Introduction to
Time Series Diagnostic Tests

CHUNG-MING KUAN
Department of Finance & CRETA
National Taiwan University

March 20, 2011
Outline

1. Introduction

2. **Q-Type Tests**
 - Conventional *Q* Tests
 - Modified *Q* Test

3. **Spectral Tests**
 - Durlauf’s Spectral Test
 - Modified Spectral Test

4. **Other Tests of Serial Independence**
 - Variance Ratio Test
 - BDS Test

5. **Test for Time Reversibility**
Time series properties of \(y_t \)

- **Serial uncorrelatedness**: \(y_t \) uncorrelated with \(y_{t-i}, \ i = 1, 2, \ldots \).
- **Martingale difference**: \(y_t \) uncorrelated with any function on \(y_{t-i}, \ i = 1, 2, \ldots \).
- **Serial independence**: No relation between any function of \(y_t \) and any function of \(y_{t-i}, \ i = 1, 2, \ldots \).
- **Time reversibility**: Distributions are invariant wrt the reversal of time indices.

Diagnostic testing

- Testing results provide information on how these raw data may be modeled.
- When a model is estimated, diagnostic tests on model residuals yield information about model adequacy.
A weakly stationary time series \(\{y_t\} \) is such that its autocovariances (autocorrelations) depend on \(i \) but not on \(t \).

- **Autocovariances:** \(\gamma(i) = \text{cov}(y_t, y_{t-i}), i = 0, 1, 2, \ldots \)
- **Autocorrelations:** \(\rho(i) = \gamma(i)/\gamma(0), i = 0, 1, 2, \ldots \)

Estimates: Sample autocovariances are

\[
\hat{\gamma}(i) = \frac{1}{T} \sum_{t=1}^{T-i} (y_t - \bar{y})(y_{t+i} - \bar{y});
\]

sample autocorrelations are \(\hat{\rho}(i) = \hat{\gamma}(i)/\hat{\gamma}(0) \).

The null hypothesis of serial uncorrelatedness is:

\[
H_0: \rho(1) = \rho(2) = \cdots = 0.
\]

We test this hypothesis by checking sample autocorrelations.
Asymptotic Properties

Let $\rho_m = (\rho(1), \ldots, \rho(m))'$ and $\hat{\rho}_m = (\hat{\rho}(1), \ldots, \hat{\rho}(m))'$. We have

$$\sqrt{T}(\hat{\rho}_m - \rho_m) \xrightarrow{D} \mathcal{N}(0, V),$$

where the (i,j)-th elements of V are

$$v_{ij} = \gamma(0)^{-2} \left[c_{i+1,j+1} - \rho(i)c_{1,j+1} - \rho(j)c_{1,i+1} + \rho(i)\rho(j)c_{1,1} \right],$$

with

$$c_{i+1,j+1} = \sum_{k=-\infty}^{\infty} \mathbb{E} \left[(y_t - \mu)(y_{t+i} - \mu)(y_{t+k} - \mu)(y_{t+k+j} - \mu) \right] - \mathbb{E} \left[(y_t - \mu)(y_{t+i} - \mu) \right] \mathbb{E} \left[(y_{t+k} - \mu)(y_{t+k+j} - \mu) \right].$$
• Under the null, $\rho_m = 0$, so that $\sqrt{T} V^{-1/2} \hat{\rho}_m \overset{D}{\rightarrow} \mathcal{N}(0, I_m)$ and

$$T \hat{\rho}'_m V^{-1} \hat{\rho}_m \overset{D}{\rightarrow} \chi^2(m).$$

This result holds when V is replaced by a consistent estimator \hat{V}.

• When $\rho(i) = 0$ for all i, $v_{ij} = c_{i+1,j+1}/\gamma(0)^2$ with

$$c_{i+1,j+1} = \sum_{k=-\infty}^{\infty} \mathbb{E}[(y_t - \mu)(y_{t+i} - \mu)(y_{t+k} - \mu)(y_{t+k+j} - \mu)].$$

This can be further simplified when more conditions are imposed.
Conventional Q Tests

When y_t are serially independent,

$$c_{i+1,j+1} = \sum_{k=-\infty}^{\infty} \mathbb{E}[(y_t - \mu)(y_{t+i} - \mu)(y_{t+k} - \mu)(y_{t+k+j} - \mu)]$$

$$= \begin{cases}
\gamma(0)^2, & i = j, \\
0, & i \neq j.
\end{cases}$$

In this case, \mathbf{V} simplifies to \mathbf{I}_m.

