= − IE

[
xtx

′
t fy |x(x

′
tβ)

]
.

Then, G(β(θ)) = − IE
[
xtx

′
t feθ|x(0)

]
.

1{yt−x′
tβ(θ)<0} is Bernoulli with mean θ and variance θ(1− θ), so that

Σ(β) = IE

(
xtx

′
t IE

[(
θ − 1{yt−x′

tβ<0}
)2 | xt

])
.

Then, Σ(β(θ)) = θ(1− θ) IE(xtx
′
t) =: θ(1− θ)Mxx .
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Asymptotic Normality of the QR Estimator

√
T

[
β̂(θ)− β(θ)

] D−→ N
(
0, θ(1− θ)G

(
β(θ)

)−1
MxxG

(
β(θ)

)−1
)
,

where Mxx = IE(xtx
′
t) and G(β(θ)) = − IE

[
xtx

′
t feθ|x(0)

]
.

Conditional heterogeneity is characterized by the conditional density

feθ|x(0) in G(β(θ)), which is not limited to heteroskedasticity.

If feθ|x(0) = feθ
(0), i.e., conditional homogeneity,

√
T

[
β̂(θ)− β(θ)

] D−→ N
(

0,
θ(1− θ)
[feθ

(0)]2
M−1

xx

)
.
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Estimation of Asymptotic Covariance Matrix

Consistent estimation of D(β(θ)) = G
(
β(θ)

)−1
MxxG

(
β(θ)

)−1
.

Estimation of Mxx : MT = T−1
∑T

t=1 xtx
′
t .

Digression: Differentiating both sides of F (F−1(θ)) = θ:

dF−1(θ)

dθ
=

1

f (F−1(θ))
=: s(θ),

differentiating a quantile function yields a sparsity function.

Estimating the sparsity function:

Using a difference quotient of empirical quantiles F̂−1
T (θ):

ŝT (θ) =
[
F̂−1

T (θ + hT )− F̂−1
T (θ − hT )

]
/(2hT ).

Letting ê(i) be the i th order statistic of QR residuals êt ,

F̂−1
T (τ) = ê(i), τ ∈ [(i − 1)/T , i/T ).
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Hendricks and Koenker (1991): Estimating fe(θ)|x(0) in G(β(θ)) by

f̂t =
2hT

x′t
[
β̂(θ + hT )− β̂(θ − hT )

] ,
and estimating −G by −ĜT = 1

T

∑T
t=1 f̂txtx

′
t .

Powell (1991): Estimating −G(β(θ)) by

−ĜT =
1

2TcT

T∑
t=1

1{|êt(θ)|<cT }xtx
′
t ,

where cT → 0 and T 1/2cT →∞ as T →∞.

STATA: Bootstrap
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Standard Wald Test

H0 : Rβ(θ) = r, where R is q × k and r is q × 1.
√

T
[
β̂(θ)− β(θ)

] D−→ N
(
0, θ(1− θ)D(β(θ))

)
.

Under the null,

√
TR

(
β̂(θ)−β(θ)

)
=
√

T
(
Rβ̂(θ)− r

) D−→ N
(
0, θ(1−θ)Γ(β(θ))

)
,

where Γ(β(θ)) = RD(β(θ))R′.

The Null Distribution of the Wald Test

WT (θ) = T
[
Rβ̂(θ)− r

]′
Γ̂(θ)−1

[
Rβ̂(θ)− r

]
/[θ(1− θ)] D−→ χ2(q),

where Γ̂(θ) = RD̂(θ)R′, with D̂(θ) a consistent estimator of D(β(θ)).
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Sup-Wald Test

H0 : Rβ(θ) = r for all θ ∈ S ⊂ (0, 1).

The Brownian bridge: Bq(θ)
d
= [θ(1− θ)]1/2N (0, Iq), and hence

Γ̂(θ)−1/2
√

T
[
Rβ̂(θ)− r

] D−→ Bq(θ).

Thus, WT (θ)
D−→

∥∥Bq(θ)/
√
θ(1− θ)

∥∥2
, uniformly in θ.

The Null Distribution of the Sup-Wald Test

sup
θ∈S

WT (θ) ⇒ sup
θ∈S

∥∥∥ Bq(θ)√
θ(1− θ)

∥∥∥2
,

where S is a compact set in (0, 1).
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To test Rβ(θ) = r, θ ∈ [a, b], set a = θ1 < . . . < θn = b and compute

sup -WT = sup
i=1,...,n

WT (θi ).

Koenker and Machado (1999): [a, b] = [ε, 1− ε] with ε small.