Box and Pierce (1970)

Under serial independence,

$$Q_T = T\hat{\rho}_m' \hat{\rho}_m \xrightarrow{D} \chi^2(m).$$
Fuller (1976, p. 242):

$$\text{cov}(\sqrt{T} \hat{\rho}(i), \sqrt{T} \hat{\rho}(j)) = \left\{ \begin{array}{ll} \frac{T-i}{T} + O(T^{-1}), & i = j \neq 0, \\ O(T^{-1}), & i \neq j. \end{array} \right.$$

That is, \((T - i)/T\) is a better estimate of the diagonal elements \(v_{ii}\) in finite samples. This suggests that the finite-sample power may be improved if \(\hat{\rho}(i)^2\) are normalized by \((T - i)/T\).

Ljung and Box (1978)

$$\widetilde{Q}_T = T^2 \sum_{i=1}^m \frac{\hat{\rho}(i)^2}{T - i} \xrightarrow{D} \chi^2(m).$$

This test is also computed as:
$$T(T + 2) \sum_{i=1}^m \frac{\hat{\rho}(i)^2}{T - i}.$$
Without the serial independence condition, we assume

\[\mathbb{E} \left[(y_t - \mu)(y_{t+i} - \mu)(y_{t+k} - \mu)(y_{t+k+j} - \mu) \right] = 0, \]

for each \(k \) when \(i \neq j \) and for \(k \neq 0 \) when \(i = j \).

We have: \(c_{i+1,j+1} = 0 \) when \(i \neq j \), and

\[c_{i+1,j+1} = \mathbb{E} \left[(y_t - \mu)^2(y_{t+i} - \mu)^2 \right], \]

when \(i = j \). Hence, \(\mathbf{V} \) is diagonal with \(v_{ii} = c_{i+1,i+1}/\gamma(0)^2 \).

Estimate of \(v_{ii} \):

\[\hat{v}_{ii} = \frac{1}{T} \sum_{t=1}^{T-i} (y_t - \bar{y})(y_{t+i} - \bar{y})^2 \left[\frac{1}{T} \sum_{t=1}^{T} (y_t - \bar{y})^2 \right]^{-1}. \]
Lobato et al. (2001)

\[Q^*_T = T \sum_{i=1}^{m} \frac{\hat{\rho}(i)^2}{\hat{\nu}_{ii}} \xrightarrow{D} \chi^2(m). \]

- Under conditional homoskedasticity,
 \[c_{i+1,i+1} = \mathbb{E}[(y_t - \mu)^2(y_{t+i} - \mu)^2] = \gamma(0)^2. \] Estimating \(c_{i+1,i+1} \) thus makes the \(Q^* \) test more robust to conditional heteroskedasticity, such as ARCH and GARCH processes.

- When the \(Q \)-type tests are applied to the residuals of an ARMA(\(p, q \)) model, the asymptotic null distribution becomes \(\chi^2(m - p - q) \).
Spectral Tests

- Instead of testing only \(m \) autocorrelations, it would be nice if one can test all correlation coefficients. To this end, note that the spectral density function is the Fourier transform of the autocorrelations:

\[
f(\omega) = \frac{1}{2\pi} \sum_{j=-\infty}^{\infty} \rho(j) e^{-ij\omega}, \quad \omega \in [-\pi, \pi].
\]

Under the null, \(f(\omega) = (2\pi)^{-1}. \)

- The spectral test compares the sample counterpart of \(f \) (also known as the periodogram) with \((2\pi)^{-1}\), i.e.,

\[
\frac{1}{2\pi} \left(\sum_{j=-(T-1)}^{T-1} \hat{\rho}(j) e^{-ij\omega} - 1 \right).
\]
Recall that \(\exp(-ij\omega) = \cos(j\omega) - i \sin(j\omega) \), where \(\sin \) is an odd function and \(\cos \) an even function. Thus,

\[
\frac{1}{2\pi} \left(\sum_{j=-(T-1)}^{T-1} \hat{\rho}(j) e^{-ij\omega} - 1 \right) = \frac{1}{\pi} \sum_{j=1}^{T-1} \hat{\rho}(j) \cos(j\omega).
\]

Integrating this function wrt \(\omega \) on \([0, a]\), \(0 \leq a \leq \pi\), we obtain

\[
\frac{1}{\pi} \sum_{j=1}^{T-1} \hat{\rho}(j) \frac{\sin(ja)}{j},
\]

which are the cumulated differences and also a process in \(a \).
• Durlauf's test is based on normalized, cumulated differences:

\[D_T(t) = \frac{\sqrt{2T}}{\pi} \sum_{j=1}^{m(T)} \hat{\rho}(j) \frac{\sin(j\pi t)}{j}, \]

(1)

where \(\pi t = a \) and \(m(T) \) grows with \(T \) at a slower rate.

• The spectral representation of the standard Brownian motion \(B \) is:

\[W_T(t) = \epsilon_0 t + \frac{\sqrt{2}}{\pi} \sum_{j=1}^{T} \epsilon_j \frac{\sin(j\pi t)}{j} \Rightarrow B(t), \quad t \in [0, 1], \]

where \(\epsilon_t \) are i.i.d. \(\mathcal{N}(0, 1) \) r.v. Then, \(W_T(1) = \epsilon \) and

\[W_T(t) - tW_T(1) = \frac{\sqrt{2}}{\pi} \sum_{j=1}^{T} \epsilon_j \frac{\sin(j\pi t)}{j} \Rightarrow B^0(t), \quad t \in [0, 1], \]

where \(B^0 \) denotes the Brownian bridge.
Using $\sqrt{T} \hat{\rho}(i) \approx \mathcal{N}(0,1)$, we have $D_T(t) \Rightarrow B^0(t), \ t \in [0, 1]$. A test can be constructed by applying a functional to measure the fluctuation of D_T.

Durlauf (1991)

1. **Anderson-Darling test:**

 $$AD_T = \int_0^1 \frac{[D_T(t)]^2}{t(1-t)} \, dt \Rightarrow \int_0^1 \frac{[B^0(t)]^2}{t(1-t)} \, dt.$$

2. **Cramér-von Mises test:**

 $$\text{CvM}_T = \int_0^1 [D_T(t)]^2 \, dt \Rightarrow \int_0^1 [B^0(t)]^2 \, dt.$$

3. **Kolmogorov-Smirnov test:**

 $$\text{KS}_T = \sup |D_T(t)| \Rightarrow \sup |B^0(t)|.$$
as in Lobato et al. (2001), Deo (2000) also finds the asymptotic variance of \(\sqrt{T} \hat{\rho}(j) \) is \(\mathbb{I} \mathbb{E}(y_t^2 y_{t-j}^2)/\gamma(0)^2 \) under conditional heteroskedasticity. Normalized using \(\hat{\nu}_{jj} \) we have

\[
D^c_T(t) = \frac{\sqrt{2T}}{\pi} \sum_{j=1}^{m(T)} \frac{\hat{\rho}(j)}{\sqrt{\hat{\nu}_{jj}}} \frac{\sin(j\pi t)}{j}.
\]

The test based on \(D^c_T \) ought to be more robust to conditional heteroskedasticity than Durlauf’s test.

Deo (2000)

\[
CvM^c_T = \int_0^1 [D^c_T(t)]^2 \, dt \Rightarrow \int_0^1 [B^0(t)]^2 \, dt.
\]
Variance Ratio Test