For s = θ/(1− θ), B(θ)/
√
θ(1− θ) d

= W (s)/
√

s, so that

IP

 sup
θ∈[a,b]

∥∥∥∥∥ Bq(θ)√
θ(1− θ)

∥∥∥∥∥
2

< c

 = IP

{
sup

s∈[1,s2/s1]

∥∥∥∥Wq(s)√
s

∥∥∥∥2

< c

}
,

with s1 = a/(1− a), s2 = b/(1− b).

Some critical values were tabulated in DeLong (1981) and

Andrews (1993); the other can be obtained via simulations.
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Likelihood Ratio Tests

Let β̂(θ) and β̃(θ) be the constrained and unconstrained estimators

and V̂T (θ) = VT (β̂(θ); θ) and ṼT (θ) = VT (β̃(θ); θ) be the

corresponding objective functions.

Given the asymmetric Laplace density: fθ(u) = θ(1− θ) exp[−ρθ(u)],

the log-likelihood is

LT (β; θ) = T log(θ(1− θ))−
T∑

t=1

ρθ(yt − x′tβ).

−2 times the log-likelihood ratio is

2
[
LT (β̂(θ); θ)− LT (β̃(θ); θ)

]
= 2

[
ṼT (θ)− V̂T (θ)

]
.
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Koenker and Machado (1999):

LRT (θ) =
2
[
ṼT (θ)− V̂T (θ)

]
θ(1− θ)[feθ

(0)]−1

D−→ χ2(q).

This test is also known as the quantile ρ test.

Koenker and Bassett (1982): For median regression,

LRT (0.5) =
8
[
ṼT (0.5)− V̂T (0.5)

]
[fe0.5

(0)]−1
= 2

[
ṼT (0.5)− V̂T (0.5)

]
,

because fe0.5
(0) = 1/4.
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Digression: Average Treatment Effect

Evaluating the impact of a treatment (program, policy, intervention).

Let D be the binary indicator of treatment and X be covariates.

Y1 (Y0) is the potential outcome when an agent is (is not) exposed to

the treatment.

The observed outcome is Y = DY1 + (1− D)Y0.

We observe only one potential outcome (Y1i or Y0i ) and hence can

not identify the individual treatment effect, Y1i − Y0i . We may

estimate the average treatment effect (ATE): IE(Y1 − Y0).

Under conditional independence: (Y1,Y0)⊥D | X ,

IE(Y |D = 1,X )− IE(Y |D = 0,X ) = IE(Y1 − Y0|X ),

so that the ATE is IE(Y1 − Y0) = IE[IE(Y1 − Y0|X )].
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Using the sample counterpart of IE(Y |D = 1,X )− IE(Y |D = 0,X )

we have

ÂTE =
1

N

N∑
i=1|

[
µ̂1(Xi )− µ̂0(Xi )

]
.

For the dummy-variable regression:

Yi = α+ Diγ + X ′
i β︸ ︷︷ ︸

µD

+ei , i = 1, . . . , n,

the LS estimate of γ is ÂTE.

Other estimators: Kernel matching, nearest neighbor matching,

propensity score matching (based on p(x) = IP(D = 1|X = x)), etc.
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Quantile Treatment Effect

Let F0 and F1 be, resp., the distributions of control and treatment

responses. Let ∆(η) be the “horizontal shift” from F0 to F1:

F0(η) = F1(η + ∆(η)).

Then, ∆(η) = F−1
1 (F0(η))− η, and the θ th quantile treatment effect

(QTE) is, for F0(η) = θ,

QTE(θ) = F−1
1 (θ)− F−1

0 (θ) = qY1
(θ)− qY0

(θ),

the difference between the quantiles of two distributions.

We may apply the QR method to

Yi = α+ Diγ + X ′
i β + ei ,

the resulting QR estimate γ̂(θ) is the estimated θ th QTE.

Other: A weighting estimator based on the propensity score.
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Difference in Differences

The impact of a program (policy) may be observed after certain

period of time. To identify the “true” treatment effect, the potential

change due to time (other factors) must be excluded first.

Define the following dummy variables:

(i) Di ,τ = 1 if the i th individual receives the treatment;

(ii) Di ,a = 1 if the i th individual s in the post-program period;

(iii) Di ,aτ = Di ,τ × Di ,a.

Model: Yi = α+ α1Di ,τ + α2Di ,a + α3Di ,aτ + X ′
i β + ei .

For the treatment group in pre- and post-program periods, the time

effect is α2 + α3.

For the control group in pre- and post-program periods, the time effect

is α2.

The treatment effect is the difference between these two effects: α3.
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