- Null hypothesis: i.i.d.
- \(y_t \) are i.i.d. with mean zero and variance \(\sigma^2 \). For any \(k \),
 \[
 \text{var}(y_t + \cdots + y_{t-k+1}) = k\sigma^2.
 \]
- Let \(\tilde{\sigma}_k^2 \) denote an estimator of \(\text{var}(y_t + \cdots + y_{t-k+1}) \) and \(\hat{\sigma}^2 \) the sample variance of \(y_t \). Then, \(\tilde{\sigma}_k^2 / k \) and \(\hat{\sigma}^2 \) should be close to each other under the null.
- The variance ratio test of Cochrane (1988) is simply a normalized version of \(\tilde{\sigma}_k^2 / (k\hat{\sigma}^2) \).
- Notation: \(\eta_t \) is the partial sum of \(y_i \) such that \(y_t = \eta_t - \eta_{t-1} \).
 Suppose there are \(kT + 1 \) observations \(\eta_0, \eta_1, \ldots, \eta_{kT} \).
The standard estimator of σ^2:

$$\hat{\sigma}^2 = \frac{1}{kT} \sum_{t=1}^{kT} (\eta_t - \eta_{t-1} - \bar{y})^2,$$

which is both consistent and asymptotically efficient under the null.

An estimator of $\sigma_k^2 = \text{var}(\eta_t - \eta_{t-k})$ is

$$\tilde{\sigma}_k^2 = \frac{1}{T} \sum_{t=1}^{T} (\eta_{kt} - \eta_{kt-k} - k\bar{y})^2 = \frac{1}{T} \sum_{t=1}^{T} [k(\bar{y}_t - \bar{y})]^2,$$

where $\bar{y}_t = \sum_{kt-k+1}^{kt} y_i / k$. Clearly, $\tilde{\sigma}_k^2 / k$ is consistent for σ^2 but not asymptotically efficient under the null.

Under the null, $\sqrt{kT}(\hat{\sigma}^2 - \sigma^2) \overset{D}{\to} \mathcal{N}(0, 2\sigma^4)$ and

$$\sqrt{T}(\tilde{\sigma}_k^2 - k\sigma^2) \overset{D}{\to} \mathcal{N}(0, 2k^2\sigma^4).$$
Hausman (1978) test: Let $\hat{\theta}_e$ be a consistent and asymptotically efficient estimator of θ and $\hat{\theta}_c$ a consistent but not asymptotically efficient estimator. Then, $\hat{\theta}_e$ is asymptotically uncorrelated with $\hat{\theta}_c - \hat{\theta}_e$. For if not, there would exist a linear combination of $\hat{\theta}_e$ and $\hat{\theta}_c - \hat{\theta}_e$ that is asymptotically more efficient than $\hat{\theta}_e$.

A decomposition:

$$\frac{1}{\sqrt{k}} \sqrt{T} (\tilde{\sigma}_k^2 - k\sigma^2) = \sqrt{kT} \left(\frac{\tilde{\sigma}_k^2}{k} - \sigma^2 \right)$$

$$= \sqrt{kT} \left(\frac{\tilde{\sigma}_k^2}{k} - \hat{\sigma}^2 \right) + \sqrt{kT} (\hat{\sigma}^2 - \sigma^2).$$

The LHS is $\mathcal{N}(0, 2k\sigma^4)$, and the second term on the RHS is $\mathcal{N}(0, 2\sigma^4)$.
The first term on the RHS is thus:

$$\sqrt{kT} \left(\frac{\tilde{\sigma}^2_k}{k} - \hat{\sigma}^2 \right) \xrightarrow{D} \mathcal{N}(0, 2(k - 1)\sigma^4).$$

The normalized variance ratio is

$$\sqrt{kT} \left(\frac{\tilde{\sigma}^2_k}{k\hat{\sigma}^2} - 1 \right) \xrightarrow{D} \mathcal{N}(0, 2(k - 1)).$$

Cochrane (1988)

Letting $VR = \frac{\tilde{\sigma}^2_k}{(k\hat{\sigma}^2)}$, we have under the null of i.i.d.,

$$\sqrt{kT}(VR - 1)/\sqrt{2(k - 1)} \xrightarrow{D} \mathcal{N}(0, 1).$$
BDS Test

- Null hypothesis: i.i.d.
A strictly stationary process \(\{y_t\} \) is said to be **time reversible (TR)** if
\[
F_{t_1, t_2, \ldots, t_n} (c_1, c_2, \ldots, c_n) = F_{t_n, t_{n-1}, \ldots, t_1} (c_1, c_2, \ldots, c_n).
\]

Examples: Independent sequences, Gaussian ARMA processes.

When the condition fails, \(\{y_t\} \) is said to be **time irreversible**.

- A linear, non-Gaussian process is time irreversible in general.
- Tong (1990): “time irreversibility is the rule rather than the exception when it comes to nonlinearity” (p. 197).

A test of time reversibility can be viewed as a joint test of **linearity** and **Gaussianity** or a test of **independence**, e.g., Ramsey and Rothman (1996) and Chen, Chou, and Kuan (2000).
Cox (1981): When \(\{y_t\} \) is TR, the marginal distribution of \(y_t - y_{t-k} \) must be symmetric about the origin for any \(k \).

Existing tests of the symmetry of \(y_t - y_{t-k} \):
- Testing the third central moment being zero.
- Testing the bi-covariances being zero, because

\[
\mathbb{E}(y_t - y_{t-k})^3 = -3 \mathbb{E}(y_t^2 y_{t-k}) + 3 \mathbb{E}(y_t y_{t-k}^2).
\]

Note: These are all necessary conditions of distribution symmetry.

Drawbacks: Such tests require the data to possess high-order moments.
A distribution is symmetric iff the imaginary part of its characteristic function is zero. Hence, time reversibility implies

\[h_k(\omega) := \mathbb{E}[\sin(\omega(y_t - y_{t-k}))] = 0, \quad \forall \omega \in \mathbb{R}^+. \]

We may integrate out \(\omega \) with a positive and integrable weighting function \(g \):

\[
\int_{\mathbb{R}^+} h_k(\omega) g(\omega) \, d\omega = \int_{\mathbb{R}} \left(\int_{\mathbb{R}^+} \sin(\omega(y_t - y_{t-k})) g(\omega) \, d\omega \right) \, dF = 0,
\]

where \(F \) is the cdf of \(y_t \).

We can test if \(\mathbb{E}[\psi_g(y_t - y_{t-k})] = 0 \), with

\[
\psi_g(y_t - y_{t-k}) = \int_{\mathbb{R}^+} \sin(\omega(y_t - y_{t-k})) g(\omega) \, d\omega.
\]
CCK Test

Chen, Chou, and Kuan (2000)

\[C_{g,k} = \sqrt{T_k} \bar{\psi}_{g,k} / \bar{\sigma}_{g,k} \xrightarrow{D} \mathcal{N}(0, 1). \]

where \(T_k = T - k \), \(\bar{\psi}_{g,k} = \sum_{t=k+1}^{T} \psi_g(y_t - y_{t-k}) / T_k \), and \(\bar{\sigma}_{g,k}^2 \) is a consistent estimator of the asymptotic variance of \(\sqrt{T_k \bar{\psi}_{g,k}} \).

- \(\psi_g \) is bounded so that no moment condition is needed for the CLT; this test is thus robust to moment failure.
- Setting \(g(\omega) = \exp(-\omega/\beta)/\beta \) with \(\beta > 0 \) (exponential dist),
 \[\psi_{\exp}(y_t - y_{t-k}) = \frac{\beta(y_t - y_{t-k})}{1 + \beta^2(y_t - y_{t-k})^2}; \]
 a rule of thumb is to set \(\beta = 1/\sigma_y \).
Figure: $h(\omega)$ of centered exponential distributions with $\beta = 0.5$ (line 0), $\beta + 1$ (line 1) and $\beta = 2$ (line 2).
Some Remarks

- When this test is applied to model residuals, it is difficult to estimate the asymptotic variance of $\sqrt{T_k \bar{\psi}_{g,k}}$. An easy way is to bootstrap the standard error.

- Chen and Kuan (2002): This test is powerful against asymmetric dependence in data, such as volatility asymmetry, but the existing Q-type and BDS tests are not. Thus, this test may be used to distinguish between EGARCH and GARCH models.

- We may test the L_2 norm of $h_k(\cdot)$: $\int_{\mathbb{R}^+} h_k(\omega)^2 \, d\omega = 0$. The resulting test does not have an analytic form and usually has a data-dependent distribution.